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Abstract: Humans typically make decisions based on past experiences and observations, while
in the field of robotic manipulation, the robot’s action prediction often relies solely on current
observations, which tends to make robots overlook environmental changes or become ineffective
when current observations are suboptimal. To address this pivotal challenge in robotics, inspired
by human cognitive processes, we propose our method which integrates historical learning and
multi-view attention to improve the performance of robotic manipulation. Based on a spatio-temporal
attention mechanism, our method not only combines observations from current and past steps but
also integrates historical actions to better perceive changes in robots’ behaviours and their impacts
on the environment. We also employ a mutual information-based multi-view attention module to
automatically focus on valuable perspectives, thereby incorporating more effective information for
decision-making. Furthermore, inspired by human visual system which processes both global context
and local texture details, we have devised a method that merges semantic and texture features,
aiding robots in understanding the task and enhancing their capability to handle fine-grained tasks.
Extensive experiments in RLBench and real-world scenarios demonstrate that our method effectively
handles various tasks and exhibits notable robustness and adaptability.

Keywords: robotic manipulation; historical information; multi-view attention; hierarchical visual
representations

1. Introduction

Although learning from demonstration (LfD) has achieved impressive success in
robotic domains [1,2], learning a language-guided manipulation policy to predict 3D
end-effector pose from visual observations is significantly challenging. On the one hand,
imitating human demonstrations for some complex manipulation tasks, e.g., making a
coffee, typically involves a line of integrated sub-tasks executed in a sequential manner,
which can be formulated as a long-horizon Markov Decision Process (MDP). These tasks
often require not only the understanding of abstract language instructions but also the
ability to perform a variety of fundamental behaviours that collectively contribute to the
completion of the overall manipulation tasks. Unfortunately, conventional imitation learn-
ing methods [3], such as behaviour cloning [4], often fall into the dilemma of cumulative
compounding errors, leading to a catastrophic performance decline when encountering
long-horizon action sequences. To address the challenges in long-horizon tasks, some re-
searches [5,6] applied skill learning to decompose these tasks into sub-tasks. Task planning
algorithms subsequently combine these sub-tasks to form a long-horizon task. However,
such methods are not end-to-end and require prior collection of relevant skills based on
the specific scenario. The limited robustness of individual skills can reduce the overall
performance in long-horizon tasks. Robotic manipulation based on LLM [7–10] have de-
veloped rapidly, where object detection techniques first extract objects from the scene,
and then task-specific prompts are sent to large language models like GPT-4 [11] to control
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the robot. Such approaches rely on the accuracy of object detection and the reasoning
capabilities of large language models. LLMs may generate hallucinations [12] in many
scenarios, resulting in unpredictable behaviors. Our method addresses long-horizon tasks
using an end-to-end approach, employing a spatio-temporal attention-based network to
fuse historical information, thus enhancing performance in long-horizon tasks. On the
other hand, due to the inherently partial perceptibility of visual observations, relying on
RGB images from a specific viewpoint exclusively can lead to the omission of critical infor-
mation, potentially causing significant deviations in executed actions. For instance, when
the handle of a drawer is occluded by a robot arm within the camera’s view field, the agent
often struggles to rapidly locate the position of core parts, leading to aberrant movements.
Although multi-view systems mitigate this by combining multiple viewpoints, they also
present challenges. Occlusions from the robot or environment create blind spots [13], re-
quiring intelligent fusion methods to minimize information loss. Additionally, the need to
dynamically prioritize the most informative viewpoints for each task is crucial but often
missing in traditional static-weighting methods [14]. Moreover, multi-view processing
incurs high computational and memory demands because redundant data accumulates
across views.

To better encode spatial occlusions and improve spatial reasoning, some appro-
aches [15,16] have integrated 3D perceptual representations derived from point clouds,
which enhance spatial precision in end-effector pose prediction by providing depth and
structural information that 2D images alone cannot offer. However, these methods typically
rely on unstructured point cloud data, which is challenging to process directly due to its ir-
regular nature. To address this, manually defined grids or voxelization strategies [17,18] are
often applied to transform the point clouds into high-resolution 3D feature representations.
While effective in capturing spatial details, these transformations are computationally
intensive, particularly at high resolutions, leading to increased memory demands and
processing time.

Recently, several approaches [19,20] have advanced the concept of universal repre-
sentations, leveraging vision models pre-trained on extensive, diverse real-world data to
improve semantic feature extraction and provide robots with a broader understanding
of task contexts. By capturing a rich array of real-world features, these universal mod-
els enhance the robot’s capacity to interpret scene semantics, ultimately enabling better-
informed decision-making and task comprehension. However, a notable limitation of
these pre-trained models lies in their reduced adaptability to highly specialized or intricate
operational settings, such as precision assembly tasks involving fine-grained components
like screws and electronic connectors. In these scenarios, the universal representations may
lack the detail and context required for precise manipulation.

In response to these limitations, we propose a novel framework for robotic manipula-
tion that emphasizes the integration of historical information, hierarchical feature fusion,
and multi-view attention mechanisms. Our contributions are as follows:

Firstly, we incorporate a spatio-temporal attention mechanism that fuses temporal
information with the current state, allowing the model to leverage previous actions and ob-
servations to enhance decision-making. By incorporating visual observations from previous
time steps, the robot can perceive dynamic changes in the environment. Projections of past
actions allow the robot to recognize its own action trajectory, which enables self-correction
of its behaviour and helps to mitigate the effects of accumulated errors.

Secondly, we introduce a hierarchical feature fusion mechanism that combines global
semantic features with local texture details from multi-modal input, such as RGB images
and point clouds. This fusion allows the robot to extract global semantic features for task
understanding while simultaneously focusing on fine-grained object details necessary for
precision manipulation.

Thirdly, to mitigate the limitations of single-view and traditional multi-view visual
input, we propose a mutual information-based multi-view attention mechanism that dy-
namically allocate weights for different cameras to emphasize viewpoints containing more
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informative features. In addition, during the action output phase based on 3D point cloud
data, we prioritize the viewpoint that contains the most valuable information for more
accurate prediction. The pipeline is shown in Figure 1.

Figure 1. Part (a) is the trajectory processing modules. Demonstrations are manually collected using
a gamepad, and then macro steps are extracted based on keypoint analysis and genetic algorithms.
Part (b) extract the hierarchical feature from visual inputs and fuse them by transfusion. The fused
visual feature are then processed in the part (c), using mutual information to reduce visual feature
redundancy and calculate the weight of each viewpoint. Then the multi-view information is weighted
and fused. In part (d), the fused multi-view features are passed through a spatio-temporal attention
network, which then output the actions for the robot to execute. The output actions are composed of
the 3D pose of the end-effector, positional offsets and gripper state.

2. Related Work
2.1. Language Conditioned Multi-Task Manipulation

In robotic manipulation, learning-based methods [21] have emerged as powerful tools,
particularly in dynamic environments where traditional visual servoing techniques [22]
fall short. Multi-task manipulation has gained increasing attention with methods like
meta-learning [23], reinforcement learning [24], and imitation learning. These methods
often train on various tasks simultaneously, facilitating knowledge transfer and forming a
general model. Language instructions play a crucial role in guiding agents to comprehend
task requirements and differentiate between tasks. The rise of large language models, such
as CLIP [25] and Bert [26], has significantly influenced natural language processing, en-
abling more effective feature extraction from language instructions. For benchmarking, we
chose RLBench [27] and utilized its built-in demonstration generation function, alongside
designing language commands for each task.
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2.2. Visual Representations for Manipulation

Understanding environmental information is critical in robotic manipulation. Visual
representations can be categorized into 2D and 3D types, each offering unique benefits: 2D
representations, including PANet [28], UNet [29] and ResNet [30], provide rich semantic
and texture features, while 3D representations, including PointNet++ [31], C2FARM [32]
and PERACT [33] offer comprehensive structural information. In the field of robotic manip-
ulation, pre-trained visual models have recently become a hot topic. These models leverage
extensive datasets from both real-world and simulated environments to acquire generic fea-
tures, thereby supporting a wide range of downstream tasks and significantly saving time
and resources. Examples of such models include CLIP [25], R3M [20], and SGR [34]. Our
study utilizes a pre-trained visual language model for global semantic feature extraction
and a hierarchical feature extraction network for local texture feature extraction, as well as
integrating 2D visual features with 3D structural information for action prediction.

2.3. Robotic Transformers

The Transformer [35] architecture has achieved significant advancements in natural
language processing, computer vision, and robotic manipulation. Its application in robotics
extends to diverse areas such as legged locomotion [36], path planning [37] and vision-
language navigation [38]. The versatility of the Transformer underscores its ability to tackle
intricate robotic tasks, showcasing its adaptability and effectiveness in diverse scenarios.
While several methods based on the Transformer have emerged, they seldom fully leverage
the remarkable ability of the Transformer to utilize historical data for enhancing action
prediction in complex, multi-modal scenarios. PERACT utilizes the Perceiver Transformer
to predict actions based on current voxel observation, achieving greater efficiency and
robustness. Gato [39] is an example of a multi-modal, multi-task, general-purpose agent.
However, Gato relies heavily on large datasets, such as 15 K episodes for block stack-
ing and 94 K episodes for Metaworld tasks. In contrast, our method only requires 50 to
100 demonstrations to complete common tasks.

2.4. Multi-View Robotic Manipulation

Multi-view robotic manipulation has garnered significant attention due to its ability to
offer richer visual information, leading to more precise and robust manipulation tasks. Us-
ing multiple viewpoints helps mitigate occlusions, enhances perception, and increases the
accuracy of robotic actions, particularly in complex and cluttered environments. Multiple
approaches have been proposed to exploit multi-view setups to improve scene understand-
ing and manipulation precision. Xie and Song [40] proposed a multi-view registration
method for partially overlapping point clouds, which is critical for accurate 3D reconstruc-
tion in robotic manipulation. Their point-to-plane registration model minimizes cumulative
errors in multi-view registration using pose graphs. This method enhances the ability to
handle occlusions and noisy data, enabling accurate object handling and placement in com-
plex environments. Lin et al. [41] introduced a multi-view fusion framework for multi-level
robotic scene understanding. Their system integrates 2D RGB images and 3D point clouds
to create a rich scene representation for robotic manipulation tasks. By combining dense 3D
reconstruction for obstacle avoidance, primitive shape fitting for unknown objects, and full
6-DoF object pose estimation for known objects, their approach enhances tasks such as
grasping and object rearrangement. Seo et al. [42] presented a novel multi-view masked
autoencoder that learns to reconstruct masked pixels from random viewpoints, significantly
improving the robot’s perception capabilities. This technique captures both intra-view
and cross-view information, improving multi-view control and real-robot task transfer
without requiring camera calibration. The work by Song et al. [43] explores learning precise
3D manipulation from multiple uncalibrated cameras. By leveraging camera configura-
tions that do not require pre-calibration, their method simplifies the process of multi-view
integration, enhancing manipulation precision through a learning-based approach that
directly optimizes task performance. We introduce a mutual information-based attention
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mechanism that dynamically selects and emphasizes the most informative viewpoints,
reducing redundancy and ensuring that the robot’s actions are based on a comprehensive
yet efficient representation of the environment.

3. Method
3.1. Problem Definition

Our proposed method aims to develop a multi-modal, multi-view, history-sensitive
strategic framework, denoted as π(at+1|{lh}|mh=1, {oi}t

i=t−s, {ai}t
i=t−s). This strategy, π,

incorporates historical observations {oi}t
i=t−s, actions {ai}t

i=t−s, and a series of language
instructions {lh}|mh=1. In this context, m signifies the count of language instructions allocated
for each task, and t represents the current step. Additionally, s denotes the count of the past
steps. Notably, in scenarios where the current step is less than two, strategy π relies solely
on the current observation. This stems from the negligible influence of environmental
changes at the beginning of a task, making it sufficient to use only current observations.

We aim to output the actions for robot to execute, and the action space is defined by
the pose of the end-effector (xt, yt, zt, qω

t , qx
t , qy

t , qz
t ) and the gripper state gt (either open

or closed). The parameters (xt, yt, zt) denote the position, while (qω
t , qx

t , qy
t , qz

t ) specify the
orientation in quaternion format.

For each specified task, a comprehensive array of language instructions is prepared.
The observation at step t, ot, encompasses RGB images {Ik

t }K
k=1 and point cloud data

{Pk
t }K

k=1 from K perspectives, where K equals three in simulation and two in real-world
experiments. Here, Ik

t and Pk
t both have three channels, with the dimensions H and W set

to 128 in our simulated experiments. The actions at step t include all actions executed at the
current and past s steps. These actions are visualized by projecting the gripper’s position
onto a 2D plane, distinguishing past and future actions via thermal intensity.

As illustrated in Figure 2, our initial step involves the collection of a substantial
number of continuous operational trajectories, represented as T = {p1, p2, . . . , pn}, where
pi denotes the position of the end-effector at time step i, and n is the total number of points
in the trajectory. We then refine these trajectories, extracting key steps through a basic
method which identifies moments where the end-effector speed is zero or the gripper
state alters.

Figure 2. The yellow curve represents the original trajectory, with blue points indicating the original
trajectory points. The green points are key points identified by detecting moments when the robotic
arm pauses or the gripper state changes. The orange point is a key point selected through the genetic
algorithm, which further optimizes the key points to minimize the trajectory error.

To closely approximate the expert’s trajectory, we employ a genetic algorithm to
select other key points. Let K = {q1, q2, . . . , qk} be the set of selected key points, where
qi corresponds to a subset of the original trajectory points T. The number of key points,
ranging from 2 to 30, is adaptively selected based on the task’s temporal length. For each
non-key point pj between two adjacent key points qi and qi+1, we compute the distance
from pj to the line segment connecting qi and qi+1. This distance is defined as:
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d(pj, qi, qi+1) =
|( ⃗qi+1 − q⃗i)× ( p⃗j − q⃗i)|

∥ ⃗qi+1 − q⃗i∥
(1)

Geometrically, the cross product of ⃗qi+1 − q⃗i and p⃗j − q⃗i gives the magnitude corre-
sponds to the area of the parallelogram, which is proportional to the perpendicular distance
between the point pj and the line segment connecting qi and qi+1. To convert the area of the
parallelogram to the perpendicular distance d(pj, qi, qi+1) (height of the parallelogram), we
divide the cross product by the length of the base, which is the distance between the two
key points qi and qi+1. This gives us the perpendicular distance from pj to the line segment
connecting qi and qi+1.

The total error E(T, T′) is the sum of the distances for all non-key points across the
entire trajectory:

E(T, T′) =
k−1

∑
i=1

∑
pj∈Si

d(pj, qi, qi+1), (2)

where Si is the set of non-key points between qi and qi+1.
The optimization goal is to minimize the total error E(T, T′), ensuring that the simpli-

fied trajectory formed by the key points K closely approximates the original trajectory T.
Formally, the optimization problem can be expressed as mink E(T, T′), where 2 ≤ k ≤ 30
and E(T, T′) ≤ ϵ, k denotes the number of extracted key points and ϵ is a predefined error
threshold. The genetic algorithm iteratively selects and refines key point sets by optimizing
this error function. The fitness of each set of key points is calculated as:

fitness(Ki) =
1

E(T, T′i ) + δ
(3)

where δ is a small constant to avoid division by zero. The genetic algorithm promotes
key point sets that minimize the trajectory error, evolving them over generations until the
error is below the threshold ϵ or a maximum number of iterations is reached. In our setup,
population size is 100, crossover rate is 0.8, mutation rate is 0.1 and we choose tournament
selection as our strategy.

3.2. Enhanced Visual Representation

In the ablation study presented in Section 4.5, we observed that relying solely on
either CLIP features or PANet for RGB image feature extraction leads to reduced success
rates, especially in tasks that demand high precision. For example, the exclusive use of
the pre-trained CLIP model significantly lowered the success rate in the inserting peg task.
Although these general visual models are effective at capturing the semantic context of
the environment and identifying executable tasks, they often lack the resolution needed to
recognize fine-grained environmental details critical for precision manipulation.

To overcome this limitation, we propose a novel feature extraction methodology that
combines global semantic features with local texture features. This dual-feature design
enables the robotic arm not only to comprehend the task but also to perform the precise
actions required for its successful execution.

As illustrated in Figure 3, for a given viewpoint at certain time step, after the RGB
image is processed by both the PANet and CLIP models, we extract the local texture
feature (FRl) and the global semantic feature (FRg). The local texture feature FRl has
dimensions c′ × h′ × w′, while the global semantic feature FRg is a one-dimensional vector
of length c′. To incorporate spatial information, we project the end-effector’s pose onto a
2D plane and scale this projection to match the dimensions of FRl . We then concatenate
the pose projection and FRl along the channel dimension to form the RGB-A feature FRr.
Subsequently, the global semantic feature FRg is expanded to dimensions c′ × h′ × w′,
resulting in FRgu. Finally, we concatenate FRr and FRgu along the channel dimension,
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applying convolutional and pooling operations to obtain the final RGB-A feature FR, which
effectively integrates both local texture details and global semantic information.

Additionally, we incorporate multi-view point cloud data {Pk}K
k=1 into a unified global

point cloud dataset P. The global point cloud is processed using the Set Abstraction (SA)
module from PointNet++, which involves downsampling, grouping, and feature extraction,
resulting in a refined set of point cloud features FP. The use of only the SA module
for point cloud processing results in significantly lower computational cost compared
to other point cloud-based methods. Drawing inspiration from the TransFusion [44]
approach, cross-attention is applied to fuse these elements, yielding F = TransFuse(FR, FP),
with F ∈ Rd×h×w.

Figure 3. RGB images are processed by both PANet and CLIP models to obtain local texture features
(FRl) and global semantic features (FRg). These features are combined with the 2D projection of
the end-effector pose to form the RGB-A feature (FR). Simultaneously, multi-view point cloud data
is processed using the Set Abstraction (SA) module of PointNet++ to extract point cloud features
(FP). The fusion of these visual and point cloud features enhances the robot’s ability to interact with
complex environments.

3.3. Mutual Information-Based Multi-View Attention

In multi-view visual tasks, each viewpoint can offer unique information about the
environment, but not all views are equally informative. To maximize the use of valuable
perspectives, we introduce a mutual information-based attention mechanism that dynami-
cally selects and emphasizes the most informative viewpoints, reducing redundancy and
ensuring that the robot’s actions are based on a comprehensive yet efficient representation
of the environment.

At certain time step, given the set of feature maps {F1, F2, . . . , FK} extracted from
multiple viewpoints, we aim to combine them into a single, representative feature map
that retains the most valuable information from each view. However, the challenge lies in
ensuring that the fused feature map is both informative and non-redundant. Traditional
fusion methods often apply equal or fixed attention to each view, which can result in
redundant information, especially when multiple viewpoints capture similar aspects of
the scene.

To address this, we propose to use mutual information (MI) as a measure of the
shared and unique information between different viewpoints. For two feature maps Fi
and Fj, the mutual information I(Fi, Fj) quantifies how much information they share. High
mutual information indicates redundancy, while low mutual information suggests that
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the two views contain complementary information. The mutual information between
two feature maps is given by:

I(Fi, Fj) = H(Fi) + H(Fj)− H(Fi, Fj) (4)

where H(Fi) and H(Fj) represent the entropy of feature maps Fi and Fj, and H(Fi, Fj) is
their joint entropy. This metric allows us to quantify how much information is shared
between different views and use this information to guide the attention mechanism.

To formalize the fusion process, we first compute the mutual information matrix M ,
where each element Mij represents the mutual information between feature maps Fi and Fj:

Mij = I(Fi, Fj) (5)

This matrix provides a global overview of the information redundancy across all views.
Using this matrix, we then assign dynamic attention weights {w1, w2, . . . , wK} to each view
based on the amount of unique information they provide. The weights are learned through
optimization, with the objective of minimizing the redundancy in the fused feature map.
Specifically, we define the mutual information-based loss function as follows:

LMI = −
K

∑
i=1

K

∑
j=1,j ̸=i

wiwj I(Fi, Fj) (6)

In this formula, I(Fi, Fj) represents the mutual information between feature maps Fi
and Fj, which quantifies the amount of information shared between two views. A high mu-
tual information value indicates that the two feature maps provide redundant information,
while a lower value suggests more complementary information.

The weights wi and wj are the attention weights assigned to each view, which are
dynamically learned during training. By including the product of these weights in the loss
function, the formula aims to penalize pairs of feature maps that have both high mutual
information and large attention weights. The intuition behind this is that if two views pro-
vide redundant information, their corresponding weights should be reduced. Conversely,
views that provide more complementary information will be assigned higher weights.

By minimizing this loss function, we encourage the attention mechanism to assign
higher weights to viewpoints that provide unique information while reducing the contri-
bution of redundant viewpoints. The weights are updated dynamically during training
through backpropagation, allowing the model to adapt to different scene configurations
and viewpoint arrangements.

Once the attention weights are learned, the final fused feature map is computed as a
weighted sum of the individual feature maps:

FT =
K

∑
i=1

wiFi (7)

This weighted fusion ensures that the final feature map captures the most relevant and
complementary information from each viewpoint. By focusing on maximizing the mutual
information between views, our attention mechanism reduces redundancy and enhances
the robot’s ability to perceive and act in complex environments.

The key advantage of this mutual information-based attention mechanism is its ability
to dynamically adapt to the content of the scene and the arrangement of the viewpoints.
Unlike traditional approaches that apply equal attention to all views, our method selec-
tively emphasizes the most informative perspectives, resulting in a more efficient and
informative representation. This improved representation not only enhances the robot’s
perception but also improves its decision-making in tasks that require precise interaction
with the environment. The mutual information-based attention mechanism ensures that
the robot focuses on the most valuable perspectives, effectively reducing redundancy and
maximizing the use of complementary information.
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3.4. History-Sensitive Decision Network

Initially, we introduce the attention mechanism inherent in the Transformer architecture:

Attn(Q, K, V) = Softmax

(
WqQ(WkK)T

√
d

)
WvV (8)

where Wq, Wk, Wv represent trainable parameters. In our proposed method, cross-attention
is employed to fuse RGB-A features with point cloud data, forming the foundation of a
history-sensitive decision network that utilizes self-attention.

Subsequent to the enhanced visual representation(EVR) module and multi-view at-
tention(MVA) module, the integrated feature map at time step t, Ft, effectively segments
the initial H ×W image into h× w discrete patches. Initially, language instructions pro-
cessed through the CLIP model undergo text preprocessing, tokenization and embedding.
The resulting embeddings are flattened and subsequently incorporated into each patch’s
channels, embedding linguistic information into the feature map through a convolutional
neural network. Furthermore, both step and patch position encodings are infused into
each channel of this feature map, integrating essential temporal and spatial information.
Through the design of padding and causal encoding mechanisms, and leveraging the
self-attention mechanism of the Transformer, we enable each patch to interact with other
patches at the current step as well as those from the past several steps, culminating in a
history-enriched feature map Ft ∈ Rd×h×w.

Ft is then concatenated with multi-level feature maps extracted with PANet and
successively upsampled layer by layer, focusing exclusively on the perspective with the
most valuable information, to reconstitute the feature map to its original dimensions of
d× H ×W. As Figure 4 reveals, the position decoder, essentially a convolutional layer
with a single output channel, transforms the feature map into a heatmap ∈ R1×H×W . When
combined with the most informative viewpoint’s point cloud data and aggregated across
the channel dimension, the heatmap generates precise position coordinates (xt, yt, zt).

Figure 4. The double-head arrow connects the viewpoints before (red box) and after (green box) the
view shift. In the task inserting peg, the perspective shifts from the left shoulder view to the front
view at the 2nd step as the robot arm blocks the target object from the left shoulder view. In the task
item in drawer, the multi-view attention module considers the front viewpoint more valuable at the
4th and 5th steps. In the task stacking blocks, there are no changes in viewpoint.

Subsequently, Ft and FRt undergo concatenation and a decoder, comprising dual con-
volutional layers, a pooling layer, and a pair of dense layers, produces a seven-dimensional
output (xot, yot, zot, qω

t , qx
t , qy

t , qz
t , gt). Given that point cloud data primarily represents phys-

ically present points in a scene, and considering scenarios where the robotic arm is required
to access virtual points around an object, the parameters (xot, yot, zot) are designated to
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define positional offsets, thereby enabling the robotic arm to proficiently navigate and reach
these virtual spatial points.

3.5. Training Details

The training of our model is conducted through behaviour cloning. For each variation
of a task, such as opening the middle drawer and opening the bottom drawer being
considered as separate entities under the same task, we collect a set of N successful
trajectories, denoted as D. This process involves key point extraction utilizing genetic
algorithms, subsequently leading to the identification of macro steps across amounts of
steps. Each demonstration, symbolized as δ ∈ D, is constituted by a succession of these
identified macro steps and B contains a batch of demonstrations.

Our final loss function includes position loss, rotation loss, gripper loss, and mutual
information loss. The action loss (position, rotation, and gripper losses) ensures the model
accurately predicts the robot’s action based on the expert demonstrations, while the mutual
information loss ensures that redundant information across multiple views is minimized
during feature fusion. The combined loss function is defined as:

L = λ1

(
1
|B| ∑

δ∈B

[
∑
t≤T

(MSE(poset, pose∗t ) + MSE(gpt, gp∗t ))

])
+ λ2LMI , (9)

where:

• poset denotes the predicted pose at time t (including position post and orientation rott)
and pose∗t is the real pose in demonstration.

• gpt represents the predicted gripper state (either open or closed) and gp∗t is the real
gripper state in demonstration.

• LMI is the mutual information loss, as Equation (9) shown, calculated by mea-
suring the mutual information between feature maps from different views. It pe-
nalizes redundancy and encourages extracting complementary information from
different viewpoints.

• λ1 and λ2 are hyperparameters that control the relative importance of the action loss
and mutual information loss respectively.

The training procedure is presented in Algorithm 1:

Algorithm 1 Training Procedure

1: Input: Set of successful trajectories D, batch size B, learning rate α, max training
iterations Tmax, loss weights λ1 and λ2

2: for each training iteration t = 1 to Tmax do
3: Sample a batch of demonstrations {δ} ∈ D of size B
4: Initialize total loss L = 0
5: for each demonstration δ in batch do
6: for each time step t in demonstration δ do
7: Extract robot’s target pose pose∗t and gripper state gp∗t from demonstration
8: Predict pose poset and gripper state gpt at time t with model Modelθ

9: Calculate position loss: Lpos and gripper loss: Lgp
10: end for
11: Calculate action loss: Laction = 1

T ∑T
t=1
(

Lpos + Lgp
)

12: Calculate mutual-information loss: LMI
13: Total loss: Lδ = λ1 · Laction + λ2 · LMI
14: Accumulate batch loss: L = L + Lδ

15: end for
16: Update model parameters: θ ← θ − α · ∇θ L
17: end for
18: Output Trained model with parameters θ
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4. Experiments

To evaluate the efficacy of our proposed method, we conducted a series of experiments
encompassing single-task, multi-task, and long-horizon-task experiments. In the single-task
experimental setup, a particular variant of the task was considered as an instance of that
task. Conversely, within the multi-task experimental framework, different variants of a
single task were recognized as distinct and individual tasks. For example, picking up a red
cup and picking up a green cup were treated as two separate and independent tasks.

During the training phase, we collected 50 demonstrations for both single-task and
long-horizon tasks. The trajectory points in single-task demonstrations are generally fewer
than 50, whereas long-horizon tasks have more than 50 trajectory points. In our designed
long-horizon tasks, the number of trajectory points exceeds 100. Meanwhile, in order to val-
idate the relationship between the number of demonstrations and multi-task performance,
the number of demonstrations for the multi-task training varied, encompassing either 10 or
100 demonstrations. With a batch size of 16 and a learning rate of 5× 10−4, the single-task
model was trained for 100,000 iterations. In contrast, the training of the multi-task model
took 300,000 iterations. During the testing phase, the experiments were conducted under
the influence of three distinct random seeds. Each task corresponding to a specific seed
underwent 100 testing episodes in all evaluation settings.

4.1. Single Task Experiments

We tested 77 RLBench tasks, from which we selected 8 challenging tasks for our single-
task experimental analysis, training a distinct model for each task variant. As illustrated
in Table 1, our method was benchmarked against PERACT [33], SGR [34], and R3M [20]
across all selected tasks. PERACT is a multi-task framework that employs the Perceiver
Transformer to process voxelized observations and predict actions. We reran the project’s
code for our experiments and used only single-task demonstrations for training. SGR is a
general feature extraction method that combines semantic and geometric representation.
This method has conducted a large number of experiments on RLBench, and we directly
quote its experimental results. In the R3M experiments, the R3M framework was leveraged
only for the extraction of global features during the RGB feature extraction phase, while
the action prediction component remained unaltered.

Table 1. The results of single task.

Stack
Blocks

Item
in Drawer

Open
Microwave

Water
Plants

Toilet
Seat Up

Umbrella
Out

Unplug
Charger

Insert
Peg Average

PERACT [33] 19.0 21.3 34.7 44.3 65.7 90.3 65.3 14.3 44.4
R3M [20] 59.3 55.3 67.0 65.7 81.3 92.3 88.7 31.3 67.6
SGR [34] - - 52.6 40.2 80.1 94.7 - - -

OURS 88.3 73.7 92.7 78.3 88.0 95.7 97.0 62.3 84.2

The outcomes of these experiments unequivocally demonstrated that our method
outperformed others in all 8 tasks, with average success rates of 84.2%. In particular, our
method can still perform well (62.5%) in scenarios demanding high-precision operations
(e.g., inserting peg task), while other methods perform much worse. In addition, we have
compared the runtime of our method with models like R3M, PERACT, and SGR. In our
experiments, our model achieved a balance between computational efficiency and task
performance, with a processing speed of approximately 5 actions per second during testing.
For comparison, PERACT outputs actions at a speed of 3 actions per second, while both
R3M and SGR output actions at 2 actions per second. This demonstrates that our method
not only provides superior task performance but also operates more efficiently.
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4.2. Multi Task Experiments

The ultimate goal in robotic manipulation involves equipping robots with the ability
to master many diverse skills simultaneously rather than training a separate strategy for
each task, which would be time-consuming and resource-intensive. In light of this, we
formulated three distinct sets of multi-task experiments. As revealed in Table 2, each set
encompassed a blend of both complex and simple tasks, with each task having up to three
variations. In the multi-task setup, each of the three task sets includes both simple and
complex tasks. For example, set 1 contains tasks such as turning a tap (a relatively simple
task) and stacking cups (a more complex task). By designing the task combinations in this
way, we can evaluate the model’s robustness across tasks of varying difficulty levels.

Table 2. The results of multi tasks (Bold indicates better performance).

Method

Task Set 1 (%)

empty dishwasher knife on board turn tap stack cups
10 100 10 100 10 100 10 100

PERACT 24.7 41.7 57.0 59.3 77.7 93.0 7.1 10.3
OURS 32.0 74.3 44.3 71.7 72.7 90.3 28.1 68.0

Task Set 2 (%)

item out of drawer unplug charger water plants usb in computer
10 100 10 100 10 100 10 100

PERACT 19.9 69.8 47.7 77.0 8.7 45.3 38.0 77.7
OURS 35.4 77.7 53.3 92.7 32.3 70.7 62.3 76.7

Task Set 3 (%)

stack blocks push buttons reach and drag slide block
10 100 10 100 10 100 10 100

PERACT 8.1 26.4 35.6 71.3 10.6 40.8 18.0 55.7
OURS 33.9 66.3 59.6 87.7 35.6 67.9 44.3 84.7

To validate the influence of the number of demonstrations on the robotic performance,
we established two demonstration groups, one with 10 and the other with 100 demonstra-
tions. Subsequently, we benchmarked the outcomes against those obtained using PERACT.
The findings revealed that performances in multi-task settings generally perform worse
than those in single-task settings, a trend that is currently prevalent in multi-task learning
because our multi-task training approach merely combined the training data from different
tasks without delving into the intricacies of inter-task correlations and knowledge transfer.
This problem is vital for the development of multi-task learning and is earmarked for our
future research. Nonetheless, our method demonstrated superior performance in multi-task
scenarios, surpassing a 60% success rate in all tasks when trained with 100 demonstrations.

4.3. Long Horizon Task

Long-horizon tasks represent a formidable challenge within the field of robotic ma-
nipulation. Numerous studies have sought to augment robots’ capabilities in managing
such tasks by utilizing strategies like task hierarchy and skill learning, an endeavour that
aligns with our research objectives. To this end, we strategically utilized basic tasks from
RLBench to construct three intricate long-horizon task scenarios. These scenarios were
designed to emulate diverse environments, including home (water plants + open door +
move hanger), kitchen (take lid + turn tap + open microwave), and assembly (insert peg
+ insert usb + shape sorter) scenarios. Our method consistently achieved a success rate
exceeding 60% across all three scenarios when the model was trained for 300,000 iterations.
The performance shows our method’s robust capability to handle the complexities inherent
in long-horizon tasks.
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4.4. Unseen Scenarios

In order to evaluate the adaptability of our method to scenarios beyond the scope of
its training, we conducted some experiments using the picking and lifting task as a test
case. This is illustrated in Figure 5. During the testing phase, we introduced block colors
and shapes that did not appear in the training phase. We established two demonstration
groups, one with 10 and the other with 100 demonstrations. We tested 3 distinct colors and
3 unique shapes, with each variation undergoing 100 testing episodes. The findings (shown
in Table 3) were noteworthy: when the robot encountered colors that were unseen from
the training dataset, the integration of corresponding language instructions enabled it to
achieve a measurable level of success. The outcome not only demonstrates the adaptability
of our method but also opens up a promising avenue for future exploration in the realm of
robotic manipulation.

Figure 5. During the testing phase, experiments are conducted with colors and shapes that were not
presented during the training phase based on the picking and lifting task.

Table 3. The results of unseen scenarios.

Demos Seen Scenarios (%)
Unseen Scenarios (%)

Colors Shapes

10 78.3 39.0 49.7
100 98.7 61.7 81.3

4.5. Ablation Experiments

In this section, we evaluated the effect of multi-view attention, historical information,
and semantic-texture feature extraction of the proposed method.

Table 4 presents the ablation study for each component. Experimental analysis was
executed on 30 distinct tasks, each subjected to three unique random seeds.

From the results, we can draw some key conclusions. Utilizing only the historical
information module results in a success rate of 47.8% with 100 trajectories. However, when
combined with the multi-view attention mechanism, the success rate significantly increases
to 71.8%. In contrast, the combination of historical information with the hierarchical feature
fusion module achieves a success rate of 68.5%. These findings suggest that the spatio-
temporal attention-based action decision network, when integrated with the multi-view
attention mechanism, enhances the system’s capability to adapt to environmental changes.
Additionally, it is evident that each of the three modules plays an indispensable role in
achieving the final performance.
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Table 4. The results of ablation experiments (Bold indicates best performance).

Multi-View Attention Historical Information S-T Feature
Success Rate (%)

10 50 100

✓ 22.3 23.3 34.2
✓ 28.7 34.5 47.8

✓ 26.4 33.0 35.3
✓ ✓ 48.7 64.2 71.8
✓ ✓ 35.4 63.3 77.9

✓ ✓ 46.5 59.5 68.5
✓ ✓ ✓ 69.5 70.8 82.8

4.6. Evaluation on Real Robot

To validate the effectiveness of our method in real-world scenarios, we conducted
experiments using the UR5 robotic arm. Figure 6 illustrates the experimental setup for one
episode of the item in drawer task in the real world. Two RealSense D435 cameras (Intel
Corporation, Santa Clara, CA, USA) were positioned to capture different viewpoints, which
were fused based on their values computed via multi-view attention. The final action was
then determined using point cloud data from the most informative viewpoint. To deal
with varying light conditions, which affected the quality of the visual data captured by the
RealSense D435 cameras, we collected demonstrations under different lighting scenarios
and adjusted the exposure settings dynamically during testing. We also applied noise
filtering techniques to the raw point cloud data to remove outliers and reduce the impact
of sensor noise. Besides, we used data augmentation techniques such as adding simulated
noise to make the model more robust to real-world variations. Additionally, to ensure
the safety of the experiments, we restricted the operational range of the robotic arm to a
confined space and slowed down the execution speed of the arm’s movements.

Figure 6. We designed two viewpoints using front and wrist cameras. The viewpoint marked
with a green star in the diagram indicates the viewpoint that contains more valuable information.
Additionally, the action prediction at each step is based on the observations at the current step, as well
as the observations and actions from the past several steps.

For each task, we gathered 50 demonstrations, incorporating data from both the robot’s
wrist and front camera to facilitate multi-view analysis. The experiments considered both
single-task and multi-task scenarios. We tested each task for 100 episodes. The results
(shown in Table 5) indicated that for single-task setting, the overall success rate exceeded
65%. For multi-task setting, although there was a decline in performance, the overall success
rate remained above 50%. In the experimental procedure, environmental illumination and
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the accuracy of point clouds captured by the camera are pivotal factors influencing the
success rate.

Table 5. The results of real robot experiments.

Push Button (%) Item in Drawer (%) Pick and Lift (%)

Single Task 83 66 77
Multi Task 64 51 71

5. Conclusions

In this work, inspired by human cognitive processes and human visual system, we in-
troduce a history-sensitive method that integrates multi-view information and multi-modal
inputs. Our approach leverages a spatio-temporal attention mechanism to effectively com-
bine historical observations with current visual data, enhancing the robot’s decision-making
capabilities. Additionally, we incorporate a mutual information-based multi-view attention
module to dynamically focus on the most informative perspectives, and a hierarchical
feature fusion mechanism to merge global semantic features with local texture details.
Extensive experiments were conducted in both simulated and real-world environments.
The results demonstrate that our method performs well in tasks with varying sequence
lengths and exhibits notable robustness and adaptability in unseen scenarios.

However, several limitations remain, which offer directions for future research. For ex-
ample, the convergence speed during our training is suboptimal. This could be due to the
model needing to handle the varying complexities of multiple tasks simultaneously, along
with differences in data distribution for each task. The added complexity and variability
make the learning process more challenging, thereby slowing down the overall conver-
gence. Also, the performance in real-world scenarios heavily relies on the accuracy of the
point cloud data. In environments with varying lighting conditions or occlusions, the pre-
cision of the point cloud can degrade, impacting the robot’s decision-making and action
execution. In addition, although our method shows adaptability to unseen scenarios, it may
struggle with highly complex tasks that require intricate reasoning or long-term planning
beyond the current framework’s capabilities. To address the above issues, our future work
could focus on developing advanced optimization strategies, such as curriculum learning
or meta-learning approaches, to improve convergence rates during multi-task training.
To mitigate the dependency on point cloud precision, future research could explore more
robust point cloud processing techniques or fusion with other sensory modalities, such
as tactile data, to enhance reliability under various environmental conditions. We could
also integrate more sophisticated reasoning modules or hierarchical task decomposition
strategies to handle more complex tasks. Through these enhancements, we aim to further
develop our method and expand its applicability, contributing to the advancement of
intelligent robotic manipulation.
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