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Abstract: Inverse optimal control is a method for recovering the cost function used in an optimal
control problem in expert demonstrations. Most studies on inverse optimal control have focused
on building the unknown cost function through the linear combination of given features with
unknown cost weights, which are generally considered to be constant. However, in many real-world
applications, the cost weights may vary over time. In this study, we propose an adaptive online
inverse optimal control approach based on a neural-network approximation to address the challenge
of recovering time-varying cost weights. We conduct a well-posedness analysis of the problem and
suggest a condition for the adaptive goal, under which the weights of the neural network generated
to achieve this adaptive goal are unique to the corresponding inverse optimal control problem.
Furthermore, we propose an updating law for the weights of the neural network to ensure the
stability of the convergence of the solutions. Finally, simulation results for an example linear system
are presented to demonstrate the effectiveness of the proposed strategy. The proposed method is
applicable to a wide range of problems requiring real-time inverse optimal control calculations.

Keywords: inverse optimal control; online calculation; time-varying cost weights; robust to noises

1. Introduction

The integration of biological principles with robotic technology heralds a new era of
innovation, with a significant focus on applying optimal control and optimization methods
to analyze animal motion. This approach guides robotic movement development evident
in [1], which explores the intricate control systems in mammalian locomotion. Such research
underpins the development of robots that emulate the efficiency and adaptability found
in nature.

These advancements in understanding animal locomotion through optimal control
methods set the stage for the relevance of inverse optimal control (IOC). IOC offers a
retrospective analysis of expert movements—human or animal—to infer underlying cost
functions optimized in these motions. This methodology is crucial when direct modeling
of optimal strategies is complex or unknown.

The use of inverse optimal control (IOC) to identify suitable cost functions from the
observable control input and state trajectories of experts is becoming increasingly important.
Several successful applications of IOC in estimating the cost weights of multi-features have
been reported. For example, the knowledge and expertise of specialists can be categorized
and exploited in several fields, including robot control and autonomous driving. The
authors of [2], who employed game theory in tailoring robot–human interactions, proposed
a method for estimating the human cost function and selecting the robot’s cost function
based on the results, leading to the Nash equilibrium in human–robot interactions. The
authors of [3] applied IOC to analyze taxi drivers’ route choices. To investigate the cost
combination of human motion, the authors of [4] conducted an experiment using IOC
techniques to study human motion during the performance of a goal-achieving task using
one arm. Additionally, the authors of [5] represented the learning of biological behavior as
an inverse linear quadratic regulator (LQR) problem and proposed adaptive methods for
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modeling and analyzing human reach-to-grasp behavior. Furthermore, the authors of [6]
employed an IOC method to segment human movement.

Linear quadratic regulation is a common optimal control method for linear systems.
In the 1960s and 1970s, numerous researchers offered solutions to the inverse LQR prob-
lem [7–9]. Recently, the theory of linear matrix inequality was employed to solve the inverse
LQR problem [5,10,11]. Regarding the application of the IOC method for nonlinear systems,
several approaches involving methods such as passivity-based condition monitoring [12]
or robust design [13] have been reported.

Recent studies in the field of IOC have demonstrated significant advancements. The
authors of [14] provided a comprehensive review of the methodologies and applications
in inverse optimization, highlighting its growing importance across various domains.
The authors of [15] introduced a novel method for sequential calculation in discrete-time
systems, enhancing the IOC model’s efficacy under noisy data conditions. The authors
of [16] employed a multi-objective IOC approach to explore motor control objectives in
human locomotion, which has implications for predictive simulations in rehabilitation
technology. Furthermore, the authors of [17] delve into cost uniqueness in quadratic costs
and control-affine systems, shedding light on the non-uniqueness cases in IOC. Moreover,
a recent thesis [18] introduces a Collage-Based Approach for solving unique inverse optimal
control problems, leveraging the Collage method for ODE inverse problems in conjunction
with Pontryagin’s Maximum Principle.

Feature-based IOC methods, which involve modeling the cost function as a linear
combination of various feature functions with unknown weights, have gained acclaim in
recent years [19–22]. However, it may be difficult to apply these methods to the analysis
of complex, long-term behaviors using simple feature functions, e.g., analyzing human
jumping [23]. To address this challenge, the authors of [24] proposed a technique for
recovering phase-dependent weights that switch at unknown phase-transition points.
This method employs a moving window along the observed trajectory to identify the
phase-transition points, with the window length determined by a recovery matrix aimed
at minimizing the number of observations required for successful cost-weight recovery.
Although this method is effective in estimating phase-dependent cost weights, the complex
computational requirements limit its use in real-time applications, such as human–robot
collaboration tasks. Additionally, in this method, the cost weights in each phase are
assumed to be fixed, which may not be generalizable. For example, the human jump
motion in [23] was analyzed using time-varying, continuous cost weights.

Overall, the IOC still has several shortcomings that need to be addressed, particularly
when applied in approximating complex, multi-phase, continuous cost functions in real
time. In this paper, we propose a method for recovering the time-varying cost weights
in the IOC problem for linear continuous systems using neural networks. Our approach
involves constructing an auxiliary estimation system that closely approximates the behavior
of the original system, followed by determining the necessary conditions for tuning the
weights of the neurons in the neural network to obtain a unique solution for the IOC
problem. We demonstrate that the unique solution corresponds to achieving a zero error
between the original system state and the auxiliary estimated system state, as well as
zero error between the original costate and the integral of the estimated costate. Based
on this analysis, we develop two neural-network frameworks: one for approximating the
cost-weight function and the other for addressing the error introduced by the auxiliary
estimation system. Additionally, we discuss the necessary requirements for the feature
functions to ensure the well-posedness of our online IOC method. Finally, we validate the
effectiveness of our method through simulations.

This work makes several significant contributions:

• We provide a solution for the recovery of time-varying cost weights, essential for
analyzing real-world animal or human motion.
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• Our method operates online, suitable for a broad spectrum of real-time calculation
problems. This contrasts with previous online IOC methods that mainly focused on
constant cost weights for discrete system control.

• We introduce a neural network and state observer-based framework for online verifi-
cation and refinement of estimated cost weights. This innovation addresses the critical
need for solution uniqueness and robustness against data noise in IOC applications.

2. Problem Formulation
2.1. System Description and Problem Statement

Consider an object’s system dynamics formulated as

ẋ = Ax + Bu (1)

where A ∈ Rn×n and B ∈ Rn×m are two time-invariant matrixes, x ∈ Rn represents the
system states, and u = [u1, . . . , um]T ∈ Rm denotes the control input of the system [25].

To minimize the following cost function while accounting for dynamics (1), the classic
optimal control problem is required to design the optimal control input u∗(t), and generate
a sequence of optimal states x∗(t). (Superscript ∗ stands for the optimal condition.)

V(x, t) =
∫ t f

t
L0(x, u, τ)dτ (2)

Here, L0 has the following form:

L0 = qT F(x) + rTG(u) (3)

where q = [q1, q2, . . . , qn f ]
T ∈ Rn f and r = [r1, r2, . . . , rm]T ∈ Rm ∀ri > 0 represent the cost

weight vectors, F(x) is referred to as the general union feature vector with respect to x,
and G(u) indicates the feature vector that is only relevant to the control input u [26]. n f
represents the feature’s number, which is different from the dimension of system states.
For simplicity, we assume that rTG(u) = uT Ru where R is an unknown matrix with

R =

 r1 0 . . .
...

. . .
...

. . . 0 rm

. Additionally, it is assumed that (A, B) is controllable, B is a full

column rank matrix, and A and B are bounded such that ||A|| ≤ δA ||B|| ≤ δB.

2.2. Maximum Principle in Forward Optimal Control

To minimize the cost function as is the case in (2) with L0 defined in (3), there exists a
costate variable vector λ that satisfies Pontryagin’s maximum principle as follows:

λ̇ = −F̄T
x q − ATλ (4)

Ru + BTλ = 0 (5)

where F̄x = ∂F(x)
∂x and λ ∈ Rn denote the costate variables. These two equations are derived

from Pontryagin’s Maximum Principle by taking the partial derivatives of the Hamiltonian
function defined by H(x, u, λ) = L0 + λT(Ax + Bu), specifically λ̇ = − ∂H

∂x and ∂H
∂u = 0. The

initial value of λ can be represented as λ0.
The optimal control input u∗ of the system expressed by (1) is given as

u∗ = −R−1BTλ (6)

where λ is unknown. Thus, using this optimal control input, we have

ẋ = Ax − Hλ (7)
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where H denotes the matrix H = BR−1BT . Notably, given that B is a full column rank
matrix, it is clear that H is invertible. In addition, since B is a bounded constant matrix,
there exists a positive scalar δH such that H satisfies ||H|| ≤ δH .

Additionally, the time derivatives of the system dynamics can be formulated as follows:

ẍ = Aẋ − Hλ̇ (8)

2.3. Analysis of the IOC Problem

We assume that the system states x[t, t f ] and the control input u[t, t f ], which represent
the time series of the system states and control inputs from time point t to t f , provide the
solution to the optimal minimization of the cost function (2). In addition, we assume that
the optimal system states and control input satisfy the boundary conditions ||x|| ≤ δx
||u|| ≤ δu ||u̇|| ≤ δu̇.

The objective of the IOC problem is to recover the unknown cost weight’s vector q(t).
Furthermore, IOC, for example, may be employed to analyze different behaviors such as
the effect of different occasions on the relative importance of certain human motion feature
functions. A rigorous analysis of the derived cost weights that can recreate the original
data x[t, t f ], u[t, t f ] is required for the aforementioned applications. To begin, we consider
two problems:

• What happens when a different feature function is selected?

In previous studies, it was assumed that the cost weight vector q is either a constant
value [19] or a step function with multiple phases [24]. These assumptions have been
effective in recovering the cost weights used in the analysis of optimal control methods
for a robot’s motion control, such as analyzing the motion of a robot controlled by a LQR
approach. However, occasionally, it may be inappropriate to assume that the cost weights
are constants or step functions when analyzing the complex behaviors of natural objects,
such as human motion. In particular, deciding which feature function to adopt when
evaluating the motion of natural objects could pose a challenge.

Proposition 1. Depending on the different selections of feature functions F(x) for the IOC,
the original constant cost weight q may become a time-varying continuous function.

Proof. From (8), for the objects’ original feature function, we have

H−1(−ẍ + Aẋ + HAT H−1Bu) = F̄T
oxqo (9)

where qo denotes the original time-invariant cost weight vector, and F̄o(x) denotes the
partial derivative with respect to x of the original feature function. When we choose a
different feature function Fn(x), the above equation becomes

H−1(−ẍ + Aẋ + HAT H−1Bu) = F̄T
nxqn (10)

where F̄nx denotes the partial derivative with respect to x of the new selected feature
function and qn is the corresponding cost weights on F̄nx. Thus, we have

F̄T
oxqo = F̄T

nxqn ∀t0 ≤ t ≤ t f

From this equation, it follows that qn may be a time-varying function when F̄ox and
F̄nx are not equivalent, and as F̄ox and F̄nx are continuous functions, we can reasonably
conclude that qn is also a continuous function.

Based on this proposition, it is crucial to expand the definition of cost weights to
include time-varying values, as this will facilitate a more accurate analysis of the motion
of increasingly complex natural objects. Despite the need for time-varying cost weight
recovery in many applications, it has received minimal research attention thus far.
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• Whether or not the given set x[t, t f ], u[t, t f ] in the IOC problem has a unique solution
{q(t), r}.

The uniqueness of the solution to the IOC problem when cost weights are constant has
been discussed in many studies [15,17,18,22]. In this work, we determine if there is still a
unique solution to the IOC problem when q is a time-varying function.

From (10), we can find different continuous functions q(t) such that the equation is
satisfied for different values of R (different values of H). This implies that if q is considered
as a time-varying function, the set {q(t), r} will not have a unique solution.

Therefore, when we consider the unique solution of the IOC problem with the time-
varying function q(t), it is necessary to introduce additional conditions to ensure that the
IOC problem has a unique solution and that the resulting unique solution is meaningful.

In this study, for simplicity, we assume that R = I [27,28], where I is the identity
matrix. In actual optimal control cost functions, when we focus on reducing one of the
control inputs ui, the convergence of the i-th system state xi related to ui will also be affected.
Consequently, the final control result shows that the change in each state of the system is
not solely influenced by the chosen cost weights q(t), but also by R(t). In the IOC problem,
setting R(t) = I allows the effect of different weights on different control inputs in the
original system to be reflected in the current estimate of q(t). This enables us to view the
estimated weights on the system states as representing the relative importance of each state
in the system’s dynamic evolution, without considering the impact of the control input on
these weights.

Based on our conclusion that q may be time-varying when different feature functions
are chosen and on the corresponding conditions under which a unique solution exists, we
can define the IOC problem to be solved in this study as follows:

Problem 1. Online Estimation of Time-Varying Cost weights q(t)

Given: (1) Measured system state x as well as control input u (2) R = I

Goal: Online estimate of the time-varying q(t) utilizing the given x and u.

3. Adaptive Observer-Based Neural Network Approximation of Time-Varying
Cost Weights

In this study, we estimate time-varying cost weight functions online using an observer-
based adaptive neural network estimation approach, as opposed to earlier studies that
required a large number of time series of x and u to recover fixed cost weights offline.

Construction of the Observer

Following the introduction of q̂(t) ∈ Rn denoting the estimation of q(t), we define the
estimation of the associated costate variable λ̂ as follows:

˙̂λ = −F̄T
x̂ q̂(t)− ATλ̂ (11)

where F̄x̂ = ∂F(x̂)
∂x̂ denotes the partial derivatives of the feature functions that are only

relevant to the estimated system states x̂ obtained by inserting λ̂ into (7):

˙̂x = Ax̂ − Hλ̂ (12)

where the initial state x̂0 of this system is selected to be x̂0 = x0.
Thus, compared with that of the original system, the error generated by the new

estimation system can be expressed as

˙̃x = Ax̃ − Hλ̃ (13)

˙̃λ = −F̄T
x q(t) + F̄T

x̂ q̂(t)− ATλ̃ (14)
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where λ̃ = λ − λ̂ and x̃ = x − x̂. Here, the feature function is selected such that its partial
derivative with respect to x is bounded and it is assumed that ||F̄x

x || ≤ δnx , ||F̄x̂|| ≤ δnx̂
and ||F̄x

x (x)− F̄x̂(x̂)|| ≤ ζ||x̃|| where δnx, δnx̂ and ζ denote a positive scalar.
Additionally, the time derivatives of (14) can be expressed as

¨̃x = A ˙̃x − H ˙̃λ (15)

Thus, the following equation can be satisfied:

ṡ = Ars + Tx q̃ + (Tx − Tx̂)q̂ (16)

where s =

[ ˙̃x
λ̃

]
, Ar =

[
A HAT

0 −AT

]
, Tx =

[
HF̄x
−F̄x

]
, Tx̂ =

[
HF̄x̂
−F̄x̂

]
. q̃ denotes the error of

estimating q. Here, ||F̄x
x (x) − F̄x̂(x̂)|| ≤ ζ||x̃|| implies that there exists a positive scalar

ζ ′ such that ||Tx − Tx̂|| ≤ ζ ′||x̃|| holds. Based on the bound of F̄x
x (x), F̄x̂(x̂), H, it follows

that there are two positive scalars δtx and δtx̂ such that the following inequalities hold:
||Tx|| ≤ δtx and ||Tx̂|| ≤ δtx̂ .

Moreover, from (6) and (7), λ can be calculated as follows:

λ = −H−1Bu (17)

4. Neural Network-Based Approximation of Time Varying Cost Weights

In this section, a neural network-based cost weight approximation algorithm is pro-
posed. To calculate an approximation of the time-varying vector q, we adopt a neural

network in which the chosen inputs are uI =

[
x0
u

]
, where x0 denotes the initial state of the

system (1). Based on this, we assume that time-invariant weight matrixes W ∈ Rn f ×l exist
that satisfy the following expression:

q = WTϕ(uI) + ϵ1(uI) (18)

where ϕ(uI) denotes the activation function and ϵ1(uI) denotes the structure approximation
error of the neural networks. In addition, the activation function selected enables the
activation function as well as its partial derivative to satisfy the following boundary
condition: ||ϕ(uI)|| ≤ δp and || ∂ϕ(uI)

∂uI
|| ≤ δpu where δp and δpu represent two positive

scalars. Additionally, ||ϵ1(uI)|| ≤ ϵn where ϵn is a positive scalar.
The estimate of vector q is constructed as follows:

q̂ = ŴTϕ(uI) (19)

where Ŵ denotes the estimation of W. In this paper, we will combine two estimators
Ŵ1 and Ŵ2 to estimate W, as shown in Section 4.1. Before presenting the details of the
estimators, we first discuss the necessary conditions for the estimation.

Based on the setting of estimator Ŵ, the error of estimating q can be expressed as

q̃ = q − q̂ = W̃Tϕ(uI) + ϵ1(uI) (20)

where W̃ = W − Ŵ denotes the error of estimating W. Substituting q̃ into (16) yields

ṡ = Ars + TxW̃Tϕ(uI) + (Tx − Tx̂)q̂ + Txϵ1(uI) (21)

To profoundly comprehend the necessary condition for the convergence of the estima-
tion error W̃, we define uniformly ultimately bounded (UUB) below.

Definition 1. A time-varying signal σ(t) can be said as UUB if there exists a compact set S ⊂ Rn

so that for all σ ∈ S, there exists a bound µ ≥ 0 and a time T such that ||σ|| ≤ µ for all t ≥ t0 + T.
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Lemma 1. If the following conditions are satisfied, W̃ becomes UUB.

•
∫ ti

t0
sdt, s become UUB after a time point t1 (||

∫ ti
t0

sdt|| ≤ δ1, and ||s|| ≤ δ2)
• The change in Ŵ approaches zero
• Matrix C defined below will become a full row rank matrix.

C =


∫ t1+2

t1+1 Tx(I ⊗ ϕ(uI))
Tdt

...∫ ti
ti−1 Tx(I ⊗ ϕ(uI))

Tdt

 (22)

where t1 ≤ ti ≤ t f and any term in C satisfies the persistent excitation (PE) condition defined below.

||
∫ tj+1

tj

Tx(I ⊗ ϕ(uI))dt)T || ≥ β j ∀t1 ≤ tj ≤ ti (23)

Here, β j is a positive value.

Proof. From (21)

s = Ar

∫ ti

t0

sdt +
∫ ti

t0

TxW̃Tϕ(uI)dt

+
∫ ti

t0

(Tx − Tx̂)q̂dt +
∫ ti

t0

Txϵ1(uI)dt (24)

Since
∫ ti

t0
sdt → 0, s → 0 reaches a steady state and Ar is a constant, we can obtain

the following:

||s − Ar

∫ ti

t0

sdt|| ≤ δsi (25)

where δsi denotes a small positive scalar. Additionally, with both ϵ1(uI) and Tx being
bounded, this leads to

||
∫ ti

t0

Txϵ1(uI)dt|| ≤ δTϵ (26)

where δTϵ denotes a small positive scalar. The term
∫ ti

t0
Txϵ1(uI)dt captures the effect of

the structural error of the neural network on state s. Since Tx is bounded, when the neural
network approximates the cost weight function adequately, the value of ϵ1(uI) decreases,
which in turn minimizes the overall integral value. In other words, a well-selected neural
network structure with a good approximation of the cost weight function will produce a
small structure error and, therefore, a small overall integral value

∫ ti
t0

Txϵ1(uI)dt.
(24)–(26) leads to

||
∫ ti

t0

TxW̃Tϕ(uI)dt +
∫ ti

t0

(Tx − Tx̂)q̂dt|| ≤ δsi + δTϵ (27)

Similarly, we can obtain a similar relation for the duration [t0, t1]

||
∫ t1

t0

TxW̃Tϕ(uI)dt +
∫ t1

t0

(Tx − Tx̂)q̂dt|| ≤ δsi + δTϵ (28)

From (27) and (28), it follows that
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||
∫ ti

t1+1
TxW̃Tϕ(uI)dt +

∫ ti

t1+1
(Tx − Tx̂)q̂dt|| ≤ 2(δsi + δTϵ) (29)

Furthermore, considering
∫ ti

t0
sdt → 0 after t1, the definition of s and ||Tx − Tx̂|| ≤

ζ ′||x̃||, this implies that

||
∫ ti

t1+1
(Tx − Tx̂)q̂dt|| ≤

∫ ti

t1+1
||(Tx − Tx̂)||||q̂||dt

≤
∫ ti

t1+1
ζ ′δx̃δq̂dt ≡ δζ(ti−t1−1) (30)

where δx̃ and δq̂ represent the bounds of x̃ and q̂ respectively. Thus, this leads to the inequality

||
∫ ti

t1+1
TxW̃Tϕ(uI)dt|| ≤ 2(δsi + δTϵ) + δζ(ti−t1−1) (31)

In this case, when ˙̂W approaches zero, the following relation emerges:

||
∫ ti

t1+1
Tx(I ⊗ ϕ(uI))

Tvec(W̃)dt||

= ||
∫ ti

t1+1
Tx(I ⊗ ϕ(uI))

Tdt vec(W̃)||

≤ 2(δsi + δTϵ) + δζ(ti−t1−1) (32)

Based on this relation, it follows that

||
∫ t1+2

t1+1
Tx(I ⊗ ϕ(uI))

Tdt vec(W̃)||

≤ 2(δsi + δTϵ) + δζ(1) (33)

where δζ(1) =
∫ t1+2

t1+1 ζ ′δx̃δq̂dt = · · · =
∫ ti

ti−1 ζ ′δx̃δq̂dt.
Thus, it implies that

||C vec(W̃)|| ≤ (ti − t1 − 1)(2(δsi + δTϵ) + δζ(1)) (34)

where C is defined in (22). Due to C being full row rank, this leads to

||vec(W̃)|| ≤ ||C+||||C vec(W̃)||
≤ ||C+||(ti − t1 − 1)(2(δsi + δTϵ) + δζ(1)) (35)

From (23), we have ||C+|| ≤ 1√
(ti−t1−1)β2

j

||vec(W̃)|| ≤
√

ti − t1 − 1
β2

j
(2(δsi + δTϵ) + δζ(1)) (36)

Thus, W̃ is UUB.
Notably, β j evaluates the lower bound of the norm of

∫ tj+1
tj

Tx(I ⊗ ϕ(uI))dt)T , it can
increase when the data x cause the norm of the integral to deviate significantly from
zero. The size of δζ(1), δsi is related to the minimization of s and

∫ ti
t0

sdt, and the size of
δTϵ is related to the approximation ability of the chosen neural network. The bound of
W̃ after t1 can be minimized by the excited x, successfully minimizing s and

∫ ti
t0

sdt while
appropriately designing the structure of the neural network.
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4.1. Construction of the Neural Network

As shown in Lemma 1, the convergence of
∫ t

t0
sdτ is essential in the convergence of W̃

to 0. Therefore, it is necessary to incorporate this consideration in the approximation design.
First, we divide the estimation of the weights of the neural network into two parts:

Ŵ = Ŵ1 + Ŵ2 (37)

and

q̂ = q̂1 + q̂2 = (Ŵ1 + Ŵ2)
Tϕ(uI) (38)

where q̂1 = ŴT
1 ϕ(uI) and q̂2 = ŴT

2 ϕ(uI).
The necessity for employing two distinct estimators, Ŵ1 and Ŵ2, is rooted in their

specialized roles in minimizing the tracking error s. This dual-estimator approach ensures
that q̂(t) closely aligns with the desired trajectory q(t). While Ŵ1’s adaptive tuning is
primarily aimed at steering s towards zero, its inherent residual errors in its adaptive
process necessitate the deployment of Ŵ2 for error compensation and enhanced accuracy
in tracking the ideal cost weight q(t). To gain a deeper understanding of this system, we
will begin by examining the error dynamics, which forms a fundamental basis for the
subsequent detailed exploration of the tuning laws for each estimator.

The state equation describing the error dynamics can be obtained as follows:

ṡ = Ars + Tx q̃1 + (Tx − Tx̂)q̂1 − Tx̂ q̂2 (39)

where s =
[ ˙̃x

λ̃

]
, Ar =

[
A HAT

0 −AT

]
, Tx =

[
HF̄x
−F̄x

]
, Tx̂ =

[
HF̄x̂
−F̄x̂

]
.

Further, to effectively minimize
∫ t

t0
sdτ, we define vector e as follows:

e = (Tx − Tx̂)q̂1 + Ks + Kp

∫ t

t0

sdτ − Tx̂ q̂2 + Ars (40)

where K = diag([k, . . . , k]) ∈ R2n×2n and Kp = diag([kp, . . . , kp]) ∈ R2n×2n. Parameters k
and kp are two positive scalars, thus, (39) can be written as:

ṡ = −Ks − Kp

∫ t

t0

sdτ + Tx q̃1 + e (41)

We suppose that an ideal time-invariant weight matrix W2 ∈ Rn f ×l exists, which
guarantees that

(Tx − Tx̂)q̂1 + Ks + Ars + Kp

∫ t

t0

sdτ

= Tx̂q′ = Tx̂(WT
2 ϕ(uI) + ϵ2(uI)) (42)

where uI =

[
x0
u

]
.

The estimation error of the neural network can be represented as

q̃1 ≡ q − q̂1 = W̃T
1 ϕ(uI) + ϵ1(uI)

q̃2 ≡ q′ − q̂2 = W̃T
2 ϕ(uI) + ϵ2(uI) (43)

and e can be represented as

e = Tx̂(W̃T
2 ϕ(uI) + ϵ2(uI)) (44)
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Therefore, (41) becomes

ṡ = −Ks − Kp

∫ t

t0

sdτ

+ Tx(W̃T
1 ϕ(uI) + ϵ1(uI)) + Tx̂(W̃T

2 ϕ(uI) + ϵ2(uI)) (45)

4.2. Tuning Law of the Neural Network for the Estimation of q(t)

An updating law for a neural network that estimates q(t) can be represented in
Theorem 1, based on the error system’s dynamics that were derived in (45).

Theorem 1. If we choose the updating laws for the neural network weights Ŵ1 and Ŵ2 as shown in
(46), respectively, where Γ1 , Γ2, and ke are positive scalar constants, then state s,

∫ t
t0

sdτ and error
e will be UUB.

˙̂W1 = Γ1ϕ(uI)sTTx

˙̂W2 = Γ2ϕ(uI)(s + kee)TTx̂ (46)

In addition, if there exist positive constants tδ, β1, β2, β3, and β4 such that the inequalities in (47)
are satisfied for all initial times t0, then the signals W̃1 and W̃2 will also be UUB.

β2 I ≥
∫ t0+tδ

t0

Cp1(t)TCp1(t)dt ≥ β1 I

β4 I ≥
∫ t0+tδ

t0

Cp2(t)TCp2(t)dt ≥ β3 I (47)

Here, Cp1(t) = Tx(I ⊗ ϕ(uI)
T), Cp2(t) = Tx̂(I ⊗ ϕ(uI)

T)

Proof. A proof of this theorem can be found in Appendix A.

Applying (46) results in s,
∫ t

t0
sdτ, and e being UUB, as shown in Theorem 1. Addition-

ally, (46) shows that when s and e decreases, ˙̂W1 and ˙̂W2 decrease as well, resulting in a
decrease in ˙̂W = ˙̂W1 +

˙̂W2. At this point, as stated in Lemma 1, if the condition of matrix C
(defined in Lemma 1), being a full row rank matrix, is satisfied, then W̃ = W̃1 + W̃2 will
also be UUB. Thus, the solution to the IOC problem can be derived by applying (38).

5. Simulations
5.1. Basic Simulation Conditions

To verify the effectiveness of our method, we performed the simulations using a
sample linear system controlled by the optimal control method with the original cost
weights R selected in two cases.

The sample linear system dynamics can be formulated as follows:

θ̇ = Aθ + Bτ (48)

where θ = [θ1, θ2]
T ∈ R2 represents the system states. We select A =

[
30 80
60 0

]
, B =

[
2 0
0 4

]
and τ ∈ R2 denoting the control input.

The cost function selected in these simulations is formulated as

Vr =
1
2

∫ t f

0
(θTQ(t)θ + τT Rτ)dt (49)
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when all the elements of θ satisfying |θi| ≤ θrl and Q(t) =

[
q1 0
0 q2

]
is the continuous

time-varying cost weights on system states θ. R =

[
r1 0
0 r2

]
represents the cost weights on

the control inputs.
Moreover, in our simulations, we select 0 as the initial value of all the elements of both Ŵ1

and Ŵ2. Actuation function ϕ(uI) was selected as ϕ(uI) = [ϕ1(uI), . . . , ϕi(uI), . . . , ϕl(uI)]
T

with ϕi(uI) designed as

ϕi(uI) = exp(
−(uI − ψi)

T(uI − ψi)

ν
) (50)

where ν denotes a positive scalar and ψi denotes the center of the respective activation
function. We initialized the activation function centers on a four-dimensional grid to match
the dimension of ui, ensuring a uniform distribution across the input space and enhancing
network adaptability.

The overall implementation for recovering the time-varying cost weights is shown in
Algorithm 1.

Algorithm 1 Online implementation

Input: {xi, ui}
Output: q̂(t)

Initialization :
1: Initialize λ̂, x̂, Ŵ1, Ŵ1, Ŵ2, Γ1, Γ2 and R = I.

LOOP Process
2: for i = 0 to K do
3: Calculate λ using λ = −H−1Bu.
4: Calculate ˙̂x and ˙̂λ using (11) and (12).
5: Calculate ˙̃x and ˙̃λ using (14) and (13).

6: Calculate s =
[ ˙̃x

λ̃

]
.

7: Calculate e following (40).
8: Calculate ϕ(uI) and update Ŵ1, Ŵ2 using (46).
9: Calculate q̂(t) using (38).

10: end for
11: return q̂(t)

Two cases are considered in the simulation:

• In the first case, we apply the optimal control of the sample system with cost weights θ
as the signal (q1(t) = 1 + cos(t) and q2(t) = 2 + sin(t)). The proposed IOC method is
employed online to estimate the cost weights, with the simultaneous online recovery
of the original system trajectory. Parameters Γ1 and Γ2 in the updating law are set to
Γ1 = 1 and Γ2 = 1, respectively. Parameters k and kp are set to k = 50 and kp = 625,
respectively. The initial values of Ŵ1 and Ŵ2 are set to matrixes with all elements equal
to zero. The original r1 and r2 are set to r1 = 1 and r2 = 1, respectively. The simulation
also uses 49 nodes in the neural network.

• In the second case, we perform the simulation of our IOC method, but with the original
r1 and r2 set to r1 = 3 and r2 = 4, respectively. All other simulation settings are the
same as in the first case.

Similar to the simulation sections in previous works ([6,24]), we use the control input
from the simulation, which ignores the measurement issues with the control input and
measurement errors that may occur in real-world applications. This allows us to purely
evaluate the performance of our method in solving the IOC problem. In actual applications,
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the control input can be calculated by substituting the measured θ̇ into (48), as described
in [24].

5.2. Results

The simulation results are shown in the figures below.
In Figure 1, the blue solid line represents the original variation in the cost weights

whereas the gray solid line represents the estimated cost weights. After a brief period
of oscillation at the initial time, our method accurately recovers the original cost weights
when R = I. Notably, similar to the case in other adaptive control methods and adaptive
neural network based control methods, the initial oscillation is a result of the adaptive
initialization of the weights in (46) due to the large initial errors in W̃1 and W̃2.

Figure 1. Estimated cost weights (r1 = 1, r2 = 1).

Figure 2 demonstrates the impact of selecting R = I on the estimation results when the
original R value is arbitrary. The solid blue line represents the original time-varying cost
weights, whereas the dotted gray line represents the final estimated values. Although the
estimated values differ from the original values, the general trend of the changes is pre-
served. In addition, the gray line represents the mutual weights in the dynamics of the
system state, whereas the original weights among the control inputs are reflected in the
current estimate of q(t). From the figure, we can observe that the bottom lines in blue and
gray colors represent the value of the original and estimated q2. Evidently, the blue line
for q2 is larger than that for q1 from 4.8 s to 5 s. Additionally, in the original settings, r2 is
4, which confers greater importance to the decrease in u2 compared with the case when
r1 = 3, leading to the weakening of the convergence of the θ2 term associated with u2.
In our estimates, the value of the dashed line for the estimated q2, which also considers the
impact from original setting of R is not greater than the value of estimated q1 between 4.8 s
and 5 s. This indicates that the convergence of θ2 is weakened by considering the impact
from the cost weights on control input. Our dashed line more accurately reflects the actual
situation compared to the blue line.

Figure 2. Estimated cost weights (r1 = 3, r2 = 4).
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In Figures 3–5, we show the results of error e, states s and
∫ t

t0
sdτ in two cases. The blue

lines show the results of the first case, whereas the gray dotted lines show the results of the
second case. From the figures, we can observe that all the values effectively decrease to a
low range during the simulation, and most importantly, in the second case, the different
selections of R do not affect the convergence of these values. This demonstrates the effec-
tiveness of our method and highlights that even with different values of R, the recovered
cost weights are still feasible solutions to the IOC problem, as they can be utilized to

regenerate a similar system trajectory and control inputs (
∫ t

t0
sdτ =

[
x̃∫ t

t0
λ̃dτ

]
→ 0).

Figure 3. Variation of error e (r1 = 1, r2 = 1 and r1 = 3, r2 = 4).

Figure 4. Variation of error s (r1 = 1, r2 = 1 and r1 = 3, r2 = 4).

Figure 5. Variation of
∫ t

t0
sdτ (r1 = 1, r2 = 1 and r1 = 3, r2 = 4).

6. Discussion
6.1. Robustness of the Proposed Method to Noisy Data

In (46), Γ1 and Γ2 decrease the error by regulating the updating speed of the estimated
values. Adjusting these two terms may successfully reduce the impact of data noise to a
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certain degree. Their roles are similar to that of a low-pass filter’s time constant. For exam-
ple, in the setting of the first case, when noise exists, x ∼ N (0, 10−1) and u ∼ N (0, 10−4),
the simulation results show that different sets of Γ1 and Γ2 (e.g., Γ1 = 10, Γ2 = 10; Γ1 = 1,
Γ2 = 1) can significantly influence the noise reduction performance.

As shown in Figure 6, while relatively small values of Γ1 and Γ2 may result in a
low convergence rate, they effectively reduce the impact of data noise. Our method
demonstrates robustness against noise by allowing for the adjustment of parameters Γ1
and Γ2.

Figure 6. Estimated cost weights (Noisy Case): (1) Γ1 = 10, Γ2 = 10 (2) Γ1 = 1, Γ2 = 1.

6.2. Calculation Complexity and Real-Time Calculation

The proposed algorithm has a low computational complexity, as it only involves the
calculation of dot products between matrixes and vectors as well as the summation of
vectors. Additionally, it does not require any iterative or optimization calculations. This
makes it an efficient solution for real-time calculations. In fact, our simulation shows that a
single iteration of the algorithm using case 1 settings takes only approximately 0.23 ms in
Matlab 2016b to complete the SIOC’s calculation, which is fast enough to meet real-time
calculation requirements.

6.3. Advantages of Using R = I

The simulation results suggest that one of the key advantages of setting R as a constant
I is that it effectively consolidates the impact of cost weights on state convergence, which
would have been influenced by different settings of R, into the estimated value of q(t).
This allows for a comprehensive evaluation of the system state convergence, as it only
depends on q(t), without needing to account for additional considerations. Furthermore,
by maintaining a consistent value of R = I, it is possible to standardize the analysis of the
same motion across multiple agents, which is crucial for various applications.

7. Conclusions

In this paper, we proposed a neural network based method for recovering the time-
varying cost weights in the IOC problem for linear continuous systems. Our approach
involved constructing an auxiliary estimation system that closely approximates the behavior
of the original system, followed by determining the necessary conditions for tuning the
weights of the neurons in the neural network to obtain a unique solution for the IOC
problem. We discussed the necessary requirements for the previous settings to ensure
the well-posedness of our online IOC method. We showed that the unique solution
corresponds to achieving a nearly zero error between the original system state and the
auxiliary estimated system state, as well as nearly zero error between the original costate
and the integral of the estimated costate. Based on this analysis, we developed two neural
network frameworks: one for approximating the cost weight function and the other for
addressing the error introduced by the auxiliary estimation system and terms. Finally, we
validated the effectiveness of our method through simulations, highlighting its ability to
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recover time-varying cost weights and its robustness against different original choices of R.
Overall, our method represents a significant advancement in the field of online IOC, and it
is applicable to a wide range of problems requiring real-time IOC calculations.
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Appendix A. Proof of Theorem 1

Proof. Considering the Lyapunov candidate selected as follows

V =
1
2

sTs +
1
2
(
∫ t

t0

sdτ)TKp

∫ t

t0

sdτ

+
1
2

tr[W̃T
1 Γ−1

1 W̃1 + W̃T
2 Γ−1

2 W̃2] (A1)

The derivative of V can be expressed as

V̇ = sT ṡ + sTKp

∫ t

t0

sdτ − tr[W̃T
1 Γ−1

1
˙̂W1 + W̃T

2 Γ−1
2

˙̂W2] (A2)

By introducing (45) and utilizing the proposed updating law of Ŵ1 and Ŵ2 in (46), V̇ becomes

V̇ =− sTks + sTTx q̃1 + sTe

− tr[W̃T
1 Γ−1

1
˙̂W1 + W̃T

2 Γ−1
2

˙̂W2]

=− sTks + sTTx(W̃1ϕ(uI) + ϵ1(uI))

+ sTTx̂(W̃2ϕ(uI) + ϵ2(uI))

− tr[W̃T
1 Γ−1

1
˙̂W1 + W̃T

2 Γ−1
2

˙̂W2]

=− sTks + sTTxϵ1(uI) + sTTx̂ϵ2(uI)

+ keeTTx̂ϵ2(uI)− eTkee (A3)

Here, with introducing a new vector p defined as p =

[
s

ke√
k
e

]
and considering (44),

(A3) can be rewritten as
V̇ = −pTKp + pT pϵ (A4)

where pϵ =

[
Txϵ1(uI) + Tx̂ϵ2(uI)√

kTx̂ϵ2(uI)

]
.

By considering the boundedness condition of Tx,Tx̂,ϵ1(uI) and ϵ2(uI), we have

||pϵ|| ≤
√
(δtx ϵn1 + δtx̂ ϵn2)2 + kδtx̂ ϵn2 ≡ δtpϵ (A5)

From this boundedness condition, (A3) becomes

V̇ ≤ −k||p||2 + ||p||||pϵ||
≤ −k||p||2 + ||p||δtpϵ

= −||p||(k||p|| − δtpϵ) (A6)
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From (A6), the left hand side of (A6) would be negative when ||p|| ≥ δtpϵ

k , implying

that V̇ ≤ 0 and p would maintain convergence when ||p|| ≥ δtpϵ

k . Moreover, due to the

vector p =

[
s

ke√
k
e

]
, s as well as e would all be bounded satisfying

||s|| ≤ δs (A7)

||e|| ≤ δe (A8)

That is, s, e would all be UUB. Moreover, due to the continuity, ṡ would also be UUB
satisfying the following condition as

||s|| ≤ δṡ (A9)

Notably, with increasing k, the bound
δtpϵ

k of p decreases. Furthermore, since V decreases

continuously while ||p|| ≥ δtpϵ

k ,
∫ t

t0
sdτ would also be UUB.

Conversely, from (41), we have

||Tx q̃1|| = ||ṡ + Ks + Kp

∫ t

t0

sdτ − e||

≤ B f h (A10)

where B f h denotes a positive scalar. Furthermore, by considering (43), we have

||TxW̃T
1 ϕ(uI)|| = ||Tx q̃1 − Txϵ1(uI)||

≤ ||Tx q̃1||+ ||Tx||||ϵ1(uI)||
= B f h + δtx ϵn1 (A11)

Similarly, from the boundedness of e,ϵ2(uI) and (44), we have

||Tx̂W̃T
2 ϕ(uI)|| ≤ δe + δtx̂ ϵn2 (A12)

From (46), the dynamics related to W̃1 and W̃2 can be respectively given by{
˙̃W1 = −Γ1ϕ(uI)sTTx

y1 = TxW̃T
1 ϕ(uI)

(A13)

{
˙̃W2 = −Γ2ϕ(uI)(s + e)TTx̂

y2 = Tx̂W̃T
2 ϕ(uI)

(A14)

where y1 and y2 denote the outputs of two systems and are both bounded following (A11)
and (A12).

Thus, the vector dynamics of the two systems can be given as{ d
dt vec(W̃1) = −(I ⊗ Γ1ϕ(uI))TT

x s = Bp1(t)s
y1 = Tx(I ⊗ ϕ(uI)

T)vec(W̃1) = Cp1(t)vec(W̃1)
(A15)


d
dt vec(W̃2) = −(I ⊗ Γ2ϕ(uI))TT

x̂ (s + kee)
= Bp2(t)(s + kee))
y1 = Tx̂(I ⊗ ϕ(uI)

T)vec(W̃2) = Cp2(t)vec(W̃2)
(A16)
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where Bp1(t) = −(I ⊗ Γ1ϕ(uI))TT
x and Bp2 = −(I ⊗ Γ2ϕ(uI))TT

x̂ would be bounded with
ensuring the boundedness of ϕ(uI) and Tx, Tx̂. Thus, from Lemma 4.2.1 in [29], if (47)
is satisfied, the boundedness of y1 y2 as well as those of s and s + kee assures the bound-
edness of W̃1, W̃2, that is, there exist two positive scalars δW̃1

, δW̃2
such that ||W̃1|| ≤ δW̃1

,
||W̃2|| ≤ δW̃2

. Thus, W̃1 and W̃2 would be UUB.
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