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Abstract: Feature selection (FS) constitutes a critical stage within the realms of machine learning
and data mining, with the objective of eliminating irrelevant features while guaranteeing model
accuracy. Nevertheless, in datasets featuring a multitude of features, choosing the optimal feature
poses a significant challenge. This study presents an enhanced Sand Cat Swarm Optimization
algorithm (MSCSO) to improve the feature selection process, augmenting the algorithm’s global
search capacity and convergence rate via multiple innovative strategies. Specifically, this study
devised logistic chaotic mapping and lens imaging reverse learning approaches for population
initialization to enhance population diversity; balanced global exploration and local development
capabilities through nonlinear parameter processing; and introduced a Weibull flight strategy and
triangular parade strategy to optimize individual position updates. Additionally, the Gaussian–
Cauchy mutation strategy was employed to improve the algorithm’s ability to overcome local optima.
The experimental results demonstrate that MSCSO performs well on 65.2% of the test functions in
the CEC2005 benchmark test; on the 15 datasets of UCI, MSCSO achieved the best average fitness
in 93.3% of the datasets and achieved the fewest feature selections in 86.7% of the datasets while
attaining the best average accuracy across 100% of the datasets, significantly outperforming other
comparative algorithms.

Keywords: feature selection; global optimization; sand cat population optimization; artificial intelligence

1. Introduction

During the big data era, with the sharp increase in feature dimensions in intelligent
information processing tasks, a large number of unnecessary or unrelated features ap-
pear in the dataset, which not only results in reduced model accuracy but also adds to
the computational time burden [1]. Feature selection (FS), as a key data dimensionality
reduction method, aims to select the most informative feature subset in a given feature
set to improve the performance of machine learning models [2]. FS helps to cut down on
computational costs while also increasing the model’s interpretability. Especially when
dealing with large-scale datasets, it can significantly improve computational efficiency and
reduce the complexity of model training.

The traditional feature selection methods can be divided into the filtering method,
wrapping method, and embedding method [3]. Filtering methods are selected by indepen-
dent evaluation of each feature, with common evaluation metrics including information
gain (IG), the chi-square test, and mutual information (MI). These methods are computation-
ally efficient but often ignore the correlation between features. By combining feature subsets
with specific learning algorithms to evaluate their performance, the package method selects
the optimal feature subsets. Although the wrapping method can consider the relationship
between features, it is computationally expensive, especially when the feature dimension
is high. The embedding method integrates the feature selection process into the model
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training process and directly selects features through regularization technology or model
structures, such as ridge regression (RR) and decision trees (DTs), etc. This method has a
good performance in computational efficiency and accuracy.

When it comes to handling large-scale datasets or high-dimensional data, the draw-
backs of these traditional methods become particularly prominent. Hence, researchers have
embarked on seeking more flexible algorithms capable of handling complex feature interac-
tions. Metaheuristic algorithms, as an emergent approach, have emerged as an effective
tool for resolving feature selection issues with their potent global search capabilities and
adaptability to complex matters [4].

Metaheuristic algorithms draw inspiration from natural processes and human be-
havioral patterns. Based on the heuristic approach mechanism, these algorithms fall
into five categories, namely evolutionary-based algorithms, population-based algorithms,
physics/chemistry-based algorithms, human behavior-based algorithms, and mathematics-
based algorithms. Evolutionary-based algorithms mimic natural selection and genetic
processes, with typical instances including Genetic Algorithms (GAs) [5], Differential
Evolution (DE) [6], and Evolutionary Strategies (ESs) [7]. Population-based algorithms sim-
ulate the behavior of biological populations, such as the Krill Herd Algorithm (KHA) [8],
the Honeybee Algorithm (HBA) [9], and the Fox Optimization Algorithm (FOX) [10].
Physics/chemistry-based algorithms draw from physical and chemical phenomena in
nature, like Simulated Annealing (SA) [11], the Crystal Structure Algorithm (CryStAl) [12],
and the Gravitational Search Algorithm (GSA) [13]. Human behavior-based algorithms
borrow characteristics of human thinking, behavior, or social structures, such as the Love
Evolutionary Algorithm (LEA) [14], the Rider Optimization Algorithm (ROA) [15], and
the Stadium Audience Optimization Algorithm (SSO) [16]. Finally, mathematics-based
algorithms are designed based on mathematical theories, such as Hyperbolic Sine Cosine
Optimization (SCHO) [17], Triangular Topology Aggregation Optimization (TTAO) [18],
and Exponential Distribution Optimization (EDO) [19].

According to the “No Free Lunch Theorem” for optimization [20], no single algorithm
performs best in every situation, which explains the continuous emergence of diverse
optimization algorithms.

The Sand Cat Swarm Optimization (SCSO) algorithm was proposed in [21], which
mimics how sand cats survive in the natural world, characterized by its simple principle,
few parameters, and strong global search capability. This algorithm has shown excellent
performance on 20 famous test functions and 10 CEC2019 test functions and has performed
well in seven engineering design problems. However, the original algorithm still encounters
issues such as limited optimization accuracy, slow convergence, and a tendency to become
trapped in local optima when addressing high-dimensional highly intricate optimization
tasks. To overcome these issues, several improvements have been made to SCSO, and the
enhanced version is named MSCSO.

This study makes the following key contributions:

1. An innovative multi-objective feature selection method, the improved Sand Cat
Swarm Optimization algorithm, is proposed for the feature selection problem. This
method enhances feature selection efficiency while considering both the classification
error rate and feature selection ratio as objectives, aiming to obtain the optimal feature
subset, reduce redundant features, and improve classification accuracy.

2. The population initialization method, nonlinear parameter handling, and position
update strategy have been innovatively improved, and the Gaussian–Cauchy mu-
tation strategy has been introduced. These enhancements significantly boost the
algorithm’s global search capability, convergence speed, and optimization accuracy,
while effectively avoiding the issue of local optima.

3. The global optimization performance of MSCSO was evaluated through the CEC2005
benchmark test, with results showing that it performed excellently on 65.2% of the
test functions. Additionally, in feature selection experiments conducted on 15 datasets
from UCI, MSCSO achieved the optimal average fitness in 93.3% of the datasets,



Biomimetics 2024, 9, 701 3 of 24

demonstrated the optimal number of feature selections in 86.7% of the datasets, and
reached the highest average accuracy in 100% of the datasets, all superior to other
comparative algorithms.

The structure of the remainder of this study is as follows: Section 2 examines the
relevant research progress in feature selection, Section 3 describes the improvement meth-
ods of SCSO and its complexity analysis, Section 4 presents the analysis and discussion of
experimental results, and Section 5 reviews the key findings of this research and suggests
potential avenues for future investigation.

2. Related Work
2.1. Feature Selection Based on Traditional Methods

Feature selection (FS) is regarded as an NP-hard problem because of the complexity
of its search space. With increasing data dimensionality, the number of potential feature
subsets increases exponentially, making it extremely challenging to identify the optimal
subset. To tackle this issue, researchers have developed numerous approaches to feature
selection, which are typically divided into three main types, namely filtering methods,
wrapper methods, and embedded methods.

Filter, wrapper, and embedded methods are three widely used feature selection tech-
niques, each with distinct characteristics. Filter methods evaluate the relationship between
features and the target variable to screen feature subsets, operating independently of model
training. Univariate methods are computationally efficient but may overlook interactions
among features, while multivariate approaches can capture complex inter-feature relation-
ships. For example, Ref. [22] utilized variance–covariance distance to eliminate features
with minimal variance for dimensionality reduction, while Ref. [23] employed MI and
the variance inflation factor (VIF) to eliminate multicollinearity, thereby refining the fea-
ture set. Wrapper methods, on the other hand, evaluate feature subsets based directly
on model performance, using metrics such as forward selection, backward elimination,
and recursive feature elimination (RFE). Ref. [24] applied forward feature selection to
iteratively construct transitional index maps, and Ref. [25] combined recursive feature
elimination with cross-validation (RFECV) to optimize feature selection for decision tree
models. Embedded methods perform feature selection during model training, allowing for
synchronous feature selection and model fitting. For instance, Ref. [26] leveraged LASSO
to select features highly correlated with liver disease, enhancing classification accuracy.
Additionally, Ref. [27] employed multivariate variational mode decomposition (MVMD)
and kernel extreme learning machine (KELM) models to predict plant and soil moisture
evaporation, effectively addressing complex feature selection tasks.

2.2. Feature Selection Based on Metaheuristic Algorithm

In traditional feature selection methods, the filtering method, wrapper method, and
embedded method each have their strengths and weaknesses. Although these methods
perform well in addressing feature selection issues, they may still encounter limitations
when dealing with high-dimensional data, complex interactions between features, and
limited computational resources. To overcome these limitations, researchers are gradually
turning to metaheuristic algorithms. These algorithms simulate heuristic processes in the
natural world and can effectively search the feature space to find feature subsets suitable
for specific problems.

The introduction of meta-heuristic algorithms provides a new way to solve the difficult
problem of feature selection, especially in the case of high feature dimensionality or com-
plex relationships between features. Next, the application of several typical meta-heuristic
algorithms in feature selection will be discussed. Ref. [28] proposed the binary arithmetic
optimization algorithm (BAOA) to address the feature selection problem. The algorithm
transforms continuous variables into discrete variables through S-shaped and V-shaped
shift functions and combines four logical operations and parametric models based on
sine and cosine functions to optimize the feature selection process. Ref. [29] adopted an



Biomimetics 2024, 9, 701 4 of 24

improved slime mold algorithm (ISMA) for feature selection. This algorithm significantly
improves classification performance by simultaneously optimizing parameters and feature
selection of a support vector machine (SVM). Ref. [30] used the Binary Macaque Opti-
mization Algorithm (BMOA) for feature selection, which improves classification accuracy
by screening for the most relevant and effective features. The improved version of the
BMOA (IBMOA) further enhances exploration and development capabilities. Ref. [31]
designed an enhanced raccoon optimization algorithm (mCoatiOA) to enhance its explo-
ration and development capabilities by introducing adaptive s-best mutation operators,
directional mutation rules, and global optimal search control. Ref. [32] improved the Gray
Wolf Optimization algorithm (GWO) for feature selection, improved the initial popula-
tion quality by introducing the ReliefF algorithm and Coupla entropy, and optimized the
search process using competition guidance and DE’s lead wolf enhancement strategy. This
method effectively reduces the feature set and enhances classification accuracy. Ref. [33]
presented an advanced variant of the Harris Eagle Optimization algorithm (EHHO). By
introducing a hierarchical structure, the algorithm shows a stronger capacity for handling
complex problems. In feature selection, EHHO enhances classification performance, de-
creases feature count, and cuts down on execution time. The above algorithms perform
well in feature selection, but there are some limitations in practical applications. First, they
often require selecting a large number of features, which results in low computational
efficiency, especially when dealing with large-scale datasets, leading to slower processing
speeds. Additionally, due to their high computational cost and sensitivity to parameters,
these algorithms have limited practicality and are difficult to apply in real-time systems or
complex environments.

Some scholars use hybrid algorithms for feature selection, which combine two or more
different algorithms to take full advantage of each. Ref. [34] proposed the mixed sine–cosine
Firehawk algorithm (HSCFHA). The model combines the Fire Eagle algorithm (FHO) and
the sine and cosine algorithm (SCA) to obtain better results in feature selection problems
by exploiting the advantages of both algorithms in exploration and development. Ref. [35]
used a particle swarm-guided Condor search algorithm (PS-BES) for feature selection.
The algorithm guides the condor’s search by combining the speed of the particle swarm
and utilizes the attack–retreat–surrender technique to increase the capacity for escaping
local optima, thus improving the overall effect of the feature selection process. Ref. [36]
created a new integrated binary metaheuristic that combines the Deep Throat Optimization
algorithm (DTO) and the SCA. By using the SCA to improve the exploration process
and combining DTO to accelerate convergence, the algorithm improves the efficiency
and accuracy of feature selection. Ref. [37] combined particle swarm optimization (PSO)
and the firefly algorithm (FA), combining the advantages of each algorithm for problems
related to feature selection. Ref. [38] proposed a hybrid optimization approach (GWDTO)
based on GWO and DTO for feature selection. This method improves the effectiveness
of feature selection by effectively balancing the exploration and development steps in the
optimization process. These hybrid algorithms perform well in feature selection, but there
are some issues. Firstly, they have high computational complexity, leading to low efficiency
when processing large datasets. Secondly, they are prone to getting trapped in local optima,
making it difficult to find the global optimum. Finally, the algorithms are sensitive to
parameters and tuning them is challenging, which makes them less flexible and practical in
real-world applications.

Compared to other complex meta-heuristic algorithms, SCSO has the advantage of
fewer parameters, making it easier to adjust. This results in a simpler optimization process
and reduced complexity in parameter tuning. Additionally, SCSO maintains a good balance
between exploration and exploitation, effectively avoiding local optima. By simplifying the
adjustment process, SCSO improves feature selection efficiency and adapts well to complex
datasets. Therefore, SCSO was chosen as the base algorithm for improvement in this study.
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2.3. Motivation

Feature selection is a critical step in machine learning and data mining, aimed at
removing irrelevant features to ensure model accuracy, thereby improving interpretability
and generalization. However, existing feature selection methods have notable limitations,
necessitating more efficient and accurate solutions.

(1) Traditional feature selection methods struggle with feature correlation and compu-
tational efficiency. Filter methods, though simple, overlook correlations between
features; wrapper methods consider feature relationships but are computationally in-
tensive, making them unsuitable for high-dimensional data; and embedded methods
are often affected by model dependency. Addressing these issues requires an efficient
method capable of accurately identifying feature correlations.

(2) In heuristic algorithm applications, many algorithms exhibit low accuracy and fail to
identify the optimal subset in feature selection, limiting their practical utility. Thus,
designing superior optimization strategies to improve accuracy and applicability has
become a current research focus.

(3) Additionally, heuristic algorithms in feature selection often suffer from premature
convergence, getting trapped in local optima and failing to reach the global optimum,
thereby limiting their effectiveness. The key to overcoming this lies in enhancing
convergence speed and solution diversity to ensure a comprehensive search and
optimal solutions.

To address these issues, this study proposes a feature selection technique based on
MSCSO. This algorithm minimizes redundant features while balancing error rates and the
ratio between selected and original features, aiming for both accuracy and efficiency in
feature selection. The proposed improvements include diversified population initialization
via logistic chaotic mapping and lens imaging reverse learning, nonlinear parameter ad-
justment, and individual position updates optimized with Weibull flight and triangular
marching strategies. Additionally, Gaussian–Cauchy mutation is integrated to enhance
the algorithm’s ability to escape local optima. These enhancements provide a robust
mechanism for feature selection, promising to improve stability and effectiveness in practi-
cal applications.

3. Improved Sand Cat Swarm Optimization Algorithm
3.1. Improved Population Initialization

As one of the most classical chaotic mapping methods, logistic chaotic mapping
enhances the diversity of initial solutions, helping the algorithm perform a more effective
global search. The formula for logistic chaotic mapping is given by

Xt+1 = µXt(1− Xt) (1)

where µ ∈ (0, 4], t represents the current iteration count, and Xt ∈ (0, 1).
Reverse learning improves the search capability of the algorithm by generating the

reverse solution of the current solution and enlarges the search space of the algorithm. Lens
imaging reverse learning is an improvement of reverse learning. By simulating the imaging
principle of optical lenses, the reverse solution of the solution is generated so as to further
enhance the variability within the population and speed up the algorithm’s convergence.
The formula is shown as follows:

X′ =
ub + lb

2
+

ub + lb
2k

− X
k

(2)

where ub denotes the solution’s upper bound and lb its lower bound. The term ub+lb
2 in the

formula represents the center of the solution space, which is the average of the upper and
lower bounds. The terms ub+lb

2k and X
k adjust the current solution X through the scaling

factor k. In this study, k is set to 0.75. When k = 1, the formula reduces to standard
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opposition-based learning; when k 6= 1, by simulating the principle of optical lens imaging,
the formula changes the distribution range of the opposite solutions, further enhancing the
diversity of the population.

First, the initial sand cat population was generated by logistic chaos mapping, and
then the corresponding reverse population was generated by lens imaging reverse learning.
The two populations were combined, the evaluation of each individual’s fitness value was
performed, and they were ranked from smallest to largest. Next, the top N individuals
with the highest fitness scores were chosen to constitute the final sand cat population.
Compared with the original SCSO, this approach not only accelerates the search process
but also greatly increases the search space, thereby enhancing the algorithm’s capability to
perform a global search.

3.2. Nonlinear Parameterization

The foraging behavior of sand cats consists of two main stages, namely search and
attack. During the search phase, the sand cat conducts global exploration, scanning the
entire feasible domain for potential targets. In the attack phase, fine-grained search is
focused on a specific area, similar to local optimization. How to coordinate the switching
between these two stages effectively is the key to improve the effectiveness of the algorithm.
This coordination process relies on the control of the key parameter R. The parameter R is
directly related to rg. In the original SCSO algorithm, rg decreases linearly from 2 to 0 as
the number of iterations increases. However, to enhance the method’s global exploration
capability and avoid local optima traps, the parameters need to be nonlinearized, increasing
the number of iterations during the search stage. This helps prevent premature convergence
and improves the algorithm’s ability to escape local optima. The specific formula is
as follows:

rg =

(
S

logS
10

)
× log

(2− t
Tmax )

2

10 (3)

where the initial value of S is 2, t represents the current iteration number, while Tmax
denotes the maximum iterations. The change in r is associated with rg, r is the sensitivity
range of each sand cat, rand is a value randomly chosen between 0 and 1, and r is calculated
by the following formula:

r = rg× rand (4)

3.3. Enhanced Location Update Strategy

When |R| > 1, the sand cat begins searching for prey. The sand cat adjusts its position
according to a random candidate location Pbc(t), the current location Pc(t), the range of
sensitivity r, and a rand value between 0 and 1. The location update formula is given by

P(t + 1) = r(Pbc(t)− rand · Pc(t)) (5)

During the prey search phase, the location is updated mainly by the random candidate
location Pbc(t) and current location Pc(t). If the individuals in the algorithm are too
concentrated in the position that is currently considered to be optimal, especially if this
position is only a local optimal solution, the amplitude of the overall disturbance will
gradually decrease as the iteration progresses. This will cause the whole population to
become more and more close to this local optimal region, which will significantly reduce the
variety within the population, causing the algorithm to be prone to premature convergence
and eventually affecting the optimization accuracy. To solve this problem, the Weibull
flight strategy is designed to create new individual locations to introduce more variability
into the search process and prevent getting trapped in a local optimal solution prematurely.
In searching for prey, the position update formula combined with Weibull’s flight strategy
is as follows:

Pnew(t + 1) = r · Rw · (Pbc(t)− rand · Pc(t)) (6)
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where Pbc(t) is the random candidate location, Pc(t) is the current location, r is the sensitiv-
ity range, and Rw is a random value drawn from a Weibull distribution. The probability
density formula for the Weibull distribution is given by

f (x, λ, k) =
(

k
λ

)
×
( x

λ

)k−1
× exp

(
−
( x

λ

)k
)

(7)

where x is the value of the random variable, λ is the scale parameter, k is the shape
parameter, and the values of λ and k determine the shape and scale of the distribution. In
this study, λ is 0.5 and k is 4.

When |R| ≤ 1, the sand cat attacks its prey by first using the best location Pb(t) and
the current location Pc(t) to generate a random location Prnd. Assuming that the sensitivity
range of the sand cat is a circle, the roulette method is used to randomly select an angle
θ for each sand cat, where the range of θ is from 0 degrees to 360 degrees, and finally, the
prey is attacked by Equation (9). To maintain proximity to the prey, the algorithm uses
random positioning for the sand cat. Additionally, random angles are used to avoid local
optima entrapment.

Prnd = |rand · Pb(t)− Pc(t)| (8)

P(t + 1) = Pb(t)− r · Prnd · cos(θ) (9)

In attacking prey, the continuous local search can lead to a decrease in population
diversity, thus making the algorithm lose enough exploration ability to discover new
solution space regions. To address this issue, the triangle parade strategy was added. By
introducing a random walk element into local search, the triangular parade enhances the
exploration of the algorithm, making it more likely to escape local optima, and helps the
sand cat to explore in a wider solution space. The formula for updating positions combined
with the triangular parade strategy is as follows:

Pnew(t + 1) = Pb(t) + r · alph (10)

where Pb(t) is the best position, r is the sensitivity range, and alph is the offset of the new
position. The formula for alph is

alph = L2 + LP2 − 2× LP× L · cos(2× π × rand) (11)

LP = L× rand (12)

L = Pb(t)− Pc(t) (13)

where L represents the distance from the sand cat to its current best solution, LP is used to
introduce randomness, and rand is a random number between 0 and 1.

3.4. Out of Optimal Value

After one iteration, Gaussian and Cauchy variations were used to disturb the opti-
mal position of the sand cat population and update the position of the whole population.
Gaussian variation helps individuals fine-tune their position in the solution space by intro-
ducing small amplitude random changes and enhances local search ability and optimizes
solutions more effectively while avoiding premature convergence. In contrast, Cauchy
variation introduces large random perturbations that allow individuals to jump out of local
optimal solutions, thereby improving global exploration capabilities, and the formula for
the perturbation position of Gaussian–Cauchy variation is

Ph(t) = Pb(t)× (1 + ∆P(t)) (14)

∆P(t) = α× Gaussian(1, 0) + β× cauchy(1, 0) (15)
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α = t/Tmax (16)

β = 1− α (17)

where Ph(t) is the position after perturbation by Cauchy–Gaussian variation, Pb(t) is the
best position, t represents the current iteration, Tmax denotes the total number of iterations,
and Gaussian(1, 0) is a random variable based on Gaussian distribution. cauchy(1, 0)
denotes a random variable that follows a Cauchy distribution.

In order to further optimize the population after the position disturbance of Gaussian–
Cauchy variation, an optimal strategy, the greedy strategy, was adopted. By comparing the
fitness scores of the modified individual and the original individual, the strategy selects
the individual with better fitness. If the mutated individual has better fitness, it replaces
the original individual, thereby improving the overall performance of the algorithm and
ensuring that each generation moves toward the optimal solution by accurately selecting
better solutions and robustly converging toward the global optimum. The formula for the
greedy strategy is

Pc(t) =
{

Pc(t) f (Ph(t)) ≥ f (Pc(t))
Ph(t) f (Ph(t)) < f (Pc(t))

(18)

where Pc(t) is the current position, Ph(t) is the position after Cauchy–Gaussian variation
perturbation, and f is the fitness function.

3.5. MSCSO for Feature Selection

Suppose S is a dataset with K samples and M features and F is a set of M features. The
purpose of feature selection is to optimize the objective function by selecting the optimal
feature subset Yb(Yb ∈ M), since the setting of the objective function is to maintain a
balance between minimizing the error rate and minimizing the number of features selected.
Therefore, this study chooses the linear combination of error rate and the number of selected
features as the objective function, and the formula is as follows:

f = λ× error + (1− λ)× (1− Y
M

) (19)

In order to apply MSCSO to feature selection, it is necessary to binarize the sand cat
individual. The details are shown in Formula (23).

Yi =
(

y1
i , y2

i , . . . . yM
i

)
, yj

i ∈ {0, 1} (20)

where yj
i = 1 means that the j feature in the i feature subset Yi is selected, and yj

i = 0 means
that this feature is not selected. The feature selection problem in this study can be expressed
as an optimization problem, and the formula is as follows:

min f (Y)
s.t.Yi = (y1

i , y2
i , . . . . yM

i ), yj
i ∈ {0, 1}

j = 1, 2, . . . . M
1 ≤|Y|≤ M

(21)

where min f (Y) is the minimization objective function and s.t. is the constraint.
MSCSO was originally used to solve the problem of continuous variables, but the

value of the feature subset is limited to {0, 1}, so to convert continuous values between [0, 1]
to binary values, 0.5 is used as the threshold to decide whether to select a feature. When
the value in the individual is greater than 0.5, it is converted to 1, indicating that the feature
has been selected. When the value is less than or equal to 0.5, it is converted to 0, indicating
that the feature is not selected [2,3,31].
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3.6. Complexity Analysis of MSCSO

The time complexity of this algorithm consists of the initialization phase and multiple
steps in each iteration. In the initialization phase, the algorithm first generates 2 × N
positions and initializes the population using chaotic mapping and opposition-based
learning, with a time complexity of O(2 × N × D), where N is the number of search
agents and D is the feature dimension. Then, it calculates the fitness of each individual
and performs sorting, with a time complexity of O(2× N × D + 2× Nlog(2× N)). In
each iteration, position updates, binarization, fitness calculations, and boundary checks
are performed for each individual, with a time complexity of O(N × D). The position
update includes calculating random factors, Lévy flight, Weibull flight, and other O(D)
operations. Gaussian and Cauchy mutations are applied to all individuals for perturbation,
with a complexity of O(N×D). Combined with fitness recalculations and greedy selection,
the overall complexity remains O(N × D). Assuming a total number of iterations Tmax,
the overall time complexity is O(Tmax × N × D), with the number of iterations being the
primary computational cost.

In this section, the original sand cat algorithm is mainly improved, and the mathemat-
ical model of MSCSO is depicted in Algorithm 1, with the overall flowchart depicted in
Figure 1.

Algorithm 1 Pseudocode for the MSCSO optimization algorithm

1: Initialization parameters: population size N, maximum iteration count Tmax, upper and lower
limits of solutions ub and lb.
2: Initialize the optimal position of the sand cat Pb and the optimal fitness value Pbest.
3: Fitness function f (x): see Equation (19).
4: Population initialization: to initialize the sand cat population, use Equations (1) and (2) to
compute fitness value f (Pi) of every sand cat individual, and take the first N to form a new sand
cat population.
5: While t < Tmax do
6: for every individual sand cat Pi do
7: To ensure that each individual sand cat Pi is in the limits of the solution and to calculate the
Pi, the fitness value of the f (Pi) is used.
8: if f (Pi) < Pbest, then
9: Assign the value of f (Pi) to Pbest, updating the optimal location Pb.
10: end if
11: end for
12: Set S to 2 and initialize rg and r according to Equations (3) and (4).
13: if |R| > 1 then
14: Update individual positions according to Equation (5).
15: Use the Weibull flight strategy to obtain a new position, see Equation (6).
16: else
17: Adjust positions based on Formula (9).
18: Use the triangle parade to obtain a new position, see Equation (10).
19: end if
20: Calculate the fitness of the individual value f (Pi) and the new position of fitness value
f (Pnewi).
21: if f (Pnewi) < f (Pi), then
22: Assign f (Pnewi) to Pi.
23: end if
24: Use Formulas (15) and (18) to update the location of the entire sand cat population.
25: Use Formula (19) to ensure excellence.
26: If the number of iterations increases by 1, t = t + 1.
27: end while
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4. Performance Metrics of Experiment

Two key experiments are conducted in this section to thoroughly examine the effective-
ness and precision of the MSCSO approach introduced in this research. The first experiment
aimed to assess how well the MSCSO algorithm performs on global optimization prob-
lems, using the CEC2005 reference function set, which covers a variety of optimization
problems from simple to complex, including unimodal functions, multimodal functions,
and fixed-dimensional multimodal functions. Through these benchmark functions, we
can methodically assess how well the MSCSO algorithm performs and maintains stability
across various optimization challenges. The second experiment focused on feature selection,
using 15 classical datasets covering different domains and feature selection difficulties. By
applying the MSCSO algorithm to these datasets, its performance in actual data processing
can be evaluated. Feature selection, as a key step in machine learning and data mining, has
a major effect on the performance and complexity of the model, so it is of great significance
to evaluate the effect of the MSCSO algorithm in this task. All experiments were conducted
on the 64-bit version of MATLAB R2022a to ensure a consistent experimental environment.
In these two experiments, the results of the MSCSO algorithm are evaluated against the
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original SCSO algorithm and several other commonly used meta-heuristic algorithms in
detail, and a variety of performance indicators are used to evaluate these algorithms so as to
fully understand the relative advantages and application potential of the MSCSO algorithm.

4.1. Performance Metrics of Experiment

To assess the effectiveness of MSCSO, the following evaluation indicators were used
in this study:

Average fitness: Fitness is a joint evaluation of the classification error rate and the
proportion of selected features relative to the total number of features. The smaller the
fitness, the better the effect, which means reducing the classification error rate while
minimizing the selection of feature count to achieve the optimal effect. The average fitness
is calculated as the mean of several separate runs, and its expression is shown as follows:

fmean =

R
∑

i=1
fi

R
(22)

where R is the number of independent runs. In global optimization, R is assigned a value
of 30 for the number of independent trials, whereas in feature selection, R is assigned a
value of 20 and fi denotes the fitness value obtained from the initial run i.

Standard deviation: This is used to assess the consistency and robustness of the
optimization algorithm across multiple runs. A reduced standard deviation indicates a
more stable optimization algorithm. The formula is as follows:

std =

√√√√√ R
∑

i=1
(xi − xmean)

2

R
(23)

where R is the number of independent runs and xi and xmean represent the measured value
and average value in the i run, respectively.

Average accuracy: this is the average of classification accuracy after the R run, defined as

acc =

R
∑

i=1
acci

R
(24)

where acci is the accuracy of the first run of i.
Average feature selection: this represents the mean number of selected features across

R runs, defined as

f eature =

R
∑

i=1
size(i)

R
(25)

where size(i) indicates the count of features chosen during the i-th run.

4.2. Parameter Setting of Algorithm

Table 1 presents the parameter configurations for MSCSO, SCSO, Moth Flame Op-
timization (MFO) [39], the Salp Swarm Algorithm (SSA) [40], Four-Vector Optimization
(FVIM) [41], the Arithmetic Optimization Algorithm (AOA) [42], the SCA [43], PSO [44],
Dandelion Optimization (DO) [45], and Sailfish Optimization (SFO) [46]. These settings
significantly impact algorithm efficiency and the outcomes of the experiments. Specifically,
the table includes the number of iterations, population size, and the specific parameter
configurations for each algorithm.
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Table 1. Parameter information of each algorithm.

Algorithm Parameter

All Global optimization parameters: Population size = 30, Maximum iterations = 1000, Run count = 30
Feature selection parameters: Population size = 30, Maximum iterations = 100, Run count = 20

MSCSO k = 0.75, p = [1:360], S = 2
SCSO p = [1:360], S = 2
MFO b = 1
SSA -
FVIM alpha = 1.5
AOA MOP_Max = 1, MOP_Min = 0.2, Alpha = 5, Mu = 0.499
SCA a = 2
PSO w = 0.85, c1 = 1.2, c2 = 1.2
DO -
SFO PD = 2/3

4.3. Experiment 1: Global Optimization of CEC2005 Test Functions

This section assesses how well the MSCSO algorithm performs with the CEC2005
benchmark functions, as shown in Supplementary Materials Table S1. Among the 23 test
functions, F1 to F7 are unimodal benchmark functions, F8 to F13 are multimodal benchmark
functions, and F14 to F23 are fixed-dimension multimodal benchmark functions. Unimodal
benchmark functions mainly test the algorithm’s ability to perform local searches, while
multimodal benchmark functions examine the algorithm’s ability to escape local optima and
find the global optimum. Fixed-dimension multimodal benchmark functions evaluate how
well the algorithm performs in a global search at specific dimensions. To thoroughly assess
the effectiveness of the MSCSO algorithm, nine commonly used heuristic algorithms are
chosen for comparison, including standard SCSO, MFO, the SSA, FVIM, the AOA, the SCA,
PSO, DO, and SFO. All algorithms are assessed under the same experimental conditions
to maintain the integrity and consistency of the results. Each algorithm uses 30 search
agents and performs 1000 iterations. To minimize the effects of random initialization on
the results, each algorithm is executed 30 times separately, with the performance assessed
by averaging fitness values and calculating the standard deviation.

4.3.1. Numerical and Statistical Analysis of Experiment 1

Table 2 presents a comparison of the mean fitness and standard deviation between
MSCSO and existing optimization algorithms for the CEC2005 test functions. It can be seen
from the ranking of average fitness that MSCSO outperforms other optimization algorithms
on 15 test functions. Specifically, MSCSO performs best on F1–F5, F8–F11, F15, F16, and
F20–F23; performs second best on F7, F12, F13, and F14; ranks third for F17, F18, and F19;
and has relatively weaker competitiveness in F6. Overall, MSCSO demonstrates the best
performance among all compared algorithms.

Table 2. Comparison of mean fitness and standard deviation between MSCSO and existing optimiza-
tion algorithms in CEC2005 test function (Bold indicates better data performance).

Function Measures MSCSO SCSO MFO SSA FVIM AOA SCA PSO DO SFO

F1
Mean 0 1.6732 ×

10−22 6.6835 1.2217 ×
10−8

7.8252 ×
10−55

1.0115 ×
10−18 5.011 × 10−2 8.8258 ×

10−7
1.2027 ×

10−8
5.9286 ×
10−19

Std 0 0 2.5366 2.8644 ×
10−9

2.3666 ×
10−54

5.5403 ×
10−18

1.2384 ×
10−1

1.2243 ×
10−6

8.8765 ×
10−9

1.2626 ×
10−18

F2
Mean 0 1.2274 ×

10−11 3.3333 8.7898 ×
10−1

6.0333 ×
10−32 0 8.8029 ×

10−5
3.4267 ×

10−1
7.9067 ×

10−5
2.9971 ×

10−9

Std 0 6.5811 ×
10−11 2.0228 8.4123 ×

10−1
7.6058 ×
10−32 0 4.1444 ×

10−4 1.8244 3.3934 ×
10−5

2.3602 ×
10−9

F3
Mean 0 7.1882 ×

10−19 1.4705 2.6345 2.1786 ×
10−6

2.6499 ×
10−3 3.3952 × 103 2.5677 1.0250 1.2079 ×

10−16

Std 0 0 1.0837 2.1461 7.2399 ×
10−6

7.6668 ×
10−3 3.4423 × 103 1.1124 1.2048 2.1024 ×

10−16

F4
Mean 0 9.6592 ×

10−10 6.8430 8.0524 7.1856 ×
10−2

1.6863 ×
10−2 1.9320 × 101 3.8051 9.6583 ×

10−2
2.0926 ×
10−10

Std 0 4.8151 ×
10−10 8.5460 3.5330 3.1181 ×

10−2
2.1198 ×

10−2 1.3087 × 101 1.3945 5.1918 ×
10−2

1.8565 ×
10−10

F5
Mean 1.3318 2.8212 × 101 6.8812 1.8062 3.0309 × 101 2.8215 × 101 5.1516 × 102 9.4887 2.8709 × 101 2.8706 × 101

Std 1.2855 6.9124 ×
10−1 2.2651 3.6087 1.1645 × 101 4.3180 ×

10−1 1.6177 × 103 1.1385 1.6104 × 101 1.4421 ×
10−3

F6
Mean 1.67 1.82 2.3367 1.2538 ×

10−8 3.5837 2.7693 4.7484 9.4045 ×
10−7

9.1274 ×
10−7 3.1592

Std 6.3222 6.1323 ×
10−1 6.8034 2.4312 ×

10−9
8.3087 ×

10−1
2.4581 ×

10−1
8.6016 ×

10−1
1.0517 ×

10−6
4.1544 ×

10−7 2.2552
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Table 2. Cont.

Function Measures MSCSO SCSO MFO SSA FVIM AOA SCA PSO DO SFO

F7
Mean 6.1529 9.1979 ×

10−5 4.0113 1.0180 ×
10−1

7.4159 ×
10−3

3.9189 ×
10−5

2.9036 ×
10−2

2.4734 ×
10−2

9.3052 ×
10−3

8.1435 ×
10−5

Std 6.1166 1.1144 ×
10−4 8.6251 3.7415 ×

10−2
3.1360 ×

10−3
4.5493 ×

10−5
2.2559 ×

10−2
7.8311 ×

10−3
4.9979 ×

10−3
6.9022 ×

10−5

F8
Mean −1.203 −6.9303 −8.9559 −7.3619 −5.3718 −5.8265 −3.8623 −7.6221 −8.2970 −3.9342

Std 1.1679 8.6264 × 102 9.3253 6.9246 1.1014 × 103 3.7253 × 102 2.8576 × 102 7.3327 6.2155 × 102 1.1031 × 103

F9
Mean 0 0 1.7763 5.8006 3.5712 × 101 0 1.6014 × 101 4.8457 1.5862 × 101 0

Std 0 0 4.3103 2.2665 9.3304 0 1.9496 × 101 1.3825 1.1639 × 101 0

F10
Mean 4.4409 ×

10−1
4.4409 ×

10−1 1.2452 2.0840 8.1416 ×
10−15

4.4409 ×
10−1 1.4426 × 101 4.5028 ×

10−1
2.4648 ×

10−5
5.2770 ×
10−10

Std 0 0 8.5861 8.4850 ×
10−1

1.8853 ×
10−15 0 8.1441 6.5171 ×

10−1
1.1472 ×

10−5
5.3965 ×
10−10

F11
Mean 0 0 1.5158 1.1401 ×

10−2
5.5451 ×

10−3
9.9232 ×

10−2
2.7640 ×

10−1
1.9719 ×

10−2
1.5936 ×

10−2 0

Std 0 0 3.4452 1.1605 ×
10−2

8.8110 ×
10−3

8.2692 ×
10−2

2.8250 ×
10−1

2.5921 ×
10−2

1.6144 ×
10−2 0

F12
Mean 2.6045 7.3425 ×

10−2 1.5387 4.8849 × 101 8.1274 ×
10−1

4.0717 ×
10−1 6.5974 × 102 8.5519 ×

10−2
6.9630 ×

10−8
2.7687 ×

10−1

Std 1.3674 2.9459 ×
10−2 4.6668 3.0881 6.0639 ×

10−1
4.6520 ×

10−2 3.5664 × 103 2.0937 ×
10−1

3.6371 ×
10−8

3.8328 ×
10−1

F13
Mean 4.7895 2.4395 1.3669 1.6889 2.2887 2.7819 4.5932 × 102 6.2330 ×

10−3
1.0343 ×

10−6
1.0019 ×

10−2

Std 1.0445 4.2140 ×
10−1 7.4867 6.2236 3.9923 ×

10−1
1.2718 ×

10−1 2.4504 × 103 1.1425 ×
10−2

3.7267 ×
10−7

3.2748 ×
10−2

F14
Mean 1.0311 6.0842 2.3483 9.98 × 10−1 9.1841 1.0218 × 101 1.4618 9.98 × 10−1 9.98 × 10−1 8.1515

Std 1.8148 4.5054 1.9251 2.6562 ×
10−16 4.6576 3.1487 8.5309 ×

10−1
4.1233 ×
10−17

4.9736 ×
10−16 4.8078

F15
Mean 3.1987 4.0878 ×

10−4
1.7980 ×

10−3
8.3495 ×

10−4
5.0951 ×

10−3
2.2018 ×

10−2
8.5939 ×

10−4
3.6175 ×

10−3
1.1016 ×

10−3
1.8113 ×

10−2

Std 3.9231 2.7855 ×
10−4

3.5397 ×
10−3

2.8094 ×
10−4

8.6189 ×
10−3

3.5493 ×
10−2

3.5571 ×
10−4

1.1204 ×
10−2

3.6516 ×
10−3

3.0145 ×
10−2

F16
Mean −1.031628 −1.0316284 −1.0316284 −1.0316284 −1.0316282 −1.0316283 −1.0316002 −1.0316284 −1.0316284 −1.0316282

Std 4.0375 ×
10−1

2.4429 ×
10−10

6.7752 ×
10−16

7.2408 ×
10−15

8.8799 ×
10−7

1.0438 ×
10−7

2.7392 ×
10−5

6.7752 ×
10−16

8.2357 ×
10−14

1.0214 ×
10−6

F17
Mean 0.3978873 0.39788737 0.39788736 0.39788736 0.39788755 0.40560883 0.39892979 0.39788736 0.39788736 0.39791132

Std 5.1770 2.0828 ×
10−8 0 5.2723 ×

10−15
4.3609 ×

10−7
7.5248 ×

10−3
9.4806 ×

10−4 0 3.4351 ×
10−12

1.0370 ×
10−4

F18
Mean 3.0000007 3.00000123 3 3 3.00003310 10.9652648 3.00003931 3 3.00000000 12.0000119

Std 1.5252 1.8880 ×
10−6

1.3297 ×
10−15

1.3386 ×
10−13

5.1040 ×
10−5 1.2387 × 101 8.7638 ×

10−5
8.8049 ×
10−16

2.2231 ×
10−9 2.4901 × 101

F19
Mean 3.8627805 −3.8616140 −3.8627821 −3.8627821 −3.8627257 −3.8536551 −3.8550555 −3.8627821 −3.8627821 −3.8035099

Std 2.3680 ×
10−6

2.7517 ×
10−3

2.7101 ×
10−15

5.2138 ×
10−14

6.4765 ×
10−5

2.6938 ×
10−3

1.8405 ×
10−3

2.6823 ×
10−15

2.3382 ×
10−8

1.9563 ×
10−1

F20
Mean −3.322 −3.2477 −3.1982 −3.2238 −3.2821 −3.0976 −2.8989 −3.2679 −3.2744 −2.9596

Std 2.1588 ×
10−6

1.1059 ×
10−1

5.7419 ×
10−2

5.0081 ×
10−2

5.7438 ×
10−2

7.5351 ×
10−2

3.0548 ×
10−1

6.9818 ×
10−2

5.9241 ×
10−2

1.9696 ×
10−1

F21
Mean −9.983 −5.0860 −6.3886 −7.3946 −7.1978 −3.7087 −2.2721 −5.7286 −6.0454 −5.7652

Std 9.3075 ×
10−1 1.2230 3.4639 3.3091 3.2043 1.1244 1.9682 3.3243 3.3225 2.8908

F22
Mean −9.694 −6.8608 −8.7772 −9.5422 −9.5982 −4.2464 −3.1372 −6.5563 −7.3459 −5.8515

Std 1.8377 2.5475 3.0521 2.2747 2.2776 1.6229 1.7211 3.5019 3.6572 2.9746

F23
Mean −9.996 −6.4471 −7.4247 −8.2498 −9.7547 −4.2953 −3.8125 −7.6379 −6.7571 −6.0959

Std 1.6501 3.1867 3.6601 3.5821 2.3855 1.1388 1.9384 3.6788 3.7216 3.1840
Avg. rank 1.57 3.61 6.22 4.52 4.48 5.65 7.70 4.65 3.61 5.39

4.3.2. Comparative Analysis of MSCSO and Other Algorithms on Test Functions

In the CEC2005 test functions, MSCSO performed significantly better than SCSO.
Specifically, MSCSO outperformed SCSO in 17 test functions, while SCSO only outper-
formed MSCSO in F17 and F18, both of which performed equally on F9–F11 and F16.
MSCSO vs. MFO: MSCSO performed well on 19 test functions, with the same performance
on F16, only underperforming compared to MFO on F17–F19. MSCSO compared to the
SSA: the SSA had better average fitness on F6, F14, F17, F18, and F19, with the same average
fitness on F16, and MSCSO performed best on the remaining 17 test functions. MSCSO vs.
FVIM: MSCSO outperforms FVIM on 23 test functions. MSCSO vs. the AOA: the AOA
won only on F7, achieving the same score on F2, F9, and F10, and MSCSO achieved better
results on the remaining 19 test functions. MSCSO vs. the SCA: MSCSO is 100 percent
better than the SCA and has a lower mean fitness. Comparison between MSCSO and PSO:
Among the 23 test functions, MSCSO achieved optimal results in 17 test functions; PSO
was superior to MSCSO in F6, F14, F17, F18, and F19, and the two algorithms had the same
results in F16. MSCSO vs. DO: DO outperforms MSCSO in F6, F12, F13, F14, F17, F18, and
F19 and performs the same in F16, and MSCSO performs better in the remaining 15 test
functions. MSCSO vs. SFO: SFO failed to surpass MSCSO in any of the test functions, only
scoring the same as MSCSO in F8 and F11.

Table 2 further shows that MSCSO ranks highest among all comparison algorithms,
while the SCA ranks lowest. The order is MSCSO > SCSO = DO > FVIM > SSA > PSO >
SFO > AOA > MFO > SCA.

Wilcoxon tests are widely used in statistical analysis to compare the differences be-
tween two algorithms. Table 3 records the p-values of the Wilcoxon test between MSCSO
and existing optimization algorithms. These p-values indicate whether significant differ-
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ences exist between the performance of the two algorithms across various test functions.
When the p-value falls below 0.05, it indicates that the difference between MSCSO and
comparison algorithms in this test function is statistically significant. Conversely, if the
p-value is 0.05 or higher, it suggests that there is no significant performance disparity
between the two algorithms for the given test function. p-values above 0.05 are shown as
underlined below.

Table 3. Comparison of Wilcoxon test p-values between MSCSO and existing optimization algorithms
(Underline indicates no significant difference between MSCSO and the algorithm).

Function SCSO MFO SSA FVIM AOA SCA PSO DO SFO

F1 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 4.57 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.00 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F5 1.19 × 10−6 3.02 × 10−11 2.57 × 10−7 1.29 × 10−6 4.08 × 10−5 5.49 × 10−11 1.43 × 10−5 0.074827 1.07 × 10−7

F6 3.02 × 10−11 5.11 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 6.70 × 10−11

F7 2.84 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.92 × 10−2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 0.22257
F8 3.02 × 10−11 3.82 × 10−9 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 6.70 × 10−11 8.99 × 10−11 3.02 × 10−11

F9 1.00 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.00 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.00
F10 1.00 1.21 × 10−12 1.21 × 10−12 6.13 × 10−14 1.00 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F11 1.00 1.21 × 10−12 1.21 × 10−12 1.37 × 10−3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.00
F12 3.02 × 10−11 6.07 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 0.61001 3.02 × 10−11 8.15 × 10−11

F13 3.02 × 10−11 2.32 × 10−6 9.94 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 0.0072884 3.02 × 10−11 0.0076171
F14 8.84 × 10−7 9.47 × 10−1 1.41 × 10−11 4.07 × 10−11 3.02 × 10−11 2.87 × 10−10 1.72 × 10−12 1.44 × 10−10 4.97 × 10−11

F15 2.32 × 10−2 3.01 × 10−11 8.99 × 10−11 8.15 × 10−5 1.33 × 10−10 6.70 × 10−11 0.52014 0.12967 1.61 × 10−10

F16 2.17 × 10−1 1.21 × 10−12 2.98 × 10−11 6.01 × 10−8 3.02 × 10−11 3.02 × 10−11 1.21 × 10−12 1.33 × 10−10 2.23 × 10−9

F17 8.53 × 10−1 1.21 × 10−12 2.70 × 10−11 8.84 × 10−7 3.02 × 10−11 3.02 × 10−11 1.21 × 10−12 3.02 × 10−11 9.53 × 10−7

F18 2.81 × 10−2 1.27 × 10−11 3.02 × 10−11 2.37 × 10−10 4.12 × 10−1 1.16 × 10−7 7.87 × 10−12 1.17 × 10−9 0.021506
F19 2.61 × 10−2 1.21 × 10−12 3.01 × 10−11 1.25 × 10−7 3.02 × 10−11 3.02 × 10−11 2.36 × 10−12 7.77 × 10−9 1.73 × 10−7

F20 9.12 × 10−1 9.92 × 10−7 6.77 × 10−5 2.25 × 10−4 3.02 × 10−11 3.02 × 10−11 0.17902 0.18577 3.02 × 10−11

F21 1.78 × 10−10 4.27 × 10−1 3.33 × 10−1 3.82 × 10−9 4.08 × 10−11 3.69 × 10−11 0.034625 0.099258 7.39 × 10−11

F22 6.97 × 10−3 2.00 × 10−4 6.05 × 10−7 5.87 × 10−4 3.16 × 10−10 9.92 × 10−11 0.33154 0.26433 9.76 × 10−10

F23 6.10 × 10−3 3.52 × 10−1 6.97 × 10−3 9.21 × 10−5 2.37 × 10−10 9.92 × 10−11 0.14395 0.83026 6.12 × 10−10

4.3.3. Graphic Analysis of Experiment 1

This section primarily conducts an in-depth analysis of the performance of various
optimization algorithms through convergence curve diagrams, assessing their performance
in solving the CEC2005 test functions. By observing the convergence curves, one can
intuitively understand the convergence speed and final convergence state of each algorithm
during the iteration process. Figure 2 illustrates the convergence behavior of MSCSO
compared to other optimization methods.

From the results of single-peak reference functions F1–F7, MSCSO has significant
performance advantages, especially in the performance of F1–F4, where the MSCSO al-
gorithm’s convergence curve quickly reaches the optimal value, while other algorithms
remain trapped in local optima, with their curves no longer showing a downward trend as
iterations increase. For F5, MSCSO also achieved relatively optimal results. However, in F6
and F7, the optimization results of MSCSO are not good, showing only a certain degree
of improvement from the original algorithm. In the multimodal benchmark functions
F8–F13, MSCSO performs well in the optimization of multimodal complex dimensional
functions. In F8–F11, MSCSO outperforms other optimization algorithms in both conver-
gence accuracy and speed, while the other methods exhibit oscillations in their convergence
curves. For F12 and F13, MSCSO’s final optimization results are not as good as DO. In the
fixed-dimensional multimodal reference functions F14–F23, these test functions have low
dimensionality and are more similar to real-world optimization problems. MSCSO shows
better convergence accuracy and more stable convergence curve for F20–F23.

Integrating the above analysis, MSCSO demonstrates, in comparison with other swarm
intelligence optimization algorithms, such as SCSO, MFO, the SSA, FVIM, the AOA, the
SCA, PSO, DO, and SFO, a generally faster convergence speed, higher convergence accuracy,
and more stable convergence performance.
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4.4. Experiment 2: Feature Selection
4.4.1. Feature Selection Dataset Collection and Preprocessing

This study’s feature selection experiments used 15 datasets from the well-established
UCI Machine Learning Repository, a resource that spans various application domains and
supports the development and evaluation of machine learning algorithms. The selected
15 datasets span a range of data characteristics and complexities, ensuring the broad
applicability and representativeness of the experimental results. Table 4 provides detailed
information for each dataset, including names, sample count, feature count, and class count.

Table 4. Feature selection dataset details.

Dataset Feature Count Sample Count Classes

Zoo 16 101 7
Wine 13 178 3
Vote 16 300 2

Lymphography 18 148 4
HeartEW 13 270 2

Sonar 60 208 2
SpectEW 22 267 2

Lung-Cancer 56 32 3
BreastEW 30 568 2

CongressEW 16 434 2
Clean1 166 476 2
Exactly 13 1000 2

Exactly2 13 1000 2
M-of-n 13 1000 2

VP 128 669 3

For datasets containing missing values, numerical missing values are filled by the
median and categorical missing values are filled by the mode. The dataset is split into
training and test sets with an 80/20 ratio, and the KNN algorithm is applied with K = 5.
All algorithms are evaluated under the same experimental conditions to ensure fairness
and comparability. Each algorithm uses 30 search agents for 100 iterations. To mitigate the
impact of random initialization, each algorithm is independently executed 20 times.

4.4.2. Numerical and Statistical Analysis of Experiment 2

This section assesses MSCSO’s performance in feature selection using various indi-
cators. Tables 5–7 display the comparison of MSCSO with other optimization algorithms
across different datasets. In order to highlight the best performance of the algorithm, the
best values in the table are identified in bold font. To provide a clearer comparison of overall
performance, the final rows summarize each algorithm’s average and overall rankings
across 15 datasets.

Table 5 presents the average fitness and standard deviation for various optimization
methods across each dataset. The data in the analysis table shows that MSCSO performs
well on most datasets. Of the 15 datasets tested, MSCSO achieved the best average fitness
on 14 datasets, accounting for up to 93.33%, showing a significant advantage. The only
exception was the M-of-n dataset, where the mean fitness of MSCSO was slightly lower
than that of the FVIM optimization algorithm, although this difference was not significant
and had a more limited impact on the overall results. Further analysis revealed that MSCSO
performed particularly well in comparison to the original SCSO, outperforming SCSO in all
datasets. In addition, the overall ranking shows that MSCSO is the top and best performing
algorithm, while PSO is the lowest ranking algorithm. The ranking order is MSCSO >
AOA > SCSO > DO > FVIM > MFO > SCA > SSA > SFO > PSO. Referring further to
Figure 3, which visually shows the average fitness of different optimization algorithms
across 15 datasets, it is clear that MSCSO has a lower mean fitness value and a better effect.
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Table 5. Comparison table of mean fitness and standard deviations between MSCSO and other
optimization algorithms in feature selection (Bold indicates better data performance).

Dataset Measures MSCSO SCSO MFO SSA FVIM AOA SCA PSO DO SFO

Zoo
Mean 0.0411 0.0431 0.0444 0.0476 0.0428 0.0424 0.0483 0.0588 0.0412 0.0701

Std 0.0064 0.0068 0.0064 0.0064 0.0061 0.0047 0.0074 0.0953 0.0062 0.0081

Wine
Mean 0.0316 0.0324 0.0339 0.0372 0.0333 0.0318 0.0343 0.0469 0.0329 0.0440

Std 0.0037 0.0034 0.0044 0.0025 0.0042 0.0037 0.0043 0.0964 0.0042 0.0094

Vote
Mean 0.0826 0.0903 0.0955 0.1042 0.0906 0.0897 0.0998 0.1152 0.0876 0.1073

Std 0.0092 0.0083 0.0086 0.0075 0.0107 0.0077 0.0115 0.0901 0.0094 0.0164

Lymphography Mean 0.1021 0.1099 0.1137 0.1196 0.1110 0.1089 0.1115 0.1274 0.1065 0.1468
Std 0.0134 0.0124 0.0108 0.0080 0.0111 0.0098 0.0147 0.0886 0.0117 0.0085

HeartEW
Mean 0.1131 0.1197 0.1142 0.1320 0.1161 0.1185 0.1273 0.1395 0.1167 0.1553

Std 0.0112 0.0118 0.0123 0.0106 0.0115 0.0078 0.0144 0.0876 0.0097 0.0132

Sonar
Mean 0.0452 0.0487 0.0520 0.0532 0.0498 0.0512 0.0514 0.0642 0.0513 0.0611

Std 0.0034 0.0039 0.0032 0.0032 0.0022 0.0017 0.0060 0.0946 0.0031 0.0116

SpectEW Mean 0.1493 0.1580 0.1613 0.1652 0.1622 0.1593 0.1655 0.1721 0.1626 0.1862
Std 0.0114 0.0092 0.0098 0.0084 0.0090 0.0075 0.0182 0.0842 0.0117 0.0103

Lung-Cancer Mean 0.0515 0.0553 0.0583 0.0645 0.0616 0.0516 0.0557 0.0706 0.0548 0.1541
Std 0.0235 0.0198 0.0219 0.0257 0.0616 0.0080 0.0129 0.0959 0.0187 0.0260

BreastEW
Mean 0.0312 0.0331 0.0357 0.0372 0.0011 0.0355 0.0358 0.0495 0.0346 0.0379

Std 0.0026 0.0021 0.0017 0.0011 0.0020 0.0014 0.0037 0.0961 0.0016 0.0064

CongressEW Mean 0.0315 0.0349 0.0379 0.0412 0.0348 0.0334 0.0402 0.0567 0.0359 0.0483
Std 0.0054 0.0067 0.0059 0.0041 0.0055 0.0044 0.0059 0.0955 0.0062 0.0112

Clean1
Mean 0.1200 0.1272 0.1336 0.1386 0.1315 0.1279 0.1346 0.1493 0.1246 0.1417

Std 0.0066 0.0062 0.0058 0.0037 0.0049 0.0035 0.0140 0.0862 0.0061 0.0113

Exactly
Mean 0.0635 0.0690 0.0812 0.1026 0.0662 0.0638 0.0870 0.1005 0.0652 0.2544

Std 0.0359 0.0424 0.0546 0.0447 0.0412 0.0293 0.0380 0.1015 0.0430 0.0096
Rank 1 5 6 9 4 2 7 8 3 10

Exactly2 Mean 0.1727 0.1740 0.1770 0.1812 0.1757 0.1739 0.1782 0.1916 0.1740 0.1833
Std 0.0034 0.0036 0.0040 0.0038 0.0040 0.0031 0.0181 0.0818 0.0038 0.0147

M-of-n
Mean 0.0541 0.0561 0.0592 0.0654 0.0537 0.0541 0.0654 0.0734 0.0576 0.1169

Std 0.0148 0.0160 0.0183 0.0175 0.0141 0.0129 0.0158 0.0950 0.0155 0.0105

VP
Mean 0.0895 0.0915 0.0942 0.0948 0.0940 0.0945 0.0932 0.1101 0.0942 0.0935

Std 0.0016 0.0007 0.0004 0.0001 0.0002 0.0001 0.0094 0.0899 0.0002 0.0065
Avg. rank 1.07 3.47 5.53 7.73 4.40 3.20 6.40 9.20 3.60 8.93
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Figure 3. Average fitness across 15 datasets.

Table 6 provides detailed data on the number of features selected by each optimization
method. The count of features selected is a crucial index for assessing the effectiveness of
optimization methods. From the table data, it is clear that MSCSO selected the least number
of features on average in 13 datasets, and only in the SpectEW and Clean1 datasets was the
number of features selected lower than that of SFO, ranking second. On the Wine dataset,
MSCSO and the AOA each select an average of 3.65 features, while the DO algorithm
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selects an average of 5.95 features in the Zoo dataset. In summary, MSCSO ranked first in
the number of feature selection, SCSO ranked second, and PSO ranked lowest. In terms of
standard deviation, MSCSO showed the lowest standard deviation among the nine datasets,
indicating excellent stability and robustness; that is, consistent performance over multiple
runs. Figure 4 further highlights the advantage of MSCSO in feature selection. The figure
illustrates that MSCSO selects the least number of features on average in multiple datasets,
which further proves the superiority of MSCSO in the process of feature number selection.

Table 6. Comparison table of average feature selection size and standard deviation between MSCSO
and other optimization algorithms (Bold indicates better data performance).

Dataset Measures MSCSO SCSO MFO SSA FVIM AOA SCA PSO DO SFO

Zoo
Mean 5.95 6.2 6.15 7.05 6 6.2 7.1 7.15 5.95 8.15

Std 0.3940 0.6156 0.5871 0.7592 0.6489 0.8335 0.5525 0.4894 0.6048 2.1831

Wine
Mean 3.65 3.8 3.9 4.55 3.9 3.65 4.3 4.25 3.85 5.15

Std 0.4894 0.6156 0.3078 0.6048 0.4472 0.4894 0.5712 0.6387 0.4894 1.0894

Vote
Mean 4.3 4.8 4.4 4.95 4.6 4.9 4.75 4.85 4.45 4.8

Std 0.6569 1.1517 0.9403 1.2763 0.9947 1.0208 0.9665 0.8127 0.7592 1.3992

Lymphography Mean 8.25 8.45 8.9 9.45 9.1 9.25 8.5 9.1 8.75 9.15
Std 1.4824 0.9987 1.2937 1.0501 1.0208 1.1180 1.3955 1.0711 1.2085 1.4965

HeartEW
Mean 4 4.85 4.25 5.75 4.25 4.95 5.85 6.1 4.95 5.35

Std 0.8584 1.2680 1.0195 1.4096 0.8507 1.7614 1.2680 1.5526 1.5035 1.1821

Sonar
Mean 25.9 27.65 29.9 30.15 28.65 29.95 29.85 31 29.15 28.1

Std 1.4832 2.1095 2.2688 2.2308 2.4554 2.0894 2.1588 1.5560 1.8994 2.5526

SpectEW Mean 10.45 11.4 12.55 12.6 12.4 12.75 13.15 12.15 12.2 9.7
Std 2.2355 2.1619 2.2355 2.6238 2.3486 1.9160 2.1588 2.7961 2.0417 1.5927

Lung-Cancer Mean 23.9 26.1 28.2 29.45 27.65 26.9 28.8 30.05 27.25 25.55
Std 2.5319 2.9182 1.9084 2.4810 2.2775 3.1606 3.6935 2.1145 1.9160 3.0517

BreastEW
Mean 8.85 9.35 10.1 10.65 9.9 10 10.45 10.95 9.7 10.9

Std 0.8127 0.8127 0.9119 1.5313 1.2096 1.1239 1.1910 0.9987 0.9787 1.1653

CongressEW Mean 2.65 3 3.15 4.2 3.15 3.1 4.25 4.45 2.95 4.65
Std 0.4894 0.7947 0.6708 1.0052 0.8127 0.5525 0.6387 0.8870 0.9445 1.6311

Clean1
Mean 89.65 95.8 97 99.7 99.1 95.35 94.5 102.6 95.6 80.15

Std 9.1495 10.2834 8.4043 10.4584 8.9731 8.7856 9.7306 5.4328 7.9763 6.8077

Exactly Mean 6.05 6.25 6.5 7.15 6.2 6.25 6.95 6.95 6.1 6.5
Std 0.2236 0.4443 0.5130 0.4894 0.4104 0.4443 0.3940 0.5104 0.3078 2.1643

Exactly2 Mean 1 1.25 1.35 1.85 1.25 1.15 2.15 2.2 1.05 2.45
Std 0 0.4443 0.4894 0.7452 0.4443 0.3663 0.5871 0.8944 0.2236 0.8256

M-of-n
Mean 6.1 6.15 6.35 6.85 6.15 6.15 6.8 6.9 6.3 7.1

Std 0.3078 0.3663 0.4894 0.6708 0.3663 0.3663 0.6156 0.4472 0.4702 1.6827

VP
Mean 52.25 55.6 58.8 58 59.1 59.75 57.25 67.3 57.65 54.25

Std 2.2449 3.6907 3.9815 4.3649 4.9407 4.3271 5.4374 2.9753 6.5154 5.4374
Avg. rank 1.13 3.27 5.07 7.33 4.53 5.13 6.00 7.80 3.47 5.47
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Additionally, to evaluate MSCSO’s effectiveness, the average accuracy of feature
subsets selected by various optimization algorithms is compared, with the results presented
in Table 7. The analysis showed that MSCSO achieved the highest accuracy across all
15 datasets. In contrast, SCSO and MFO performed well in nine datasets, the AOA, DO,
and FVIM performed well in eight datasets, PSO achieved high accuracy in six datasets,
the SSA and SCA performed well in five datasets, and SFO performed well only in Elactly2.
Overall, MSCSO outperforms other optimization methods in average accuracy, which fully
proves that it still has an excellent capability of relevant feature recognition even when
the feature subset size is not dominant. For example, in the SpectEW dataset, while SFO
selected the lowest average number of features at 9.7, MSCSO achieved a higher accuracy
of 0.8991 with a slightly higher number of features at 10.45 compared to SFO’s accuracy
of 0.8434. In the Clean1 dataset, SFO selected an average of 80.15 features, while MSCSO
selected 89.65 features, with accuracy rates of 0.8979 and 0.9337, respectively. In addition,
MSCSO selected the lowest average number of features in some datasets but still achieved
the highest accuracy. As a result, MSCSO achieves a better balance between maximizing
accuracy and minimizing feature subsets. Figure 5 illustrates the average accuracy across
15 datasets, further highlighting the benefits of MSCSO.

Table 7. Comparison table of average accuracy and standard deviations of MSCSO and other
optimization algorithms (Bold indicates better data performance).

Dataset Measures MSCSO SCSO MFO SSA FVIM AOA SCA PSO DO SFO

Zoo
Mean 1 1 1 1 1 1 1 1 1 0.9800

Std 0 0 0 0 0 0 0 0 0 0.0251

Wine
Mean 1 1 1 1 1 1 1 1 1 0.9971

Std 0 0 0 0 0 0 0 0 0 0.0088

Vote
Mean 0.9467 0.9425 0.9333 0.9275 0.9433 0.9417 0.9275 0.9292 0.9442 0.9167

Std 0.0068 0.0101 0.0108 0.0135 0.0100 0.0086 0.0124 0.0142 0.0082 0.0162

Lymphography Mean 0.9534 0.9431 0.9414 0.9328 0.9466 0.9483 0.9362 0.9328 0.9483 0.8948
Std 0.0169 0.0169 0.0162 0.0077 0.0176 0.0177 0.0126 0.0077 0.0177 0.0136

HeartEW
Mean 0.9241 0.9222 0.9213 0.9130 0.9222 0.9231 0.9148 0.9194 0.9231 0.8750

Std 0.0057 0.0076 0.0082 0.0087 0.0076 0.0068 0.0093 0.0091 0.0068 0.0158

Sonar
Mean 1 1 1 1 1 1 1 1 1 0.9866

Std 0 0 0 0 0 0 0 0 0 0.0124

SpectEW Mean 0.8991 0.8934 0.8981 0.8887 0.8925 0.8953 0.8915 0.8915 0.8962 0.8434
Std 0.0111 0.0176 0.0128 0.0161 0.0151 0.0156 0.0148 0.0161 0.0115 0.0195

Lung-Cancer Mean 1 1 1 1 1 1 1 1 1 0.8833
Std 0 0 0 0 0 0 0 0 0 0.0784

BreastEW
Mean 1 1 1 0.9996 0.9991 0.9991 0.9991 0.9996 0.9996 0.9991

Std 0 0 0 0.0020 0.0027 0.0027 0.0027 0.0020 0.0020 0.0027

CongressEW Mean 0.9884 0.9884 0.9884 0.9878 0.9884 0.9884 0.9878 0.9866 0.9884 0.9802
Std 0 0 0 0.0046 0 0 0.0026 0.0043 0 0.0114

Clean1
Mean 0.9337 0.9305 0.9258 0.9174 0.9263 0.9258 0.9147 0.9195 0.9332 0.8979

Std 0.0103 0.0093 0.111 0.0104 0.0084 0.0093 0.0090 0.0052 0.0129 0.0128

Exactly Mean 1 1 1 0.9828 0.9995 1 0.9905 0.9915 1 0.7748
Std 0 0 0 0.0212 0.0022 0 0.0150 0.0171 0 0.0983

Exactly2 Mean 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
Std 0 0 0 0 0 0 0 0.0031 0 0

M-of-n
Mean 1 1 1 0.9975 1 1 0.9983 0.9993 1 0.9323

Std 0 0 0 0.0062 0 0 0.0054 0.0034 0 0.0513

VP
Mean 0.9474 0.9470 0.9470 0.9451 0.9470 0.9470 0.9451 0.9474 0.9459 0.9451

Std 0 0.0017 0.0017 0.0035 0.0017 0.0017 0.0035 0 0.0031 0.0035
Avg. rank 1 2 2.2 3.93 2.2 2.07 3.67 3.2 1.6 4.87
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4.4.3. Graphical Analysis of Experiment 2

Figure 6 shows the convergence curve in the feature selection task. By analyzing
the convergence curve, the convergence speed and final convergence effect of different
algorithms can be evaluated. The figure clearly shows that MSCSO achieved the lowest
mean fitness values on eight datasets, which were Vote, Lymphography, Sonar, SpectEW,
Lung-Cancer, BreastEW, CongressEW, and Clean1. This indicates that the algorithm excels
with these datasets. Further combining the results of Table 5, MSCSO also performed well
on the Zoo, Wine, HeartEW, Exactly, Exactly2, and VP datasets, only slightly worse than
FVIM optimization on the M-of-n dataset. In addition, it is worth noting that MSCSO
performed better on mid-dimensional datasets (such as Sonar, Lung-Cancer, and BreastEW)
than it did on low-dimensional datasets and that the performance gap between MSCSO
and other algorithms was greater in mid-dimensional datasets than in low-dimensional
datasets. These results show that the MSCSO algorithm has significant advantages in
feature selection tasks, especially on medium-dimensional datasets.
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5. Conclusions and Future Directions

The MSCSO algorithm proposed in this study has demonstrated significant advantages
in global optimization and feature selection tasks. In the CEC2005 benchmark tests, MSCSO
excelled on 65.2% of the test functions, achieving the best average fitness and outperforming
nine common heuristics in terms of both convergence speed and precision. The Wilcoxon
test further confirmed the significant performance differences between MSCSO and other
algorithms. During feature selection, through experiments on 15 UCI datasets, MSCSO
achieved the best average fitness in 93.3% of the datasets and selected the least number of
features in 86.7% of the datasets. Moreover, MSCSO also achieved the highest classification
accuracy across all datasets. These results indicate that MSCSO has shown excellent
effectiveness in global optimization and feature selection tasks.

In the future, the further development of MSCSO can be carried out in the following
directions: firstly, MSCSO can be combined with other optimization algorithms to form
a hybrid algorithm to give full play to their respective advantages. Secondly, exploring
a variety of binarization methods may further improve the efficiency and accuracy of
feature selection. Finally, the application potential of MSCSO is not limited to the current
experimental field and can also be extended to image processing, bioinformatics, financial
data analysis, and other fields to verify its applicability and effectiveness in a wider range
of scenarios.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biomimetics9110701/s1, Table S1: CEC2005 test func-
tion details.
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