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Abstract: Direct-drive servo systems are extensively applied in biomimetic robotics and other bionic
applications, but their performance is susceptible to uncertainties and disturbances. This paper pro-
poses an adaptive disturbance rejection Zeta-backstepping control scheme with adjustable damping
ratios to enhance system robustness and precision. An iron-core permanent magnet linear syn-
chronous motor (PMLSM) was employed as the experimental platform for the development of a
dynamic model that incorporates compensation for friction and cogging forces. To address model
parameter uncertainties, an indirect parameter adaptation strategy based on a recursive least squares
algorithm was introduced. It updates parameters based on the system state instead of output error,
ensuring robust parameter convergence. An integral sliding mode observer (ISMO) was constructed
to estimate and compensate for residual uncertainties, achieving finite-time state estimation. The
proposed Zeta-backstepping controller enables adjustable damping ratios through parameterized
control laws, offering flexibility in achieving desired dynamic performance. System stability and
bounded tracking performance were validated via a second-order Lyapunov function analysis. Exper-
imental results on a real PMLSM platform demonstrated that, while achieving adjustable damping
ratio dynamic characteristics, there is a significant improvement in tracking accuracy and disturbance
suppression. This underscores the scheme’s potential for advancing precision control in biomimetic
robotics and other direct-drive system applications.

Keywords: direct-drive system; parameter adaptive; integral sliding mode observer; damping ratios;
backstepping method; cogging force

1. Introduction

Direct-drive servo systems have found widespread application in the fields of bionics
and biomimetic robotics due to their high thrust, fast response, and high positioning
accuracy [1–4]. Bionic systems and robots often need to replicate complex biological
motion patterns, achieving precise and flexible motion control to meet the demands of
high-end manufacturing, medical rehabilitation, and intelligent services [5,6]. However,
the performance of these systems relies heavily on the precise control of servo systems,
particularly in scenarios requiring the management of nonlinear dynamic characteristics,
external disturbances, and high-precision motion control [7]. Therefore, conducting in-
depth research on the precise and effective control of direct-drive servo systems is not only
crucial for addressing practical application bottlenecks in the field of bionics but also serves
as an essential foundation for advancing biomimetic robotics technology.

To improve the control performance of direct-drive servo systems, various advanced
control algorithms have been developed to address issues such as parameter perturbations,
unknown disturbances, and system uncertainties. For instance, a PID controller optimized
using a genetic algorithm was proposed for direct-drive servo systems in [8], effectively
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improving the system’s dynamic response characteristics. In [9], an adaptive backstepping-
based speed tracking controller was designed for permanent magnet synchronous motor
(PMSM) systems, addressing parameter uncertainties and external disturbances. The feed-
back linearization technique was applied in [10] to develop a robust controller for linear
PMSMs, significantly enhancing the system’s anti-disturbance performance. Adaptive
robust control, which combines the benefits of adaptive and robust control strategies,
can effectively handle parameter variations and disturbances [11]. This method has been
widely applied to PMSM systems [12] and electro-hydraulic servo systems [13]. Further-
more, Ref. [14] proposed a linear/nonlinear active disturbance rejection control (ADRC)
switching strategy, achieving accurate and robust speed control for PMSMs. Although
these methods have improved control performance, they often rely on nonlinear force
models for feedforward compensation and require high feedback control gains to suppress
uncertainties and maintain performance. However, under varying operating conditions
or in the presence of external disturbances, control performance may degrade, potentially
leading to instability.

Observer-based disturbance estimation methods have gained significant attention for
ensuring robust disturbance rejection and maintaining control performance [15]. Various
techniques have been developed, including equivalent-input-disturbance observers [16],
adaptive disturbance observers (ADO) [17], high-gain observers [18], nonlinear distur-
bance observers [19,20], extended state observers (ESO) [21–23], sliding mode disturbance
observers (SMDO) [24–26], and filter-based observers [27]. Despite these advancements,
several challenges persist. Many approaches assume the Lipschitz condition, which often
fails in practical servo systems due to discontinuous friction. Additionally, the require-
ment for disturbance derivatives, commonly present in these methods, is overly restrictive
and unsuitable for managing the complex disturbances encountered in practical systems.
The development of artificial neural network (NN) methods has introduced intelligent
estimation and compensation algorithms, including radial basis function neural networks
(RBFNN) [28], probabilistic fuzzy NN approximators [29], and B-spline wavelet NN ob-
servers [30]. However, these approaches frequently involve complex designs, demand
significant computational resources, and have limited practical applicability. Among the
various methods, sliding mode observers are distinguished by their capability to bypass the
Lipschitz condition and the assumption of differentiable disturbances, delivering strong
estimation performance with relatively simple implementation. To overcome the limitation
of traditional sliding mode observers in ensuring invariance during the reaching phase,
an integral sliding mode approach was introduced in [31], ensuring global sliding mode
invariance. Additionally, an integral sliding mode observer was presented within the
adaptive robust control framework [32], significantly enhancing the disturbance rejection
performance of linear motors.

The aforementioned studies mainly focus on improving steady-state performance
and disturbance rejection. To enhance transient performance, methods such as funnel
control [33], prescribed performance control [34], and barrier function techniques [35] have
been developed. These approaches transform error states or use reciprocal nonlinear gain
to convert constrained error control into bounded control of transformed states. While
these methods are effective in regulating both transient and steady-state performance,
they primarily rely on feedback suppression for managing overshoot, an important metric
in transient performance. Notably, few methods actively regulate overshoot. To fill this
gap, the Zeta-backstepping method was proposed in [36], enabling explicit damping ratio
adjustment through prescribed rules, thus facilitating active overshoot control.

Based on the preceding discussion, this paper proposes a damping ratio-adjustable
adaptive disturbance rejection controller for direct-drive servo systems. By employing
the Zeta-backstepping method, the controller enables the system’s damping ratio to be
adjusted during positioning and transient tracking, allowing for customizable overshoot
control. To manage parameter uncertainties, a compensation model is developed for
the system’s nonlinear dynamics, while an indirect adaptive strategy is employed for
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parameter estimation to ensure convergence. For residual uncertainties and disturbances,
an integral sliding mode observer is used to estimate and compensate for disturbances
without assuming differentiability, making it suitable for complex, real-world conditions.
Using the second-order Lyapunov method, it is demonstrated that the system output, with
adjustable damping, achieves partial stability. The proposed approach is experimentally
validated on an iron-core permanent magnet synchronous linear motor, showcasing its
effectiveness and superior performance.

The main contributions of this study are as follows:

1. Accurate modeling and compensation of primary nonlinear forces in the direct-
drive linear motor system. Parameter uncertainties and unknown disturbances
are addressed through an indirect adaptive strategy and an integral sliding mode
observer, respectively.

2. Introduction of a recursive least-squares with forgetting factor (FFRLS) algorithm
to establish the adaptive parameter estimation law. This approach, driven by sys-
tem input and output states rather than output error, ensures effective parameter
convergence and decouples parameter estimation from the controller design.

3. A disturbance observer that does not require differentiable disturbances, broadening
its applicability. This observer achieves precise state estimation within finite time,
enhancing robustness against system disturbances.

4. The Zeta-backstepping controller ensures system stability and provides a tuning
rule for damping ratio adjustment, enabling explicit overshoot control during both
positioning and transient tracking phases.

The remainder of this paper is structured as follows. Section 2 offers a detailed
description of the system, using a permanent magnet linear synchronous motor (PMLSM)
as a representative example of direct-drive servo systems, including friction and cogging
force modeling. Section 3 outlines the controller design process, covering parameter
adaptation, observer estimation, and the Zeta-backstepping damping adjustment strategy.
Section 4 presents the experimental results conducted on an iron-core PMLSM, validating
the effectiveness and performance advantages of the proposed control scheme. Finally,
conclusions are summarized in Section 5.

2. System Description

Direct-drive systems, which eliminate intermediate mechanical transmission com-
ponents, directly drive the inertial load using a servo electric driver. This paper ad-
dresses the challenges of positioning and tracking control in direct-drive servo systems
by designing and implementing a damping ratio-adjustable adaptive robust disturbance
rejection controller.

This study focuses on an iron-core permanent magnet linear synchronous motor
(PMLSM) system, which is widely employed in high-end manufacturing due to its high
thrust density and superior thermal performance. These characteristics make it ideal for
high-acceleration, heavy-load precision applications. However, the presence of nonlinear
effects such as friction and cogging forces poses significant challenges for achieving precise
motion control. To mitigate these issues, developing an appropriate nonlinear model proves
effective for compensating these forces.

Let q̈, q̇, and q represent the acceleration, velocity, and position of the linear motor,
respectively. The dynamic model of the system can be expressed as:

Mq̈ = kuu(ν)− Ff (q̇)− Fc(q) + Fd(q, q̇, t) (1)

where M represents the mass of the inertial load, ku is the motor torque constant, and u(ν)
denotes the control input, defined as u(ν(t)) = sign(ν)min{|ν|, uM}. Here, ν represents the
control command and uM is the maximum allowable input to the actuator. The terms Ff , Fc,
and Fd represent the friction force, cogging force, and unknown disturbances, respectively.
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Friction, a common nonlinear phenomenon in servo systems, primarily consists of
viscous resistance and Coulomb friction. The Coulomb-viscous friction model, used for
compensating these forces, is defined as:

Ff (q̇) = Bq̇ + AcSc(q̇) (2)

where B and Ac are the viscous and Coulomb friction coefficients, respectively, and
Sc(q̇) is the Coulomb friction function, often approximated by a smooth function such as
π
2 arctan(900q̇) to replace the discontinuous signum function sign(q̇).

The cogging force, a significant disturbance in iron-core PMLSM, limits control per-
formance by causing thrust ripple due to the interaction between the stator’s permanent
magnets and the mover’s iron core. Owing to its periodic nature, the cogging force is
typically modeled as:

Fc(q) = AT
r Sr(q) =

n

∑
k=1

Ark sin(ωkq + ϕk) (3)

where Ar = [Ar1, . . . , Arn]
T ∈ Rn, and Sr(q) = [sin(ω1q + ϕ1), . . . , sin(ωnq + ϕn)]

T is
the basis function vector. Ark, ωk, and ϕk represent the amplitude, frequency, and ini-
tial phase of the k-th harmonic component, respectively, while n denotes the number of
harmonic components.

By combining the friction model (2) and the cogging force model (3), the system’s
dynamic model (1) can be expressed in the state-space form as:

ẋ1 = x2

ẋ2 = θ1u(ν)− θ2x2 − θ3Sc(x2)− θT
4 Sr(x1) + d

(4)

where x = [x1, x2]
T = [q, q̇]T is the state vector, and θ = [θ1, θ2, θ3, θT

4 ]
T is the parameter

vector defined as: θ1 = ku
M , θ2 = B

M , θ3 = Ac
M , and θ4 =

[
Ar1
M , . . . , Arn

M

]T
= [θ4,1, . . . , θ4,n]

T.

d = Fd
M represents the normalized disturbance.
The control objective is to design a system controller with an adjustable damping

ratio to regulate the control input u(ν) such that the system output accurately tracks the
reference signal xd(t) accurately while explicitly managing overshoot during transient
phases. To facilitate the controller design, the following assumptions are introduced:

Assumption 1. System parameter uncertainties and unknown disturbances are bounded within
known ranges:

θ ∈ Ωθ ≜ {θi | θi min ≤ θi ≤ θi max}, d ∈ Ωd ≜ {d | |d| ≤ δd} (5)

where i = {1, 2, . . . , n + 3}. θmin =
[
θ1 min, . . . , θ(3+n)min

]T
, θmax =

[
θ1 max, . . . , θ(3+n)max

]T

denote the minimum and maximum values of θ, respectively, and they are known constant vectors.
δd > 0 is also a known constant.

Assumption 2. The system’s kinetic energy are constrained:

Mx2
2 ≤ Ek, Ek ∈ R+. (6)

It can be deduced from the above assumption that the velocity state of the system is bounded, i.e.,

|x2| ≤
√

Ek/Mmin, Mmin = min(M). (7)
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3. Control System Design

In this section, the parameter uncertainties and unknown disturbances in the PMLSM
system are addressed using an indirect adaptive strategy and an integral sliding mode
observer, respectively, for estimation and compensation. Additionally, a tracking controller
with an adjustable damping ratio is synthesized based on the Zeta-backstepping design
method, along with corresponding damping ratio adjustment rules.

3.1. Parameter Estimation

The core of adaptive model compensation lies in establishing an online parameter
adaptation law, guided by prior information and based on the system’s dynamic model (4),
to address nonlinear effects in the system [37]. To ensure that parameter estimates remain
within known bounds, as specified in Assumption 1, the following discontinuous projection
mapping function is applied:

Projθ̂(•) =

•, θ̂ ∈ Ω̄θ or ηT
θ̂
• ≤ 0(

I −
Γηθ̂ ηT

θ̂

ηT
θ̂

Γηθ̂

)
•, θ̂ ∈ ∂Ωθ and ηT

θ̂
• > 0,

(8)

where θ̂ is the estimated parameter value, Ω̄θ and ∂Ωθ denote the interior and boundary of
the set Ωθ , respectively, and ηθ̂ is the outward unit normal vector for θ̂ ∈ ∂Ωθ .

To decouple parameter estimation from controller design effectively, a saturation
function is introduced to constrain the adaptive rate with a predefined upper limit:

satθ̇M
(•) = sign(•)min

{
∥ • ∥, θ̇M

}
(9)

where θ̇M > 0 is the maximum allowable adaptive rate.
The adaptive parameter law is then expressed as:

˙̂θ = satθ̇M

(
Projθ̂(Γχ)

)
, θ̂(0) ∈ Ωθ , (10)

where χ is the adaptation function, and Γ is the continuously differentiable, positive-definite
adaptation rate matrix.

To design the parameter adaptation law, we initially consider only the model’s param-
eter uncertainties, setting d = 0 to disregard disturbances, which will be later handled by
the observer. Thus, the system dynamics (4) can be rewritten as the following parameter
estimation model:

y = θ1u(ν)− θ2x2 − θ3Sc(x2)− θT
4 Sr(x1) = φTθ (11)

where y = ẋ2, φ = [u(ν),−x2,−Sc(x2),−Sr(x1)]
T is the parameter regressor.

By applying a stable low-pass filter Q f (•) to the model (11), one can obtain

y f = φT
f θ = θ1u f − θ2x2 f − θ3Sc f − θT

4 Sr f (12)

where y f denotes the output of the filter •Q f (•) with x2 as the input. Correspondingly,
u f , x2 f , Sc f , and Sr f represent the outputs of the filter Q f (•) for the inputs u, x2, Sc, and
Sr, respectively.

Define the model’s estimated output ŷ f and estimation error ϵ as follows:

ŷ f = φT
f θ̂, ϵ = ŷ f − y f (13)

leading to ϵ = φT
f θ̃, where θ̃ = θ̂ − θ is the parameter estimation error. Based on this error

model, we apply the recursive least squares with forgetting factor (FFRLS) algorithm for
parameter estimation.
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Thus, the adaptive function χ and adaptive rate matrix Γ in the adaptation law (10)
are given by:

χ = −
φ f ϵ

1 + γφT
f Γφ f

, (14)

Γ̇ =

αΓ − 1
1+γφT

f Γφ f
Γφ f φT

f Γ, if λmax(Γ(t)) ≤ ρM

0, otherwise,
(15)

where γ > 0 is a design constant, α is the forgetting factor, and ρM specifies the maximum
∥Γ(t)∥ to prevent estimator saturation.

Lemma 1 ([37]). Following the saturation-constrained projection mapping adaptive law (10) and
applying the recursive least squares estimator to determine the adaptive function (14) and adaptive
rate (15), the prediction error ϵ defined in (13) can satisfy ϵ ∈ L2(0, ∞) ∩ L∞[0, ∞), and the
parameter estimate error satisfies θ̃ ∈ L2[0, ∞).

3.2. Observer Design

After compensating for parameter estimation, the system dynamics (4) can be rewritten as:

ẋ1 = x2

ẋ2 = θ̂1u(ν)− θ̂2x2 − θ̂3Sc(x2)− θ̂T
4 Sr(x1) + dl

(16)

where dl = −φTθ̃ + d represents the lumped uncertainty, encompassing both the parameter
estimation residuals and external disturbances.

To effectively estimate and mitigate the lumped uncertainty dl , we propose an integral
sliding mode observer defined as:

˙̂x1 = x̂2 − ι1(x̂1 − x1) + ω1

˙̂x2 = θ̂1u(ν)− θ̂2x2 − θ̂3Sc(x2)− θ̂T
4 Sr(x1) + ι2ω1 + ω2

(17)

where x̂1 and x̂2 are the estimates of the states x1 and x2, respectively. ι1 and ι2 are positive
observer gain constants to be determined, ω1 and ω2 are the observer inputs defined
as follows.

ω1 = −ηosign(ξ1(t))− (ϱo + |x̂2|)sign(s(t)) (18)

ω2 = κosign(ω1(t)) (19)

where ξ1 = x̂1 − x1 is the estimation error for state x1. ηo, ϱo, and κo are tunable design
parameters, and s(t) represents the integral sliding mode variable designed as follows:

s(t) = ξ1(t) +
∫ t

0
(ηosign(ξ1(τ)) + ι1ξ1(τ))dτ − ξ1(0) (20)

where ξ1(0) = x̂1(0)− x1(0) denotes the initial value of state estimation error ξ1(t).
Letting ξ2 = x̂2 − x2 and combining the modified system model (16) with the observer

model (17), we derive the dynamics of the state estimation errors as follows:

ξ̇1 = ξ2 − ι1ξ1 + ω1, (21)

ξ̇2 = ι2ω1 + ω2 − dl . (22)
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Theorem 1. Based on the sliding mode equivalent control theory [31], by selecting the integral
sliding mode variable as defined in (20) and establishing the disturbance observer (17) while ensuring
that the observer parameters satisfy the following conditions:

ηo > 0, ϱo >
√

Ek/Mmin, κo > δh, ι1, ι2 > 0, (23)

where δh > ∥φ∥∥θM∥+ δd ≥ |dl | is a positive constant with θM = θmax − θmin. Then the state
estimation errors ξ1 and ξ2 will converge to the zero equilibrium in finite time, i.e.,

ξ1 = 0, ξ̇1 = 0, ∀t ≥ t1 (24)

ξ2 = 0, ξ̇2 = 0, ∀t ≥ t2 (25)

where 0 < t1, t2 < +∞. Additionally, the estimated value of the lumped uncertainty in the system
can be expressed as:

d̂l = ι2ω1 + ω2. (26)

The proof of Theorem 1 is given in the Appendix A.
The integral sliding mode observer effectively estimates the system’s unknown uncer-

tainties and disturbances. However, the estimation results, derived from observer inputs
ω1 and ω2, include sign functions, which inevitably introduce chattering in the estimated
values. To ensure effective compensation with disturbance estimation, it is crucial to sup-
press these chattering to maintain overall system stability. To achieve this, we introduce a
continuous boundary layer function, defined as Scon(•) = •

|•|+ε
, to approximate the sign

function, where ε > 0 is a constant that determines the width of the boundary layer. Addi-
tionally, to ensure the smoothness of the disturbance estimates, we apply a low-pass filter
given by F(s) = 1

τs+1 . This filter further mitigates the effects of high-frequency switching
in the observer input signals.

However, it is important to note that while the introduction of the boundary layer
function and filter enhances the smoothness of the estimation results, it may also reduce
the accuracy and robustness of the disturbance estimates. Therefore, a trade-off must be
established between estimation performance and oscillation levels, necessitating careful
determination of the parameters ε and τ based on the specific application requirements.

Remark 1. The designed integral sliding mode observer guarantees boundedness for both the state
estimation error and the disturbance estimate. For ξ1, boundedness is straightforward to establish
via its finite-time convergence proof, with its derivative ξ̇1 remaining bounded per (A5). Since
sliding mode invariance always holds, the observer inputs ω1, ω2 defined in (18) and (19) are thus
bounded. Consequently, from (21) and (26), both ξ2 and the disturbance estimate d̂l remain bounded.
Therefore, there exists a positive constant δo such that |d̂l | < δo holds.

3.3. Controller Synthesis

To achieve controllable damping ratio for system output, the Zeta-backstepping
method is employed in the controller design. This innovative approach stands apart
conventional backstepping by not only ensuring system stability but also providing an
explicit tuning law for achieving desired damping ratios. This control method thus allows
for direct management of overshoot characteristics and system dynamic response.

Define the output tracking error as z1 = x1 − xd, and let z2 = x2 − α1, where α1 is a
virtual control variable. The time derivative of z1 can then be expressed as

ż1 = z2 + α1 − ẋd. (27)

Unlike traditional backstepping methods, where the virtual control variable α1 is
typically chosen as α1 = −k1z1 + ẋd, the Zeta-backstepping approach simplifies it to

α1 = ẋd. (28)
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Substituting (28) into (27) yields:

ż1 = z2. (29)

Taking the derivative of z2 and incorporating the system dynamics from (16), one obtains

ż2 = θ̂1u(ν)− θ̂2x2 − θ̂3Sc(x2)− θ̂T
4 Sr(x1) + dl − α̇1. (30)

Following the Zeta backstepping method, we design the control input u as

u(ν) = sign(ν)min{|ν|, uM},

ν =
1
θ̂1

(
−k1z1 − k2z2 + θ̂2x2 + θ̂3Sc(x2) + θ̂T

4 Sr(x1)− d̂l + α̇1

)
,

(31)

where k1, k2 > 0 are feedback control gains that dictate the system’s damping ratio.
Substituting the control law (31) into (30) results in

ż2 = −k1z1 − k2z2 − d̃l , (32)

where d̃l = d̂l − dl .

Theorem 2. For the iron-core PMLSM system described by (4), with uncertainty compensation
through the parameter adaptation law (10) and the integral sliding mode observer (17), the proposed
controller (31) guarantees practical stability of the system tracking error with an adjustable damping
ratio ζ. Specifically:

1. If the control gains satisfy k1 = β2 and k2 = 2β with β > 0 as a design parameter, the system
tracking error can achieve an approximately critically damped response, i.e., ζ ≈ 1.

2. If the control gains satisfy k1 = β2
1 + β2

2 and k2 = 2β2 with β1, β2 > 0 as design parameters,
then the system tracking error exhibits an approximately underdamped response, where the
damping ratio ζ ≈ β1√

β2
1+β2

2
.

Proof. To determine stability and convergence, we choose z1 as the variable for the Lya-
punov function and define V1 = z1. We then construct a second-order Lyapunov function
as follows:

V = V̈1 + k2V̇1 + k1V1. (33)

Considering the definition of V1 and combining (29) and (32), one can obtain

|V| = |V̈1 + k2V̇1 + k1V1| = |ż2 + k2z2 + k1z1| = |d̃l | ≤ δ, (34)

where δ = δh + δo represents a bound on the lumped disturbance terms.
When the system’s parameter uncertainties and unknown disturbances are adequately

compensated, i.e., δ = 0, the inequality (34) simplifies into a second-order homogeneous
differential equation with the characteristic equation

r2 + k2r + k1 = 0 (35)

The corresponding discriminant is ∆ = k2
2 − 4k1. According to Lemma 2 in [36], it can

be obtain that:
When ∆ = 0: The characteristic Equation (35) has a pair of identical real roots, denoted

as −β with β > 0. In this case, the relationships between the gain parameters are k1 = β2

and k2 = 2β. The solution of (34) is asymptotically stable with a damping ratio ζ = 1,
indicating a critically damped response.

When ∆ < 0: The characteristic Equation (35) yields a pair of complex conjugate roots,
denoted as −β1 ± β2i with β1, β2 > 0. The gain parameter relationships are k1 = β2

1 + β2
2
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and k2 = 2β2. The system remains asymptotically stable, and the damping ratio satisfies
0 < ζ = β1√

β2
1+β2

2
< 1, corresponding to an underdamped response.

On the other hand, if parameter uncertainties and unknown disturbances persist,
i.e., δ > 0, inequality (34) becomes a second-order nonhomogeneous differential equation.
By establishing boundary conditions and applying the comparison principle, it can be
demonstrated that the solution to inequality (34) remains bounded.

By using the characteristic Equation (35) and selecting either real root solutions or
complex conjugate root solutions, the inequality (34) can be satisfied, ensuring the stability
of the variable V1. In this scenario, even with δ > 0, the solution of (34) still closely
approximates the response characteristics for δ = 0, thereby maintaining similar damping
behavior.

4. Experimental Results
4.1. Experimental Platform

To validate the effectiveness and advantages of the proposed control scheme, an iron-
core permanent magnet linear synchronous motor (PMLSM) testing platform was estab-
lished, as shown in Figure 1. The control algorithm was implemented in the TwinCAT 3.1
environment on a computer, which was connected to the servo drive via a standard RJ45
Ethernet cable. The platform featured a Yaskawa SGLFW-50A200B iron-core F-type linear
motor, operated using an Elmo G-OBO13/230FEHN1 AC servo drive. Position mea-
surement was performed with a Renishaw RGS20 linear scale coupled with an RGH22B
readhead. Details of these devices are given in Table 1. The servo drive is powered by
a 220 V AC supply and connected to the linear motor via a three-phase AC power cable.
Upon receiving current commands, it generates the corresponding current output to drive
the motor. The linear scale measures the position of the mover and outputs quadrature
differential sine signals to the drive for feedback.

Table 1. Detailed information of devices within the experimental platform.

Devices Model Manufacturer City Country

Computer’s CPU Ryzen 5 1600 Advanced Micro Devices, Inc. Santa Clara (CA) United States
Linear motor SGLFW-50A200B Yaskawa Electric Co., Ltd. Shanghai China
Servo drive G-OBO13/230FEHN1 Elmo Motion Control Ltd. Petah Tikva Israel
Linear scale RGS20 Renishaw plc Shanghai China
Readhead RGH22B Renishaw plc Shanghai China

Figure 1. Iron-core permanent magnet linear synchronous motor platform.
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To implement the proposed control strategy, the dynamics of the PMLSM, including
the modeling of friction and cogging forces, were described in Equations (1)–(7) in Section 2,
forming the basis for parameter estimation (10)–(15), disturbance observer design (17)–(20),
and controller synthesis (31) in Section 3. Specifically, the control algorithm was imple-
mented using Structured Text (ST) language in TwinCAT software (version 4024.60), with
the main equations and their relationships illustrated in Figure 2. Motion trajectory plan-
ning and current command generation were carried out within the TwinCAT environment,
with the drive configured in Cyclic Synchronous Torque (CST) mode. The EtherCAT
communication combined with the CiA 402 protocol, was employed to transmit control
commands (u) from the TwinCAT software to the drive and upload feedback data (x1, x2),
achieving closed-loop control of the system. Both the program execution cycle and data
sampling period were set to 1 ms.
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Figure 2. Diagram of the proposed controller implementation in TwinCAT.

4.2. Parameter Selection

Initial parameter estimates for the iron-core linear motor system were obtained through
offline identification. The motor’s cogging force was measured following the method
outlined in [38]. Neglecting the external disturbances in system (1), i.e., Fd = 0, the linear
motor was operated at a low constant speed. Under these conditions, kuu = Ff + Fc,
meaning the output torque (kuu) of the linear motor can be regarded as the sum of the
friction force Ff and the cogging force Fc. The relationship between the motor’s output
torque and the mover’s position can be obtained during constant-speed motion, as shown
by the red dashed line in Figure 3. A Fast Fourier Transform (FFT) was performed on
the measured force signal to obtain its spectral characteristics with respect to the motor’s
displacement, as shown in Figure 4. The DC component in the spectrum (i.e., the component
near 0 m−1) was considered the friction force, while the remaining components were
attributed to the cogging force. To characterize the cogging force, the seven harmonic
components with the largest amplitudes were selected from the spectrum, as illustrated
in the subplot of Figure 4. These selected components were then subjected to an inverse
Fourier transform to obtain time-domain data, which were used to identify the parameters
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of the cogging force model in (3). The identified model parameters are presented in Table 2,
and the fitted curve is shown as the blue solid line in Figure 3.
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Figure 3. Measured data and fitting curve of cogging force.
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Figure 4. Fourier transform and processing of cogging force data.

Table 2. Identified model parameters of cogging force.

Parameters k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Ark(N) 1.806 7.612 2.418 0.813 1.303 1.255 1.148
ωk 42.50 44.74 46.98 51.45 53.69 89.48 98.43
φk 1.671 4.424 3.695 −1.374 0.204 −1.509 −0.346
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The linear motor operates under no-load conditions, with the inertial load consisting
only of the mover itself. The experimental control objective is to ensure that the motor
mover can quickly and accurately track the desired trajectory xd while maintaining the
specified damping ratio characteristics. Consequently, the parameter vector θ for the system
model (4) comprises 10 components, with their initial estimates θ0, maximum θmax, and
minimum values θmin detailed in Table 3. For the indirect adaptive strategy, the remaining
parameters were set as follows: γ = 0.1, α = 0.02, θ̇M = 5000, ρM = 50, 000, and uM = 10.

Table 3. System model parameters setting.

θ1 θ2 θ3 θ4,1 θ4,2 θ4,3 θ4,4 θ4,5 θ4,6 θ4,7

θ0 12 15 2 0.1 1.2 0.4 0.2 0.2 0.2 0.2
θmin 5 10 0.1 −2 −3 −2 −2 −2 −2 −2
θmax 20 30 5 2 3 2 2 2 2 2

4.3. Experimental Design

In this section, we compare four control algorithms:
C1: Zeta-backstepping controller based on an indirect sliding mode observer (ISMO)

without dependency on system models. This method relies solely on the ISMO for esti-
mating and compensating for system uncertainties, without explicit friction or cogging
force compensation.

C2: Builds upon C1 by incorporating a friction compensation model as defined in (2)
while excluding cogging force compensation. It also uses the indirect adaptive strategy (10)
for real-time online parameter estimation.

C3: Indirect adaptive robust controller (IARC) [32] based on the developed dynamic
model (1), including friction (2) and cogging force (3) compensation. This approach employs
the indirect parameter adaptive strategy (10)–(15) and synthesizes the controller using the
traditional backstepping method. Additionally, it suppresses disturbances through robust
feedback without relying on the ISMO for estimation and compensation.

C4: The proposed adaptive disturbance rejection Zeta-backstepping controller that
integrates both friction (2) and cogging force (3) compensation, as described in (31). This
control scheme is designed to provide adjustable damping ratios during the positioning
phase, ensuring precise trajectory tracking and robust disturbance rejection.

To ensure the rigor and fairness of experimental testing, all experiments were con-
ducted with the mover starting from the same initial position, and the initial values of the
same parameters were kept consistent. Additionally, two quantitative evaluation metrics
of the tracking error e were introduced to analyze the performance of different meth-
ods in terms of tracking and disturbance rejection: the maximum absolute (MAX) value

em = max{|e(t)|} and the root mean square (RMS) value er =
√

1/(te − ts)
∫ te

ts
e2(t)dt,

where ts and te denote the start and end times, respectively.
To compare and analyze the performance of the proposed methods in terms of ad-

justable damping ratios, tracking accuracy, and disturbance rejection, the following test
cases were designed.

4.3.1. Case 1: Square Wave Positioning

To verify the characteristic of setting the damping ratio during the positioning phase,
this case sets the target trajectory as a square wave with an amplitude of 0.04 m and a
period of 10 s. This allows us to observe the algorithm’s response characteristics to step
signals and the overshoot phenomenon under different damping ratio settings.

According to the damping ratio setting rules described in Theorem 2, three sets of
parameters were selected: (a) β = 20, (b) β1 = 15, β2 = 15, (c) β1 = 10, β2 = 17. These
lead to corresponding damping ratios and control gains of: (i) ζ = 1, k1 = 400, k2 = 40,
(ii) ζ = 0.707, k1 = 450, k2 = 30, (iii) ζ = 0.507, k1 = 389, k2 = 30. Since the trajectory
used does not effectively excite the parameter adaptation process, the initial value of
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the parameter adaptation rate matrix Γ is set to zero, rendering it ineffective. The ISMO
parameters were configured with ηo = 0.1, ϱo = 0.4, κo = 15, ι1 = 20, and ι2 = 20. The
boundary layer function Scon(•) was applied to approximate the sign functions of ξ1, s,
and ω1 in (18)–(20) with corresponding εξ1 = 0.001, εs = 0.01, and εω1 = 0.1. The filter F(s)
was set to τ = 0.3. In addition, for C3 using the IARC method, with reference to the design
in Ref. [32], the control gains are set as c = 15, kσ = 5, ks = 0.05.

By generating the desired square wave trajectory in TwinCAT as described and im-
plementing the four control schemes through programming, the motion response of the
linear motor was tested. The process data was recorded by TwinCAT, and the experimental
results are presented in Figures 5–9.

Figures 5–7 display the response curves for controllers C1, C2, and C4 under damping
ratios of ζ = 1, 0.707, and 0.507, respectively. The results show that the overshoot behavior
of each controller aligns closely with the specified damping ratio, confirming that the
Zeta-backstepping controller can effectively control system overshoot via the prescribed
damping ratio strategy. Notably, Figures 6 and 7 reveal that the tracking curves of C2 and
C4 are nearly indistinguishable under the current positioning motion conditions. This
similarity arises from the minimal influence of the additional cogging force compensation
in C4 relative to C2 in this scenario. However, subtle differences between the two are
evident in the magnified view of the tracking error in Figure 8, which provides a more
detailed comparison of their respective tracking performances.

Figure 8 illustrates the tracking errors of the four controllers, where the damping
ratio of C1, C2, and C4 is set to ζ = 1. For the IARC controller C3, designed based on the
conventional backstepping method, the control gain is set lower because the method fails
to operate at higher gains. Moreover, C3 exhibits uncontrollable overshoot in its tracking
error response, along with steady-state errors and chattering, rendering it unsuitable for
this type of positioning task. In contrast, the controllers C1, C2, and C4, designed using
the Zeta-backstepping approach, are functional for positioning tasks. The model-based
controllers C2 and C4 effectively reduce overshoot without compromising the damping
characteristics. Controller C4, which incorporates a cogging force model, achieves a better
balance between overshoot control and tracking performance.
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Figure 5. Position tracking response of the square wave trajectory under different damping ratio ζ

for controller C1 in Case 1.
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Figure 6. Position tracking response of the square wave trajectory under different damping ratio ζ

for controller C2 in Case 1.
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Figure 7. Position tracking response of the square wave trajectory under different damping ratio ζ

for controller C4 in Case 1.

Figure 9 compares disturbance estimates generated by the integral sliding mode
observer for each controller during a step response. Notably, the controller C4, which
includes the cogging force model, yields the smallest disturbance estimate, indicating that
a more comprehensive system model can alleviate the observer’s burden and enhance
overall disturbance rejection.
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Figure 8. Position tracking errors of four controllers under the square wave trajectory (left) and local
amplification of position tracking errors for a step input (right) when ζ = 1 in Case 1.
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Figure 9. Disturbance estimation results of the controllers with ISMO for a single step input when the
damping ratio is set to ζ = 1 in Case 1.

In summary, this experiment demonstrates that the proposed control scheme outper-
forms the controller synthesized using the conventional backstepping method in adapting
to point-to-point positioning tasks. It enables explicit control of overshoot by following
the prescribed damping ratio adjustment rules. Additionally, the introduction of ISMO
ensures robust positioning and tracking performance, even under scenarios with unknown
or partially known system models, validating the versatility of the proposed approach.
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4.3.2. Case 2: Sinusoidal Tracking

To evaluate the tracking performance of the proposed control scheme for continuous
trajectories, this case followed the initial positioning phase and then tracked a sinusoidal
trajectory defined by xd(t) = 0.02[2 − cos(πt)] (m). As Case 1 has verified the effectiveness
of different schemes under varying damping ratio settings, this case focus on the perfor-
mance under critical damping, with β = 20 and corresponding gains k1 = 400, k2 = 40. The
parameter settings of ISMO are the same as Case 1. Additionally, for the IARC controller
C3, a control gain switching strategy is required to enable a successful startup during the
initial positioning phase and ensure subsequent tracking performance. Specifically, the
control gains are initially set as c = 35 and kσ = 5. After 5 s, they are adjusted to c = 80
and kσ = 18, while ks remains fixed at 0.05 throughout the operation.

Similar to Case 1, the continuous sinusoidal trajectory xd(t) and the control algorithms
are pre-programmed in TwinCAT, where the servo driver handles the conversion of control
commands and uploads feedback data. Experimental data is recorded within the TwinCAT
software, and the corresponding results are shown in Figures 10–14 and Table 4.

Figure 10 illustrates the online parameter estimation for system model (4), demonstrating
that the designed indirect adaptive strategy successfully promotes parameter convergence.
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Figure 10. The results of online estimation of model parameters for controller C4 in Case 2.

Figure 11 presents the position tracking responses of the four controllers to the si-
nusoidal trajectory, including the initial positioning phase, while Figure 12 shows the
corresponding position tracking errors. It should be noted that, as validated in Case 1, C3 is
unsuitable for positioning tasks. To ensure successful initialization, smaller gains were em-
ployed initially, which were subsequently switched to larger gains to achieve the tracking
performance shown in the figures. In contrast, C1, C2, and C4 completed both initialization
and tracking with a single set of gains while maintaining robust performance. During the
sinusoidal trajectory tracking, controllers C2, C3 and C4 exhibit smaller tracking errors
compared to C1, due to the inclusion of system model compensation and online parameter
estimation, with errors decreasing over time. Since C4 further incorporated cogging force
compensation based on C2, it achieves lower tracking errors, underscoring the role of
cogging force compensation in enhancing tracking accuracy for iron-core linear motors.
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Figure 11. Position tracking response of four controllers under the sinusoidal trajectory (left) and
local amplification of position tracking during the initial positioning phase (right) in Case 2.
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Figure 12. Position tracking errors under the sinusoidal trajectory with local amplification for initial
positioning phase (left) and position tracking errors during trajectory tracking phase (right) in Case 2.

Figures 13 and 14 display the control inputs and disturbance estimates of each
controller, respectively. Notably, C2 and C4, which incorporate system model compen-
sation and online parameter estimation, exhibit lower disturbance estimates than C1.
Among them, with a control input amplitude approximately consistent across controllers,
C4—further benefiting from cogging force compensation—achieves the smallest distur-
bance estimate.

The tracking performance metrics during 5–50 s and 40–50 s (em5, er5, em40, er40) are
summarized in Table 4. The results indicate that, although C3 demonstrated excellent
performance in trajectory tracking, its requirement for smaller initial gains during the
positioning phase resulted in larger position tracking errors. In contrast, C1, C2, and C4
demonstrated progressively better trajectory tracking performance as the system model
was enriched and parameter adaptation was introduced. The Zeta-backstepping-based C4
and the traditional backstepping-based C3 showed comparable steady-state performance,
indicating that the proposed control scheme not only achieves the tracking performance
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of traditional backstepping controllers but also excels in scenarios involving mixed posi-
tioning and tracking tasks. Furthermore, by refining the system model and incorporating
parameter adaptation, the proposed scheme effectively enhances the system’s position
tracking performance.
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Figure 13. Control input of the four controllers in Case 2.
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Figure 14. Disturbance estimation results of the controllers with ISMO in Case 2.

Table 4. Quantitative evaluation indexes of Case 2.

Controller em5 (µm) er5 (µm) em40 (µm) er40 (µm)

C1_ISMO_NoModel 81.10 35.50 81.10 35.45
C2_ISMO_NoCogging 72.01 27.10 61.08 24.48
C3_IARC 215.74 11.62 47.66 11.25
C4_Proposed 41.10 12.40 36.38 11.13
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4.3.3. Case 3: Disturbance Rejection

This case is designed to test the disturbance rejection capability of the proposed control
scheme during operation, thereby validating its robustness. The same tracking trajectory
as in Case 2, xd(t) = 0.02[2 − cos(πt)] (m), is used here. However, during the stable
operation phase, a disturbance torque is introduced by injecting ds(t) = 0.15 sin(2π(t− 30))
for 30 ≤ t ≤ 40 into the control input u. This comparison is again conducted under
approximate critical damping conditions, with parameter settings consistent with Case 2.

In addition to programming the desired trajectory xd(t) and control algorithms in
TwinCAT, this case requires recording the program execution time and injecting the distur-
bance torque ds(t) into the control input u within the specified time period. Experimental
data are recorded using the TwinCAT software, and the corresponding results are shown in
Figures 15–17 and Table 5.
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Figure 15. Position tracking errors of four controllers under the sinusoidal trajectory with disturbance
addition during trajectory tracking phase in Case 3.
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Figure 16. Control input of the four controllers in Case 3.
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Figure 17. Disturbance estimation results of the controllers with ISMO in Case 3.

Table 5. Quantitative evaluation indexes of Case 3.

Controller em20 (µm) er20 (µm) er30 (µm) em40 (µm) er40 (µm)

C1_ISMO_NoModel 110.41 35.83 39.57 87.06 33.74
C2_ISMO_NoCogging 74.82 28.49 32.89 62.97 25.34
C3_IARC 109.42 40.67 68.67 44.85 11.39
C4_Proposed 58.83 14.67 19.35 38.29 11.50

As depicted in Figure 13, the disturbance introduced, with an amplitude of 0.15 A, is
significant compared to the approximately 0.4 A control input during sinusoidal trajectory
tracking, effectively simulating intense external disturbances. Figure 15 illustrates the
position tracking error responses of the four controllers before and after the disturbance
was introduced. The results indicate that, upon disturbance injection, the tracking error of
the IARC controller C3, which does not employ ISMO, increased significantly, whereas the
tracking errors of C1, C2, and C4 showed mild variations, ensuring stable and continuous
system operation. Notably,the tracking error variation of model-compensated controllers
C2 and C4 was smaller than that of C1, with C4 exhibiting the least deviation, highlighting
the advantages of cogging force compensation. Figures 16 and 17 display the control
inputs and observer estimation results of the corresponding controllers, respectively. It is
evident that the ISMO in controllers C1, C2, and C4 quickly detected and compensated
for the disturbance, maintaining tracking performance. In contrast, C3, lacking specific
disturbance compensation, exhibited significant error fluctuations.

Tracking performance metrics during 20–50 s, 30–40 s and 40–50 s (em20, er20, er30, em40,
er40) are summarized in Table 5. The data show that C3 demonstrated excellent tracking
performance in the absence of disturbances, even exhibiting the lowest RMS value after the
disturbance was removed (i.e., er40). However, during the disturbance period, C3’s tracking
performance was the worst, even inferior to the non-model-based C1. This underscores
the exceptional disturbance suppression capability of the designed ISMO. In summary,
this experiment validates that the proposed control scheme not only ensures trajectory
tracking performance but also significantly enhances the system’s disturbance rejection
ability, thereby improving overall robustness.

Through the above experiments, it can be seen that the proposed control strategy
provides an effective solution for point-to-point positioning and trajectory tracking control
in practical applications of direct-drive systems. For example, in surface mount technology
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(SMT), where linear motors drive placement heads for component installation, this control
approach ensures controlled overshoot during the positioning process, enabling precise
point-to-point motion and accurate placement of components, thereby improving product
yield and production efficiency. Similarly, in computer numerical control (CNC) machining,
linear motors drive tools or workpieces for high-speed, high-precision processing. Through
precise point-to-point positioning and robust trajectory tracking control, the system can
maintain disturbance resistance, enhancing both processing accuracy and speed.

5. Conclusions

Direct-drive servo systems, increasingly employed in biomimetic systems such as
robotic applications, face challenges from nonlinearities, parameter uncertainties, and
unknown disturbances. To address these challenges, this study proposes an adaptive
disturbance rejection Zeta-backstepping control scheme. Using an iron-core permanent
magnet linear synchronous motor (PMLSM) as the demonstration system, a detailed
dynamic model of the PMLSM is developed, incorporating compensation for friction and
cogging forces.

To address parameter uncertainties, an indirect adaptive strategy is introduced, em-
ploying a recursive least squares algorithm with a forgetting factor to ensure reliable
parameter convergence while decoupling controller design from parameter estimation.
Additionally, an integral sliding mode observer (ISMO) is designed to estimate and com-
pensate for external disturbances and other uncertainties without assuming differentiability.
This observer achieves finite-time convergence for state estimation and enhances distur-
bance rejection. A Zeta-backstepping approach is then adopted for controller synthesis,
ensuring tracking error stability while enabling explicit overshoot control through an
adjustable damping ratio, following a predefined parameter selection framework. Compre-
hensive experiments conducted on a real PMLSM platform validate the effectiveness of the
proposed scheme, demonstrating controlled overshoot, improved tracking accuracy, and
enhanced disturbance rejection. Practical applications are further illustrated using SMT
and CNC systems as examples, showcasing the strategy’s applicability in point-to-point
positioning and trajectory tracking tasks.

In conclusion, this study systematically addresses nonlinearity and disturbance chal-
lenges while achieving parameterized damping ratio dynamics, providing theoretical
insights and practical guidance for reliable, high-precision control in direct-drive systems
and biomimetic applications. Future work will focus on further refining the method for en-
hanced optimization and broader applicability, contributing to the continued advancement
of motion control in direct-drive and biomimetic systems.
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Appendix A. Proof of Theorem 1

Proof. The proof for Theorem 1 proceeds in three steps:
Step 1: Convergence of the integral sliding mode variable s(t)
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Define the Lyapunov function for the sliding mode variable s(t) as Vs(t) = 1
2 s2(t).

According to (20), the time derivative of s(t) is

ṡ(t) = ξ̇1(t) + ηosign(ξ1(t)) + ι1ξ1(t). (A1)

Combining with (18) and (21), we obtain the derivative of Vs(t) is

V̇s = sṡ = s(ξ2 − (ϱo + |x̂2|)sign(s)) ≤ |s||ξ2| − (ϱo + |x̂2|)|s|. (A2)

Since |ξ2| = |x̂2 − x2| ≤ |x̂2|+ |x2|, it follows that

V̇s ≤ −(ϱo − |x2|)
√

2Vs ≤ −ϱ
√

2Vs (A3)

where ϱ = ϱo −
√

Ek/Mmin > 0.
Noting the definition of s(t) in (20) reveals that s(0) = 0. Thus, based on (A3), we can

deduce that
s(t) = 0, ṡ(t) = 0, ∀t ≥ 0. (A4)

Therefore, the sliding variable remains on the sliding manifold from the initial moment
onward, effectively eliminating the reaching phase and ensuring invariance with respect to
the lumped uncertainty dl for t > 0.

Step 2: Finite-time convergence of estimation error ξ1
From (A1) and (A4), we have:

ξ̇1(t) = −ηosign(ξ1(t))− ι1ξ1(t). (A5)

Define the Lyapunov function for ξ1 as Vo1(t) = 1
2 ξ2

1(t). Differentiating Vo1(t) with
respect to time yields:

V̇o1 = ξ1(−ηosign(ξ1)− ι1ξ1) = −ηo|ξ1| − ι1ξ2
1 < −ηo

√
2V1 (A6)

which implies that Vo1(t) = 0 after a finite time t1 defined as follows.

t1 <
1
ηo

|ξ1(0)| (A7)

Thus, we conclude that ξ1(t) converges to zero in finite time t1, after which ξ̇1 = 0,
satisfying (24).

Step 3: Finite-time convergence of estimation error ξ2
By the result of step 2 and combining (21) and (24), it can be obtained that ω1 =

−ξ2, t ≥ t1.
Define the Lyapunov function for ξ2(t) as Vo2(t) = 1

2 ξ2
2(t). Taking the derivative and

applying (19) and (22), one has

V̇o2 = ξ2(ι2ω1 + ω2 − dl)= ξ2(−ι2ξ2 − κosign(ξ2)− dl)≤−(κo − δh)|ξ2| ≤ −κ
√

2V2 (A8)

where κ = κo − δh > 0.
Similar to step 2, we can deduce that Vo2(t) = 0 for t > t2, where t2 < t1 +

1
κ |ξ2(t1)|.

Consequently, it follows that ξ2(t) converges to zero in finite time t2, after which ξ̇2 = 0,
satisfying (25).

Finally, from (22), we see that dl = ι2ω1 + ω2, t > t2, i.e., (26) holds.

Thus, the proof is complete, demonstrating that the constructed observer (17) achieves
finite-time convergence of the estimation errors and provides accurate state estimation for
the system.
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