Towards Precision Ophthalmology: The Role of 3D Printing and Bioprinting in Oculoplastic Surgery, Retinal, Corneal, and Glaucoma Treatment
Abstract
:1. Introduction
2. Applications of 3D Printing in Oculoplastic and Orbital Surgery
2.1. Applications for Orbital Implants and Prosthesis
2.2. Use of Orbital Implants in the Repair of Orbital Floor Injuries
2.3. Applications for Assorted Ophthalmic Procedures (Nasolacrimal Stents, Drug Delivery, and Eyelid Crutches)
3. Retinal Applications
3.1. Study of Retinal Disease through Retinal Modeling
3.2. Retinal Cell Delivery Scaffolds
3.3. 3D-Printing Assisted Macular Buckling
3.4. Retinal Drug Delivery Platforms
3.5. Ophthalmologist & Patient Training
4. Application of 3D Printing and 3D Bioprinting in Corneal Devices
4.1. Corneal Modeling
4.2. Corneal Graft Development and Corneal Transplants
4.2.1. Keratoplasty
4.2.2. Keratoprosthesis
4.3. Corneal Regeneration
4.4. Drug-Eluting Contact Lenses
4.5. Ophthalmologist Training
5. Applications in Glaucoma Therapeutics
5.1. Diagnostic and Monitoring Tools
5.2. Minimal Invasive Glaucoma Surgery
5.3. Drug-Eluting Implants
6. 3D Printing in Ophthalmic Prototyping and Simulation
6.1. Training Model for Surgical Practice
6.2. Prototyping and Simulation
6.3. Use in Doctor–Patient Communication
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moshfeghi, D.M.; Moshfeghi, A.A.; Finger, P.T. Enucleation. Surv. Ophthalmol. 2000, 44, 277–301. [Google Scholar] [CrossRef]
- Dortzbach, R.K.; Woog, J.J. Choice of Procedure: Enucleation, Evisceration, or Prosthetic Fitting Over Globes. Ophthalmology 1985, 92, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Kostick, D.A.; Linberg, J.V. Evisceration with Hydroxyapatite Implant: Surgical Technique and Review of 31 Case Reports. Ophthalmology 1995, 102, 1542–1549. [Google Scholar] [CrossRef]
- Walter, W.L. Update on Enucleation and Evisceration Surgery*. Ophthal. Plast. Reconstr. Surg. 1985, 1, 243. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Yang, X.; Fan, X.-L. The Evolution of Orbital Implants and Current Breakthroughs in Material Design, Selection, Characterization, and Clinical Use. Front. Bioeng. Biotechnol. 2022, 9, 800998. [Google Scholar] [CrossRef] [PubMed]
- 2020–2021 BCSC Basic and Clinical Science CourseTM. Available online: https://www.aao.org/education/bcscsnippetdetail.aspx?id=70b36748-4e26-4da5-87c6-04acd22397c6 (accessed on 12 August 2023).
- Raizada, K.; Rani, D. Ocular Prosthesis. Contact Lens Anterior Eye 2007, 30, 152–162. [Google Scholar] [CrossRef]
- Ruiters, S.; Sun, Y.; Jong, S.; Politis, C.; Mombaerts, I. Computer-Aided Design and Three-Dimensional Printing in the Manufacturing of an Ocular Prosthesis. Br. J. Ophthalmol. 2016, 100, 879–881. [Google Scholar] [CrossRef]
- Gali, S.; Midhula, V.; Naimpally, A.; Lanka, H.; Meleppura, K.; Bhandary, C. Troubleshooting Ocular Prosthesis: A Case Series. J. Pharm. Bioall Sci. 2022, 14, 114. [Google Scholar] [CrossRef]
- Alam, M.S.; Sugavaneswaran, M.; Arumaikkannu, G.; Mukherjee, B. An Innovative Method of Ocular Prosthesis Fabrication by Bio-CAD and Rapid 3-D Printing Technology: A Pilot Study. Orbit 2017, 36, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R.; Kim, S.H.; Ko, J.; Baek, S.W.; Park, Y.K.; Kim, Y.J.; Yoon, J.S. A Pilot Clinical Study of Ocular Prosthesis Fabricated by Three-Dimensional Printing and Sublimation Technique. Korean J. Ophthalmol. 2021, 35, 37–43. [Google Scholar] [CrossRef]
- Ko, J.; Kim, S.H.; Baek, S.W.; Chae, M.K.; Yoon, J.S. Semi-Automated Fabrication of Customized Ocular Prosthesis with Three–Dimensional Printing and Sublimation Transfer Printing Technology. Sci. Rep. 2019, 9, 2968. [Google Scholar] [CrossRef]
- Groot, A.L.W.; Remmers, J.S.; Hartong, D.T. Three-Dimensional Computer-Aided Design of a Full-Color Ocular Prosthesis with Textured Iris and Sclera Manufactured in One Single Print Job. 3D Print. Addit. Manuf. 2021, 8, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Tahmawy, Y.A.; Mohamed, F.S.E.; Elfeki, S.A.; Abd-Ellah, M.E. A Novel Technique for CAD-CAM Assisted Digital Ocular Prosthesis. J. Prosthodont. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Weisson, E.H.; Fittipaldi, M.; Concepcion, C.A.; Pelaez, D.; Grace, L.; Tse, D.T. Automated Noncontact Facial Topography Mapping, 3-Dimensional Printing, and Silicone Casting of Orbital Prosthesis. Am. J. Ophthalmol. 2020, 220, 27–36. [Google Scholar] [CrossRef]
- Kormann, R.B.; Mörschbächer, R.; Moreira, H.; Akaishi, P. A Three-Dimensional Printed Photopolymer Resin Implant for Orbital Rehabilitation for Evisceration. Arq. Bras. Oftalmol. 2019, 82, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Seelaus, R.; Zhao, L.; Patel, P.K.; Cohen, M. Virtual Surgical Planning and 3D Printing in Prosthetic Orbital Reconstruction with Percutaneous Implants: A Technical Case Report. Int. Med Case Rep. J. 2016, 9, 341–345. [Google Scholar] [CrossRef]
- Dave, T.V.; Gaur, G.; Chowdary, N.; Joshi, D. Customized 3D Printing: A Novel Approach to Migrated Orbital Implant. Saudi J. Ophthalmol. 2018, 32, 330–333. [Google Scholar] [CrossRef]
- Groot, A.; Remmers, J.S.; Kloos, R.J.; Saeed, P.; Hartong, D.T. Recurrent Contracted Sockets Treated with Personalized, Three-Dimensionally Printed Conformers and Buccal Grafts. Eur. J. Ophthalmol. 2022, 32, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Mourits, D.L.; Remmers, J.S.; Tan, S.H.; Moll, A.C.; Hartong, D.T. An Individualized 3-Dimensional Designed and Printed Conformer After Dermis Fat Grafting for Complex Sockets. Ophthal. Plast. Reconstr. Surg. 2018, 34, 390–392. [Google Scholar] [CrossRef]
- Sanchez-Tena, M.A.; Alvarez-Peregrina, C.; Santos-Arias, F.; Villa-Collar, C. Application of 3D Printing Technology in Scleral Cover Shell Prosthesis. J. Med. Syst. 2019, 43, 149. [Google Scholar] [CrossRef]
- Kador, K.E.; Grogan, S.P.; Dorthé, E.W.; Venugopalan, P.; Malek, M.F.; Goldberg, J.L.; D’lima, D.D. Control of Retinal Ganglion Cell Positioning and Neurite Growth: Combining 3D Printing with Radial Electrospun Scaffolds. Tissue Eng. Part A 2016, 22, 286–294. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Christelle, M.; Lise, M.; Ben M’Barek, K. Challenges of Cell Therapies for Retinal Diseases. Int. Rev. Neurobiol. 2022, 166, 49–77. [Google Scholar] [CrossRef] [PubMed]
- Lanzetta, P. Anti-VEGF Therapies for Age-Related Macular Degeneration: A Powerful Tactical Gear or a Blunt Weapon? The Choice Is Ours. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 3561–3567. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Gao, L.; Liu, Y. Cell-Based Therapies for Age-Related Macular Degeneration: Cell Replacement versus Paracrine Effects. Neural Regen. Res. 2020, 16, 1214–1215. [Google Scholar] [CrossRef]
- Sharma, A.; Jaganathan, B.G. Stem Cell Therapy for Retinal Degeneration: The Evidence to Date. Biol. Targets Ther. 2021, 15, 299–306. [Google Scholar] [CrossRef]
- Worthington, K.S.; Wiley, L.A.; Kaalberg, E.E.; Collins, M.M.; Mullins, R.F.; Stone, E.M.; Tucker, B.A. Two-Photon Polymerization for Production of Human iPSC-Derived Retinal Cell Grafts. Acta Biomater. 2017, 55, 385–395. [Google Scholar] [CrossRef]
- Nguyen, A.K.; Narayan, R.J. Two-Photon Polymerization for Biological Applications. Mater. Today 2017, 20, 314–322. [Google Scholar] [CrossRef]
- Thompson, J.R.; Worthington, K.S.; Green, B.J.; Mullin, N.K.; Jiao, C.; Kaalberg, E.E.; Wiley, L.A.; Han, I.C.; Russell, S.R.; Sohn, E.H.; et al. Two-Photon Polymerized Poly(Caprolactone) Retinal Cell Delivery Scaffolds and Their Systemic and Retinal Biocompatibility. Acta Biomater. 2019, 94, 204–218. [Google Scholar] [CrossRef]
- Liu, Z.; Parikh, B.H.; Tan, Q.S.W.; Wong, D.S.L.; Ong, K.H.; Yu, W.; Seah, I.; Holder, G.E.; Hunziker, W.; Tan, G.S.W.; et al. Surgical Transplantation of Human RPE Stem Cell-Derived RPE Monolayers into Non-Human Primates with Immunosuppression. Stem Cell Rep. 2021, 16, 237–251. [Google Scholar] [CrossRef]
- Chai, G.; Zhang, D.; Hua, W.; Yin, J.; Jin, Y.; Chen, M. Theoretical Model of Pediatric Orbital Trapdoor Fractures and Provisional Personalized 3D Printing-Assisted Surgical Solution. Bioact. Mater. 2021, 6, 559–567. [Google Scholar] [CrossRef]
- Tel, A.; Sembronio, S.; Costa, F.; Stenico, A.S.; Bagatto, D.; D’Agostini, S.; Robiony, M. Endoscopically Assisted Computer-Guided Repair of Internal Orbital Floor Fractures: An Updated Protocol for Minimally Invasive Management. J. Cranio-Maxillofac. Surg. 2019, 47, 1943–1951. [Google Scholar] [CrossRef]
- Vehmeijer, M.; Van Eijnatten, M.; Liberton, N.; Wolff, J. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone. J. Oral Maxillofac. Surg. 2016, 74, 1608–1612. [Google Scholar] [CrossRef] [PubMed]
- Longeac, M.; Depeyre, A.; Pereira, B.; Barthelemy, I.; Pham Dang, N. Virtual Surgical Planning and Three-Dimensional Printing for the Treatment of Comminuted Zygomaticomaxillary Complex Fracture. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 386–390. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, W.; Luo, T.-Y.; Ma, J.; Dong, Z.; Cao, G.; Xu, J.; Liu, B.-Y.; Zhang, Q.-R.; Zhang, S.-L. Application of Three-Dimensional Printing Technology in the Orbital Blowout Fracture Reconstruction. J. Craniofac. Surg. 2019, 30, 1825–1828. [Google Scholar] [CrossRef] [PubMed]
- Sigron, G.R.; Rüedi, N.; Chammartin, F.; Meyer, S.; Msallem, B.; Kunz, C.; Thieringer, F.M. Three-Dimensional Analysis of Isolated Orbital Floor Fractures Pre- and Post-Reconstruction with Standard Titanium Meshes and “Hybrid” Patient-Specific Implants. J. Clin. Med. 2020, 9, 1579. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Jeong, W.S.; Park, T.; Choi, J.W.; Koh, K.S.; Oh, T.S. The Accuracy of Patient Specific Implant Prebented with 3D-Printed Rapid Prototype Model for Orbital Wall Reconstruction. J. Cranio-Maxillofac. Surg. 2017, 45, 928–936. [Google Scholar] [CrossRef]
- Oh, T.S.; Jeong, W.S.; Chang, T.J.; Koh, K.S.; Choi, J.-W. Customized Orbital Wall Reconstruction Using Three-Dimensionally Printed Rapid Prototype Model in Patients with Orbital Wall Fracture. J. Craniofac. Surg. 2016, 27, 2020–2024. [Google Scholar] [CrossRef] [PubMed]
- Nekooei, S.; Sardabi, M.; Razavi, M.; Nekooei, A.; Kiarudi, M. Implantation of Customized, Preshaped Implant for Orbital Fractures with the Aid of Three-Dimensional Printing. Middle East. Afr. J. Ophthalmol. 2018, 25, 56. [Google Scholar] [CrossRef]
- Prabhu, S.S.; Chung, S.A.; Brown, P.J.; Runyan, C.M. Utilizing 3D-Printed Orbital Floor Stamps to Create Patient-Specific Implants for Orbital Floor Reconstruction. Ophthal. Plast. Reconstr. Surg. 2021, 37, 81–85. [Google Scholar] [CrossRef]
- Kang, S.; Kwon, J.; Ahn, C.J.; Esmaeli, B.; Kim, G.B.; Kim, N.; Sa, H.-S. Generation of Customized Orbital Implant Templates Using 3-Dimensional Printing for Orbital Wall Reconstruction. Eye 2018, 32, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Mourits, D.L.; Wolff, J.; Forouzanfar, T.; Ridwan-Pramana, A.; Moll, A.C.; De Graaf, P.; Remmers, J.S.; Kraal-Biezen, E.; Hartong, D.T. 3D Orbital Reconstruction in a Patient with Microphthalmos and a Large Orbital Cyst—A Case Report. Ophthalmic Genet. 2016, 37, 233–237. [Google Scholar] [CrossRef]
- Kim, Y.C.; Min, K.H.; Choi, J.W.; Koh, K.S.; Oh, T.S.; Jeong, W.S. Patient-Specific Puzzle Implant Preformed with 3D-Printed Rapid Prototype Model for Combined Orbital Floor and Medial Wall Fracture. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, I.; Lee, J.; Oh, D.Y.; Jun, Y.J.; Rhie, J.W.; Shim, J.; Moon, S. Restoration of the Inferomedial Orbital Strut Using a Standardized Three-dimensional Printing Implant. J. Anat. 2020, 236, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y. Application of the Three-Dimensionally Printed Biodegradable Polycaprolactone (PCL) Mesh in Repair of Orbital Wall Fractures. J. Cranio-Maxillofac. Surg. 2019, 47, 1065–1071. [Google Scholar] [CrossRef]
- Choi, J.H.; Baek, W. Late Reconstruction of Post-Traumatic Enophthalmos and Hypoglobus Using Three-Dimensional Implants: A Case Series. Arch. Craniofacial Surg. 2022, 23, 232–236. [Google Scholar] [CrossRef]
- Mommaerts, M.Y.; Büttner, M.; Vercruysse, H.; Wauters, L.; Beerens, M. Orbital Wall Reconstruction with Two-Piece Puzzle 3D Printed Implants: Technical Note. Craniomaxillofac. Trauma. Reconstr. 2016, 9, 55–61. [Google Scholar] [CrossRef]
- Gonzalez Alvarez, A.; Ananth, S.; Dovgalski, L.; Evans, P.L. Custom Three-Dimensional Printed Orbital Plate Composed of Two Joined Parts with Variable Thickness for a Large Orbital Floor Reconstruction after Post-Traumatic Zygomatic Fixation. Br. J. Oral. Maxillofac. Surg. 2020, 58, e341–e342. [Google Scholar] [CrossRef]
- Day, K.M.; Phillips, P.M.; Sargent, L.A. Correction of a Posttraumatic Orbital Deformity Using Three-Dimensional Modeling, Virtual Surgical Planning with Computer-Assisted Design, and Three-Dimensional Printing of Custom Implants. Craniomaxillofac. Trauma Reconstr. 2018, 11, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Yeerken, Y.; Otomaru, T.; Said, M.; Oki, M.; Taniguchi, H. Non-Contact Eye Surface Impression and Fabrication of Radiotherapy Prosthesis for Eyelid Tumor with CAD/CAM Technique. Mater. Today Commun. 2018, 15, 322–324. [Google Scholar] [CrossRef]
- Sun, M.G.; Rojdamrongratana, D.; Rosenblatt, M.I.; Aakalu, V.K.; Yu, C.Q. 3D Printing for Low Cost, Rapid Prototyping of Eyelid Crutches. Orbit 2019, 38, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Khanna, T.; Akkara, J.; Bawa, V.; Sargunam, E. Designing and Making an Open Source, 3D-Printed, Punctal Plug with Drug Delivery System. Indian. J. Ophthalmol. 2023, 71, 297. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Awwad, S.; Diaz-Gomez, L.; Alvarez-Lorenzo, C.; Brocchini, S.; Gaisford, S.; Goyanes, A.; Basit, A.W. 3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics 2021, 13, 1421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, R.; Shao, G.; Ware, H.H.O.T.; Ke, D.; Xiang, N.; Zhang, H.F.; Sun, C. Development of Customized Lacrimal Bypass Ducts Using High Resolution 3D-Printing Technology. Investig. Ophthalmol. Vis. Sci. 2019, 60, 6245. [Google Scholar]
- Yang, H.; Yang, Z.; Jin, D.; Su, L.; Chan, K.F.; Chong, K.K.L.; Pang, C.P.; Zhang, L. Magnetic Micro-Driller System for Nasolacrimal Duct Recanalization. IEEE Robot. Autom. Lett. 2022, 7, 7367–7374. [Google Scholar] [CrossRef]
- Valladares, A.; Beyer, T.; Rausch, I. Physical Imaging Phantoms for Simulation of Tumor Heterogeneity in PET, CT, and MRI: An Overview of Existing Designs. Med. Phys. 2020, 47, 2023–2037. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Li, B.; Xu, S.; Jin, Q.; Chen, Y.; Gui, L.; Fu, J.; Niu, F. Reconstructive Operation of Severe Orbital Hypertelorism With Computer-Assisted Precise Virtual Plan. J. Craniofac. Surg. 2023, 34, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhou, J.; Li, D. Functions and Diseases of the Retinal Pigment Epithelium. Front. Pharmacol. 2021, 12, 727870. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Ji, Z.; Yan, W.; Zhao, H.; Huang, W.; Liu, H. Application of Bioprinting in Ophthalmology. Int. J. Bioprint. 2022, 8, 552. [Google Scholar] [CrossRef]
- Shi, P.; Tan, Y.S.E.; Yeong, W.Y.; Li, H.Y.; Laude, A. A Bilayer Photoreceptor-Retinal Tissue Model with Gradient Cell Density Design: A Study of Microvalve-Based Bioprinting. J. Tissue Eng. Regen. Med. 2018, 12, 1297–1306. [Google Scholar] [CrossRef]
- Jung, S.S.; Son, J.; Yi, S.J.; Kim, K.; Park, H.S.; Kang, H.-W.; Kim, H.K. Development of Müller Cell-Based 3D Biomimetic Model Using Bioprinting Technology. Biomed. Mater. 2022, 18, 015009. [Google Scholar] [CrossRef] [PubMed]
- Masaeli, E.; Forster, V.; Picaud, S.; Karamali, F.; Nasr-Esfahani, M.H.; Marquette, C. Tissue Engineering of Retina through High Resolution 3-Dimensional Inkjet Bioprinting. Biofabrication 2020, 12, 025006. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, J.Y.; Kong, J.S.; Lee, H.; Won, J.Y.; Cho, D.W. Development of 3D Printed Bruch’s Membrane-Mimetic Substance for the Maturation of Retinal Pigment Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 1095. [Google Scholar] [CrossRef] [PubMed]
- Song, M.J.; Quinn, R.; Nguyen, E.; Hampton, C.; Sharma, R.; Park, T.S.; Koster, C.; Voss, T.; Tristan, C.; Weber, C.; et al. Bioprinted 3D Outer Retina Barrier Uncovers RPE-Dependent Choroidal Phenotype in Advanced Macular Degeneration. Nat. Methods 2023, 20, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kong, J.S.; Kim, H.; Jo, Y.; Cho, D.-W.; Jang, J. A Bioprinted Bruch’s Membrane for Modeling Smoke-Induced Retinal Pigment Epithelium Degeneration via Hybrid Membrane Printing Technology. Adv. Healthc. Mater. 2022, 11, 2200728. [Google Scholar] [CrossRef] [PubMed]
- Beems, E.M.; Best, J.A. Light Transmission of the Cornea in Whole Human Eyes. Exp. Eye Res. 1990, 50, 393–395. [Google Scholar] [CrossRef]
- He, B.; Wang, J.; Xie, M.; Xu, M.; Zhang, Y.; Hao, H.; Xing, X.; Lu, W.; Han, Q.; Liu, W. 3D Printed Biomimetic Epithelium/Stroma Bilayer Hydrogel Implant for Corneal Regeneration. Bioact. Mater. 2022, 17, 234–247. [Google Scholar] [CrossRef]
- Pati, F.; Jang, J.; Ha, D.-H.; Won Kim, S.; Rhie, J.-W.; Shim, J.-H.; Kim, D.-H.; Cho, D.-W. Printing Three-Dimensional Tissue Analogues with Decellularized Extracellular Matrix Bioink. Nat. Commun. 2014, 5, 3935. [Google Scholar] [CrossRef]
- Wu, Z.; Su, X.; Xu, Y.; Kong, B.; Sun, W.; Mi, S. Bioprinting Three-Dimensional Cell-Laden Tissue Constructs with Controllable Degradation. Sci. Rep. 2016, 6, 24474. [Google Scholar] [CrossRef]
- Nonpassopon, M.; Niparugs, M.; Cortina, M.S. Boston Type 1 Keratoprosthesis: Updated Perspectives. Clin. Ophthalmol. 2020, 14, 1189–1200. [Google Scholar] [CrossRef]
- Parikh, B.H.; Blakeley, P.; Regha, K.; Liu, Z.; Yang, B.; Bhargava, M.; Wong, D.S.L.; Tan, Q.S.W.; Wong, C.S.W.; Wang, H.F.; et al. Single-Cell Transcriptomics Reveals Maturation of Transplanted Stem Cell–Derived Retinal Pigment Epithelial Cells toward Native State. Proc. Natl. Acad. Sci. USA 2023, 120, e2214842120. [Google Scholar] [CrossRef]
- Retinal Physician—Macular Buckling Technique in High Myopia. Available online: https://retinalphysician.com/issues/2018/julyaugust/macular-buckling-technique-in-high-myopia/ (accessed on 11 November 2023).
- Zou, J.; Tan, W.; Li, F.; Zhou, G.; Li, L.; Xiong, S.; Wang, X.; Xu, H. Outcomes of a New 3-D Printing-Assisted Personalized Macular Buckle Combined with Para Plana Vitrectomy for Myopic Foveoschisis. Acta Ophthalmol. 2021, 99, 688–694. [Google Scholar] [CrossRef]
- Israilevich, R.; Mahmoudzadeh, R.; Salabati, M.; Xu, D. Narrative Review-Drug Delivery in Age-Related Macular Degeneration. Ann. Eye Sci. 2021, 6, 33. [Google Scholar] [CrossRef]
- Won, J.Y.; Kim, J.; Gao, G.; Kim, J.; Jang, J.; Park, Y.-H.; Cho, D.-W. 3D Printing of Drug-Loaded Multi-Shell Rods for Local Delivery of Bevacizumab and Dexamethasone: A Synergetic Therapy for Retinal Vascular Diseases. Acta Biomater. 2020, 116, 174–185. [Google Scholar] [CrossRef]
- Pugalendhi, A.; Ranganathan, R.; Venkatapathy, N.; Narendran, K.; Shah, P.K. Design and Development of Model Eye for Retina Laser by Using Additive Manufacturing. Proc. Inst. Mech. Eng. 2021, 235, 89–98. [Google Scholar] [CrossRef]
- Yap, Y.L.; Tan, Y.S.E.; Tan, H.K.J.; Peh, Z.K.; Low, X.Y.; Yeong, W.Y.; Tan, C.S.H.; Laude, A. 3D Printed Bio-Models for Medical Applications. Rapid Prototyp. J. 2017, 23, 227–235. [Google Scholar] [CrossRef]
- Oliveros, E.; Brailovsky, Y.; Shah, K.S. Communication Skills. JACC Case Rep. 2019, 1, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, M.S. Anatomy of Cornea and Ocular Surface. Indian J. Ophthalmol. 2018, 66, 190–194. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Song, W.; Wang, Q.; Sun, X.; Zhao, Q.; Huang, Y.; Li, H.; Peng, Y.; Yuan, J. Biomimetic Convex Implant for Corneal Regeneration Through 3D Printing. Adv. Sci. 2023, 10, 2205878. [Google Scholar] [CrossRef] [PubMed]
- Duarte Campos, D.F.; Rohde, M.; Ross, M.; Anvari, P.; Blaeser, A.; Vogt, M.; Panfil, C.; Yam, G.H.-F.; Mehta, J.S.; Fischer, H.; et al. Corneal Bioprinting Utilizing Collagen-Based Bioinks and Primary Human Keratocytes. J. Biomed. Mater. Res. A 2019, 107, 1945–1953. [Google Scholar] [CrossRef]
- Mörö, A.; Samanta, S.; Honkamäki, L.; Rangasami, V.K.; Puistola, P.; Kauppila, M.; Narkilahti, S.; Miettinen, S.; Oommen, O.; Skottman, H. Hyaluronic Acid Based next Generation Bioink for 3D Bioprinting of Human Stem Cell Derived Corneal Stromal Model with Innervation. Biofabrication 2022, 15, 015020. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, T.; Tuli, S.S.; Steigleman, W.A.; Shah, A.A. Overview of Corneal Transplantation for the Nonophthalmologist. Transplant. Direct 2023, 9, e1434. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, N.; Vanathi, M.; Tandon, R. Corneal Transplantation in the Modern Era. Indian. J. Med. Res. 2019, 150, 7–22. [Google Scholar] [CrossRef] [PubMed]
- A Review of Corneal Transplantation: An Insight on the Overall Global Post-COVID-19 Impact—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563971/ (accessed on 3 October 2023).
- Isaacson, A.; Swioklo, S.; Connon, C.J. 3D Bioprinting of a Corneal Stroma Equivalent. Exp. Eye Res. 2018, 173, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Characterization of Cornea-Specific Bioink: High Transparency, Improved In Vivo Safety. Available online: https://journals.sagepub.com/doi/epdf/10.1177/2041731418823382?src=getftr (accessed on 1 October 2023).
- De Magalhães, O.A.; de Alcantara, R.J.A.; Gomes, J.A.P.; Caiado de Castro Neto, J.; Schor, P. Titanium Powder 3D-Printing Technology for a Novel Keratoprosthesis in Alkali-Burned Rabbits. Transl. Vis. Sci. Technol. 2022, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Boix-Lemonche, G.; Nagymihaly, R.M.; Niemi, E.M.; Josifovska, N.; Johansen, S.; Moe, M.C.; Scholz, H.; Petrovski, G. Intracorneal Implantation of 3D Bioprinted Scaffolds Containing Mesenchymal Stromal Cells Using Femtosecond-Laser-Assisted Intrastromal Keratoplasty. Macromol. Biosci. 2023, 23, 2200422. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jang, J.; Park, J.; Lee, K.-P.; Lee, S.; Lee, D.-M.; Kim, K.H.; Kim, H.K.; Cho, D.-W. Shear-Induced Alignment of Collagen Fibrils Using 3D Cell Printing for Corneal Stroma Tissue Engineering. Biofabrication 2019, 11, 035017. [Google Scholar] [CrossRef]
- Mohamdeen, Y.M.G.; Tabriz, A.G.; Tighsazzadeh, M.; Nandi, U.; Khalaj, R.; Andreadis, I.; Boateng, J.S.; Douroumis, D. Development of 3D Printed Drug-Eluting Contact Lenses. J. Pharm. Pharmacol. 2022, 74, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Urbánek, P.; Šuly, P.; Ševčík, J.; Hanulíková, B.; Kuřitka, I.; Šopík, T.; Stodůlka, P. Controlled Drug Delivery Device for Cornea Treatment and Novel Method for Its Testing. Pharmaceuticals 2023, 16, 505. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Hollick, E.J.; Jones, S.M. Creation of a Proof-of-Concept 3D Printed Corneal Trauma Simulation Model. Eye 2023, 37, 2832–2833. [Google Scholar] [CrossRef]
- Michels, T.C.; Ivan, O. Glaucoma: Diagnosis and Management. Am. Fam. Physician 2023, 107, 253–262. [Google Scholar]
- Wu, Y.; Hu, Y.; Jiang, N.; Anantharanjit, R.; Yetisen, A.K.; Cordeiro, M.F. Quantitative Brain-Derived Neurotrophic Factor Lateral Flow Assay for Point-of-Care Detection of Glaucoma. Lab. Chip 2022, 22, 3521–3532. [Google Scholar] [CrossRef]
- Zhang, J.; Kim, K.; Kim, H.J.; Meyer, D.; Park, W.; Lee, S.A.; Dai, Y.; Kim, B.; Moon, H.; Shah, J.V. Smart Soft Contact Lenses for Continuous 24-Hour Monitoring of Intraocular Pressure in Glaucoma Care. Nat. Commun. 2022, 13, 5518. [Google Scholar] [CrossRef]
- Sverstad, A.; Torheim, E.A.; Jørstad, Ø.K. A Multi-Lumen Glaucoma Stent with Titratable Pressure-Lowering Effect: A Proof of Concept Study. Trans. Vis. Sci. Technol. 2022, 11, 20. [Google Scholar] [CrossRef]
- Siewert, S.; Pfensig, S.; Großmann, S.; Stiehm, M.; Schmitz, K.-P.; Schmidt, W.; Kohse, S.; Wulf, K.; Grabow, N.; Kopp, F. Development of a Drug-Eluting Microstent for Micro-Invasive Glaucoma Surgery. Curr. Dir. Biomed. Eng. 2018, 4, 603–606. [Google Scholar] [CrossRef]
- Culmone, C.; Starkenburg, R.; Smit, G.; Breedveld, P. Comparison of Two Cable Configurations in 3D Printed Steerable Instruments for Minimally Invasive Surgery. PLoS ONE 2022, 17, 0275535. [Google Scholar] [CrossRef] [PubMed]
- Culmone, C.; Lussenburg, K.; Alkemade, J.; Smit, G.; Sakes, A.; Breedveld, P. A Fully 3D-Printed Steerable Instrument for Minimally Invasive Surgery. Materials 2021, 14, 7910. [Google Scholar] [CrossRef]
- Culmone, C.; Henselmans, P.W.J.; Starkenburg, R.I.B.; Breedveld, P. Exploring Non-Assembly 3D Printing for Novel Compliant Surgical Devices. PLoS ONE 2020, 15, e0232952. [Google Scholar] [CrossRef] [PubMed]
- Annuryanti, F.; Domínguez-Robles, J.; Anjani, Q.K.; Adrianto, M.F.; Larrañeta, E.; Thakur, R.R.S. Fabrication and Characterisation of 3D-Printed Triamcinolone Acetonide-Loaded Polycaprolactone-Based Ocular Implants. Pharmaceutics 2023, 15, 243. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kudisch, M.; Silva, N.R.K.; Asada, H.; Aya-Shibuya, E.; Bloomer, M.M.; Mudumba, S.; Bhisitkul, R.B.; Desai, T.A. Long-Term Intraocular Pressure Reduction with Intracameral Polycaprolactone Glaucoma Devices That Deliver a Novel Anti-Glaucoma Agent. J. Control. Release 2018, 269, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Pollard, T.D.; Seoane-Viaño, I.; Ong, J.J.; Januskaite, P.; Awwad, S.; Orlu, M.; Bande, M.F.; Basit, A.W.; Goyanes, A. Inkjet Drug Printing onto Contact Lenses: Deposition Optimisation and Non-Destructive Dose Verification. Int. J. Pharm. X 2023, 5, 100150. [Google Scholar] [CrossRef]
- Singh, R.B.; Ichhpujani, P.; Thakur, S.; Jindal, S. Promising Therapeutic Drug Delivery Systems for Glaucoma: A Comprehensive Review. Ophthalmol. Eye Dis. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Trenfield, S.J.; Tan, H.X.; Goyanes, A.; Wilsdon, D.; Rowland, M.; Gaisford, S.; Basit, A.W. Non-Destructive Dose Verification of Two Drugs within 3D Printed Polyprintlets. Int. J. Pharm. 2020, 577, 119066. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, N.; Luo, J.; Qin, M.; Luca, M.; Mathew, E.; Tagalakis, A.D.; Lamprou, D.A.; Yu-Wai-Man, C. 3D-Printed Long-Acting 5-Fluorouracil Implant to Prevent Conjunctival Fibrosis in Glaucoma. J. Pharm. Pharmacol. 2023, 75, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, J.T.; Zeller, A.N.; Lemound, J.; Lichtenstein, T.E.; Rana, M.; Gellrich, N.-C.; Wagner, M.E. 3D-Printed Simulation Device for Orbital Surgery. J. Surg. Educ. 2017, 74, 2–8. [Google Scholar] [CrossRef]
- Rama, M.; Schlegel, L.; Wisner, D.; Pugliese, R.; Ramesh, S.; Penne, R.; Watson, A. Using Three-Dimensional Printed Models for Trainee Orbital Fracture Education. BMC Med. Educ. 2023, 23, 467. [Google Scholar] [CrossRef] [PubMed]
- Jagan, L.; Turk, W.; Petropolis, C.; Egan, R.; Cofie, N.; Wright, K.W.; Strube, Y.N.J. Validation of a Novel Strabismus Surgery 3D-Printed Silicone Eye Model for Simulation Training. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2020, 24, 3.e1–3.e6. [Google Scholar] [CrossRef]
- Mak, M.; Hong, Y.; Trask, W.M.; Thompson, R.; Chung, H.; Warrian, K.J. Novel Open-Source 3D-Printed Eye Mount (TEMPO) for the Ophthalmology Wet Lab. BMJ Open Ophthalmol. 2021, 6, 000685. [Google Scholar] [CrossRef]
- Famery, N.; Abdelmassih, Y.; El-Khoury, S.; Guindolet, D.; Cochereau, I.; Gabison, E.E. Artificial Chamber and 3D Printed Iris: A New Wet Lab Model for Teaching Descemet’s Membrane Endothelial Keratoplasty. Acta Ophthalmol. 2019, 97, 179–183. [Google Scholar] [CrossRef]
- Ramesh, P.; Devadas, A.; Joshua, T.; Ray, P.; Ramesh, S.; Ramesh, M.; Rajasekaran, R. 3D Printing Ophthalmology Related Models for Enhancing Learning through the Concept of Puzzle Assembly—A Comprehensive Self-Learning Tactile Tool Kit. Indian J. Ophthalmol. 2022, 70, 1384–1386. [Google Scholar] [CrossRef]
- Tan, G.; Ioannou, N.; Mathew, E.; Tagalakis, A.D.; Lamprou, D.A.; Yu-Wai-Man, C. 3D Printing in Ophthalmology: From Medical Implants to Personalised Medicine. Int. J. Pharm. 2022, 625, 122094. [Google Scholar] [CrossRef]
- Xue, R.; Lai, Q.; Sun, S.; Lai, L.; Tang, X.; Ci, J.; Zhang, Z.; Wang, Y. Application of Three-Dimensional Printing Technology for Improved Orbital-Maxillary-Zygomatic Reconstruction. J. Craniofac. Surg. 2019, 30, 127–131. [Google Scholar] [CrossRef]
- Young, A.; VanderVeen, D.; Hunter, D. 3D Printing Surgical Applications in Pediatric Ophthalmology: A Case Series. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2022, 26, e35. [Google Scholar] [CrossRef]
- Laure, B.; Louisy, A.; Joly, A.; Travers, N.; Listrat, A.; Pare, A. Virtual 3D Planning of Osteotomies for Craniosynostoses and Complex Craniofacial Malformations. Neurochirurgie 2019, 65, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Furdová, A.; Sramka, M.; Thurzo, A.; Furdová, A. Early Experiences of Planning Stereotactic Radiosurgery Using 3D Printed Models of Eyes with Uveal Melanomas. Clin. Ophthalmol. 2017, 11, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Dorbandt, D.M.; Joslyn, S.K.; Hamor, R.E. Three-dimensional Printing of Orbital and Peri-orbital Masses in Three Dogs and Its Potential Applications in Veterinary Ophthalmology. Vet. Ophthalmol. 2017, 20, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Belt, T.H.; Nijmeijer, H.; Grim, D.; Engelen, L.J.L.P.G.; Vreeken, R.; Gelder, M.M.H.J.; Ter Laan, M. Patient-Specific Actual-Size Three-Dimensional Printed Models for Patient Education in Glioma Treatment: First Experiences. World Neurosurg. 2018, 117, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Tevanov, I.; Liciu, E.; Chirila, M.O.; Dusca, A.; Ulici, A. The Use of 3D Printing in Improving Patient-Doctor Relationship and Malpractice Prevention. Rom. J. Leg. Med. 2017, 25, 279–282. [Google Scholar] [CrossRef]
- Traynor, G.; Shearn, A.I.; Milano, E.G.; Ordonez, M.V.; Velasco Forte, M.N.; Caputo, M.; Schievano, S.; Mustard, H.; Wray, J.; Biglino, G. The Use of 3D-Printed Models in Patient Communication: A Scoping Review. J. 3D Print. Med. 2022, 6, 13–23. [Google Scholar] [CrossRef] [PubMed]
Usage | Description | Usage Studied | Key Features | Challenges | References |
---|---|---|---|---|---|
Direct | Directly 3D-printed |
|
|
| [8,10,11,12,16,20,21,22] |
Guide | 3D-printed model used to guide the production of a non-3D-printed prothesis |
|
|
| [15,17,18] |
Usage | Description | Usage Studied | Key Features | Challenges | References |
---|---|---|---|---|---|
Template | Implant cut superimposed on the 3D model |
|
|
| [32,33,34] |
Mold | Implant molded onto the 3D model prior to surgery |
|
|
| [35,36,37,38,39,40,43,44] |
Pressing apparatus | Press real implant between the two sides of 3D models of the implant |
|
|
| [41,42] |
Direct printing | The implant itself is 3D-printed |
|
|
| [45,46,47,48,49,50] |
Application | Usage | Key Features | Challenges | References |
---|---|---|---|---|
Lacrimal duct stent | Lacrimal duct bypass |
|
| [55] |
Magnetic micro-driller system | Duct recanalization |
|
| [56] |
Application | Usage | Key Features | Challenges | References |
---|---|---|---|---|
Punctal plugs | Drug delivery |
|
| [53,54] |
Eye-lid crutches | Ptosis |
|
| [52] |
Eye shield | Radiation |
|
| [51] |
Procedure: | CAD Ocular Prosthesis | 3D-Printed Orbital Prosthesis | 3D-Printed Conformers | 3D Printing in Orbital Floor Fracture Repair | |||||||||||||
Participants (n) | 1 | n.d. | 3 | 3 | 10 | 1 | 9 | 5 | 14 | 1 | 12 | 22 | 1 | 4 | 28 | 1 | |
Adverse Events | Severe | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||||||
Non-severe | 0 | 0 | 0 | 0 | 1 | ||||||||||||
Pain | 1 | ||||||||||||||||
Infection | 0 | 0 | 0 | 0 | |||||||||||||
Pruritis | 0 | ||||||||||||||||
Dryness | 2 | ||||||||||||||||
Parasthesias | 2 | ||||||||||||||||
Enophthalmos | 0 | 0 | 1 | 2 | 0 | ||||||||||||
Diplopia | 1 | 0 | 1 | 0 | 1 | ||||||||||||
Biochemical marker elevation | 0 | ||||||||||||||||
Inflammation | 0 | ||||||||||||||||
Functional/Cosmetic Problems | 5 | 1 | 0 | 0 | 0 | 0 | |||||||||||
Device Extrusion | 0 | 0 | |||||||||||||||
Observation Time (weeks) | 24 | 4 | 4 | n.d. | 12 | n.d. | 156 | 16 (on average) | n.d. | n.d. | 22 (median) | n.d. | 4 | Up to 24 | 26 | n.d. | |
References | [8] | [10] | [11] | [15] | [16] | [17] | [19] | [20] | [33] | [34] | [36] | [37] | [40] | [41] | [44] | [49] | |
Procedure: | 3D Printing in Orbital Wall Repair | Orbital Floor Reconstruction | 3D Printing for Zygomaticomaxillary Fracture | 3D-Printed Orbital Rim Reconstruction | 3D Printing in Orbital Malformation | ||||||||||||
Participants (n) | 82 (44 study grp.) | 104 | 11 | 22 | 3 | 1 | 19 | 3 | 1 | ||||||||
Adverse Events | Severe | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||||
Non-severe | 0 | 0 | 0 | ||||||||||||||
Pain | 1 | ||||||||||||||||
Infection | 0 | 0 | 0 | 0 | |||||||||||||
Degradation | 1 | ||||||||||||||||
Hypoesthesia | 2 | 0 | 2 | ||||||||||||||
Enophthalmos | 0 | 0 | 1 | ||||||||||||||
Diplopia | 2 | 0 | 0 | 2 | 0 | 0 | 0 | ||||||||||
Inflammation | 0 | ||||||||||||||||
Functional/Cosmetic Problems | 0 | 0 | |||||||||||||||
Device Extrusion | 0 | ||||||||||||||||
Observation Time (weeks) | 26 (minimum) | 23.5 | 26 | n.d. | 26 | 26 | 26 | n.d. | |||||||||
References | [38] | [39] | [42] | [46] | [48] | [43] | [35] | [47] | [50] | ||||||||
Procedure: | 3D-Printed Conformers | Orbital Rim Reconstruction | 3D-Printed Eye-Shield for Radiotherapy | 3D-Printed Eyelid Crutches | Orbital Malformation Reconstruction | ||||||||||||
Participants (n) | 9 | 3 | 2 | 1 | 4 | ||||||||||||
Adverse Events | Severe | 0 | 0 | 0 | |||||||||||||
Functional/Cosmetic Problems | 5 | 1 | |||||||||||||||
Discharge | Common (but number not specified) | ||||||||||||||||
Scarring | 1 | ||||||||||||||||
Luxate/Extrusion | 1 | ||||||||||||||||
Observation Time (weeks) | 87 (mean) | Up to 1 year 9 months | 22.5 days | 22 | 43.5 | ||||||||||||
References | [19] | [47] | [51] | [52] | [58] |
Procedure | Material Used | Printing Type | Results | Setting | Advantage/Disadvantage | Reference |
---|---|---|---|---|---|---|
3D-printed implant scaffold for corneal regeneration | GelMA, type I collagen | Pneumatic, dual extruder printer | Increased slope gradient on the scaffold results in stronger adhesion and aligned cell organization. | In vitro | Understanding of how implant shape affects factors concerning corneal regeneration. | [81] |
Corneal bioprinting utilizing collagen-based bioinks | Type I collagen-based bioink | Drop-on-demand (DoD) bioprinting | Cell viability confirmed at 7 days. Significantly less compressive modulus in printed vs. human cornea. | In vitro | Optical properties of printed cornea unknown. | [82] |
Use of hyaluronic acid-based bioink for 3D printing of human corneal stroma | Human adipose stem cells (hASCs) and hASC-derived corneal stromal keratocytes, hyaluronic acid-based bioink with hydrazone crosslinking | Extrusion-based 3D printing | Development of a biocompatible bioink with future clinical potential and human testing. | In vitro & ex vivo | Bioprinted corneal structure showed effective ex vivo integration to porcine cornea. Potential for future in vivo human testing. No cytotoxicity detected. | [83] |
3D bioprinting of a corneal stroma | Corneal keratocytes, methacrylated type I collagen, sodium alginate | Pneumatic 3D dual extrusion bioprinting | This is an earlier study trying to establish potential in the use of 3D printing for development of a corneal stroma. | In vitro | Keratocytes showed survivability and no toxicity noted. No consideration of long-term cell survival, cell adhesion, layering, and differentiation. | [87] |
Development of a novel cornea-specific bioink | Bovine cornea-derived extracellular matrix) bioink | Not given | Bioink found to be biocompatible and allows for the differentiation of turbinate-derived mesenchymal stem cells (hTMSCs) and keratocytes. | In vitro | Biocompatible established in vitro, no cytotoxicity observed. Seemingly appropriate transparency of the printed cornea. | [88] |
3D printing of an epithelium/stromal layer for an anterior lamellar keratoplasty | GelMA, long-chain poly(ethylene glycol) diacrylate, rabbit corneal epithelial cells, rabbit adipose-derived mesenchymal stem cells | Digital Light Processing (DLP) | Bioprinted scaffold (epithelial and stromal layer) integrates into the existing rabbit cornea well leading to re-epithelialization and stromal regeneration. | In vivo | Biocompatible, good in vivo integration and potential for future human testing. | [68] |
Finding an appropriate sodium citrate/sodium alginate ratio for bioprinting corneal cells | Alginate-based bioink and human corneal epithelial cells | Extrusion-based 3D cell-printing | By altering the sodium citrate/sodium alginate ratio in the gel, its ability to degrade improves, allowing better corneal cell proliferation. | In vitro | High cell viability was maintained. | [70] |
Novel method for Keratoprosthesis using 3D printing and the recipient’s own cornea | 3D-printed titanium back plate, PMMA front stem | Not given | Successful technique, improving on the standard keratoprosthesis procedure which requires donor corneal tissue. | In vivo | Many post-surgical complications. | [89] |
Use of 3D-bioprinted scaffolds with mesenchymal stromal cells for a keratoplasty procedure | 3 different multipotent mesenchymal stromal cells (adipose-derived, bone marrow-derived, and corneal stroma-derived) | Extrusion-based 3D bioprinting | Femtosecond-Laser-Assisted Intrastromal Keratoplasty was highly effective for corneal excision. The keratoplasty procedure and bioink did not undergo appropriate healing and cell differentiation. | In vivo | Mesenchymal stromal cells did not undergo differentiation towards corneal keratocytes. Poor healing around implanted corneal flap. | [90] |
Development of a 3D-printed drug-eluting contact lens | Ethylene-vinyl acetate and copolymer-polylactic acid blend | Fusion deposition modeling | Successful development of a drug eluting contact lens, but poor pharmacologic characteristics. | In vitro | Poor drug release kinetics (majority of drug released in the first 24 h—poorly sustained, long-term release kinetics). | [92] |
Development of a 3D-printed drug-eluting contact lens | Collagen based material, levofloxacin, tetracaine | Not given | Successful production of a drug-eluting contact lens embedded with levofloxacin and tetracaine. | In vitro | Released API from the drug delivery device was significantly greater vs. the predicted typical ocular absorption of the drug from eye drops. However, clinical significance was not measured. | [93] |
Usage | 3D Printing Methods Used | Results | Types of Study | Challenges | Reference |
---|---|---|---|---|---|
Diagnosis & Monitoring | 3D-printed (printer not specified) readout box and lateral flow assay (LFA) case | Rapid, portable, and cost-effective glaucoma-detecting device by LFA quantification of BDNF concentration in artificial tear fluids; suitable for point-of-care settings | Prototype development and characterization | Limited experimental detection limit; limited stability information | [95] |
Automated nozzle injection system (Nordson EFD) equipped on a three-axis computer-controlled translation stage | 3D-printed smart soft contact lenses for constant IOP monitoring; intrinsic properties unchanged compared to commercial soft contact lens: biocompatibility, softness, transparency, wettability and oxygen transmissibility | in vivo | - | [96] | |
MIGS | Micro-precision three-dimensional printer with projection micro stereolithography technology and photosensitive materials | Proof of concept for a glaucoma stent with multiple lumina that can be separately opened with an argon laser trabeculoplasty (ALT)-like procedure for a predictable pressure-lowering effect | in vitro | Further in vivo study is suggested | [97] |
A microstent injector device was manufactured using a fused deposition modelling (FDM) 3D printer (Form 2 printer, Formlabs Inc) and various photoactive polymers | Development of a 3D-printed antifibrotic drug-eluting MIGS stent with modifiable aqueous humor drainage. | in vitro | Limited in vivo, invitro and clinical data of the device; further optimization of the drug-eluting coating is required | [98] | |
3D-printed multi-steerable cable-driven instrument printed using Digital Light Processing (DLP) (Perfactory1 Mini XL, EnvisionTEC GmbH) | Fully 3D-printed, customizable instruments for better control and precision based on ergonomic principles. Potential applications in MIGS | Comparison studies: questionnaires and task performances; instrument mechanical evaluation | Limited availability of biocompatible materials; familiarization of instrument required to avoid excessive force and instrument breakage | [99,100,101] | |
Drug-Eluting Implants | Triamcinolone acetonide-loaded polycaprolactone-based ocular implants fabrication using GeSiM 2.1 Bioscaffolder 3D Bioprinter | Customizable (in shapes and drug loadings); sustainable drug-eluting implants (6 months); biocompatible, safe ocular application (>90% cell viability) | in vitro | Early stage of development; further in vivo studies and clinical trials are required to ensure the safety of implants | [102] |
The device is not 3D-printed; the paper brought up the possibility of PCL-based drug delivery implant | Developed an intracameral polycaprolactone glaucoma device (spin-casting made PCL thin films encapsulating proprietary hypotensive agent); long-term (23 weeks), effective IOP reduction with drug-eluting implants; 3D-printed injector device for precise placement. | in vivo (rabbit eye model) | - | [103] | |
3D-printed PCL and chitosan-based drug-eluting implant using heat extrusion technology | Sustained, long-term (8 weeks) 5-fluorouracil drug-releasing implant; effective in suppressing fibroblast contractility and preventing conjunctival fibrosis after glaucoma surgery; biocompatible (no significant changes in cell viability) and biodegradable | in vitro | In vivo experiments required; risks of allograft rejection for biomaterials | [107] | |
Hot melt extrusion coupled with fusion deposition modelling (FDM) to print ethylene-vinyl acetate copolymer–polylactic acid blends | Sustained drug release of timolol maleate for extended periods (3 days); introduction of drug-eluting contact lenses with high-resolution 3D printing manufacturing | Prototype development and characterization | Drug release optimization, in vitro and in vivo studies needed | [91] | |
Modified commercial inkjet printer (O2Nails V11 inkjet printer) and Form 1+ 3D printer with v4 clear resin (Formlabs Inc., MA, USA) | Contact lenses drug-release over at least 3 h, longer than eye drops; accurate drug dose-loading quantification with near-infrared (NIR) spectroscopy | in vitro | - | [104] | |
Digital light processing (DLP) 3D printing was employed to assemble polyethylene glycol diacrylate (PEGDA) and polyethylene glycol 400 | Punctal plugs with drug-eluting capabilities for sustained drug release (dexamethasone, 7 days) | in vitro | Drug-loaded micro stents were less cytocompatible than blank controls | [106] | |
3D-printed polypills by selective laser sinter (SLS) printer | Developed a non-destructive method for quality control for 3D-printed antimetabolite drug-release implant (the drugs loaded were amlodipine and lisinopril for preventing conjunctival fibrosis) | Prototype development and characterization | Lack of standardization and regulatory guidelines for drug-eluting implants | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.Y.; Tabari, A.; Mazerolle, É.; Tran, S.D. Towards Precision Ophthalmology: The Role of 3D Printing and Bioprinting in Oculoplastic Surgery, Retinal, Corneal, and Glaucoma Treatment. Biomimetics 2024, 9, 145. https://doi.org/10.3390/biomimetics9030145
Wu KY, Tabari A, Mazerolle É, Tran SD. Towards Precision Ophthalmology: The Role of 3D Printing and Bioprinting in Oculoplastic Surgery, Retinal, Corneal, and Glaucoma Treatment. Biomimetics. 2024; 9(3):145. https://doi.org/10.3390/biomimetics9030145
Chicago/Turabian StyleWu, Kevin Y., Adrian Tabari, Éric Mazerolle, and Simon D. Tran. 2024. "Towards Precision Ophthalmology: The Role of 3D Printing and Bioprinting in Oculoplastic Surgery, Retinal, Corneal, and Glaucoma Treatment" Biomimetics 9, no. 3: 145. https://doi.org/10.3390/biomimetics9030145
APA StyleWu, K. Y., Tabari, A., Mazerolle, É., & Tran, S. D. (2024). Towards Precision Ophthalmology: The Role of 3D Printing and Bioprinting in Oculoplastic Surgery, Retinal, Corneal, and Glaucoma Treatment. Biomimetics, 9(3), 145. https://doi.org/10.3390/biomimetics9030145