Cell Biological and Antibacterial Evaluation of a New Approach to Zirconia Implant Surfaces Modified with MTA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Processing
2.2. Samples Characterization
Surface Roughness
2.3. Cell Cultures
2.3.1. Cell Viability
2.3.2. Cell Morphology
2.3.3. Interleukin 8
2.3.4. Osteocalcin
2.4. Bacterial Strain and Growth Conditions
Colony Forming Unit (CFU)
2.5. Statistical Analysis
3. Results
3.1. Samples Characterization
Surface Roughness
3.2. Cell Culture
3.2.1. Cell Viability
3.2.2. Cell Morphology
3.2.3. Interleukin 8
3.2.4. Osteocalcin
3.3. Bacterial Growth
Colony Forming Unit (CFU)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira Ribeiro, C.; Cogo-Muller, K.; Franco, G.C.; Silva-Concilio, L.R.; Sampaio Campos, M.; de Mello Rode, S.; Claro Neves, A.C. Initial oral biofilm formation on titanium implants with different surface treatments: An in vivo study. Arch. Oral. Biol. 2016, 69, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Tarnow, D.P. Increasing Prevalence of Peri-implantitis: How Will We Manage? J. Dent. Res. 2016, 95, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.L.; Brook, I.M.; Palmquist, A.; van Noort, R.; Moharamzadeh, K. The biological seal of the implant-soft tissue interface evaluated in a tissue-engineered oral mucosal model. J. R. Soc. Interface 2012, 9, 3528–3538. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.B.; Silva, N.; Marques, J.F.; Mata, A.; Silva, F.S.; Carames, J. Biomimetic Implant Surfaces and Their Role in Biological Integration—A Concise Review. Biomimetics 2022, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, F.; Noumbissi, S.; Francesco, I.; Rapone, B.; Khater, A.G.A.; Scarano, A. Scientific Trends in Clinical Research on Zirconia Dental Implants: A Bibliometric Review. Materials 2020, 13, 5534. [Google Scholar] [CrossRef] [PubMed]
- Kunrath, M.F.; Gupta, S.; Lorusso, F.; Scarano, A.; Noumbissi, S. Oral Tissue Interactions and Cellular Response to Zirconia Implant-Prosthetic Components: A Critical Review. Materials 2021, 14, 2825. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, B.F.; da Cruz, M.B.; Marques, J.F.; Madeira, S.; Carvalho, O.; Silva, F.S.; da Mata, A.; Carames, J.M.M. Laser Nd:YAG patterning enhance human osteoblast behavior on zirconia implants. Lasers Med. Sci. 2020, 35, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- Olmo, J.A.-D.; Ruiz-Rubio, L.; Pérez-Alvarez, L.; Sáez-Martínez, V.; Vilas-Vilela, J.L. Antibacterial Coatings for Improving the Performance of Biomaterials. Coatings 2020, 10, 139. [Google Scholar] [CrossRef]
- da Cruz, M.B.; Marques, J.F.; Peñarrieta-Juanito, G.M.; Costa, M.; Souza, J.C.; Magini, R.S.; Miranda, G.; Silva, F.S.; da Mata, A.; Caramês, J.M.M. Hard and Soft Tissue Cell Behavior on Polyetheretherketone, Zirconia, and Titanium Implant Materials. Int. J. Oral. Maxillofac. Implants 2019, 34, 39–46. [Google Scholar] [CrossRef]
- Shi, W.; Mozumder, M.S.; Zhang, H.; Zhu, J.; Perinpanayagam, H. MTA-enriched nanocomposite TiO(2)-polymeric powder coatings support human mesenchymal cell attachment and growth. Biomed. Mater. 2012, 7, 055006. [Google Scholar] [CrossRef]
- Monisha, R.; Manish, R. MTA as A Revolution in Endodontics—A Review. IOSR J. Dent. Med. Sci. 2013, 9, 18–21. [Google Scholar]
- Campi, L.B.; Rodrigues, E.M.; Torres, F.F.E.; Reis, J.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Physicochemical properties, cytotoxicity and bioactivity of a ready-to-use bioceramic repair material. Braz. Dent. J. 2023, 34, 29–38. [Google Scholar] [CrossRef]
- Youssef, A.R.; Elsherief, S. Evaluation of the cytotoxic effects of a new Harvard MTA compared to MTA Flow and ProRoot MTA on human gingival fibroblasts. Saudi Dent. J. 2021, 33, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Ha, W.N.; Nicholson, T.; Kahler, B.; Walsh, L.J. Mineral Trioxide Aggregate—A Review of Properties and Testing Methodologies. Materials 2017, 10, 1261. [Google Scholar] [CrossRef] [PubMed]
- Tabari, M.; Seyed Majidi, M.; Hamzeh, M.; Ghoreishi, S. Biocompatibility of Mineral Trioxide Aggregate Mixed with Different Accelerators: An Animal Study. J. Dent. 2020, 21, 48–55. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J. Endod. 2010, 36, 400–413. [Google Scholar] [CrossRef]
- Hinata, G.; Yoshiba, K.; Han, L.; Edanami, N.; Yoshiba, N.; Okiji, T. Bioactivity and biomineralization ability of calcium silicate-based pulp-capping materials after subcutaneous implantation. Int. Endod. J. 2017, 50 (Suppl. S2), e40–e51. [Google Scholar] [CrossRef] [PubMed]
- Perinpanayagam, H. Cellular response to mineral trioxide aggregate root-end filling materials. J. Can. Dent. Assoc. 2009, 75, 369–372. [Google Scholar]
- Abu Hasna, A.; de Paula Ramos, L.; Campos, T.M.B.; de Castro Lopes, S.L.P.; Rachi, M.A.; de Oliveira, L.D.; Carvalho, C.A.T. Biological and chemical properties of five mineral oxides and of mineral trioxide aggregate repair high plasticity: An in vitro study. Sci. Rep. 2022, 12, 14123. [Google Scholar] [CrossRef]
- Abrao, S.M.S.; Gregorio, D.; Azevedo, M.K.C.; Mori, G.G.; Poli-Frederico, R.C.; Maia, L.P. Cytotoxicity and genotoxicity of Bio-C Repair, Endosequence BC Root Repair, MTA Angelus and MTA Repair HP. Braz. Dent. J. 2023, 34, 14–20. [Google Scholar] [CrossRef]
- Singh, G.; Gupta, I.; Elshamy, F.M.M.; Boreak, N.; Homeida, H.E. In vitro comparison of antibacterial properties of bioceramic-based sealer, resin-based sealer and zinc oxide eugenol based sealer and two mineral trioxide aggregates. Eur. J. Dent. 2016, 10, 366–369. [Google Scholar] [CrossRef]
- Jonaidi-Jafari, N.; Izadi, M.; Javidi, P. The effects of silver nanoparticles on antimicrobial activity of ProRoot mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM). J. Clin. Exp. Dent. 2016, 8, e22–e26. [Google Scholar] [CrossRef]
- Naik, R.M.; Pudakalkatti, P.S.; Hattarki, S.A. Can MTA be: Miracle trioxide aggregate? J. Indian. Soc. Periodontol. 2014, 18, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Parirokh, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part II: Other clinical applications and complications. Int. Endod. J. 2018, 51, 284–317. [Google Scholar] [CrossRef]
- da Cruz, M.B.; Marques, J.F.; Fernandes, B.F.; Pinto, P.; Madeira, S.; Carvalho, O.; Silva, F.S.; Carames, J.M.M.; da Mata, A. Laser surface treatment on Yttria-stabilized zirconia dental implants: Influence on cell behavior. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 249–258. [Google Scholar] [CrossRef]
- Faria, D.; Madeira, S.; Buciumeanu, M.; Silva, F.S.; Carvalho, O. Novel laser textured surface designs for improved zirconia implants performance. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110390. [Google Scholar] [CrossRef]
- Faria, D.; Henriques, B.; Souza, A.C.; Silva, F.S.; Carvalho, O. Laser-assisted production of HAp-coated zirconia structured surfaces for biomedical applications. J. Mech. Behav. Biomed. Mater. 2020, 112, 104049. [Google Scholar] [CrossRef] [PubMed]
- Faria, D.M.M.; de Castro Henriques, B.A.P.; De Souza, A.C.B.; da Silva, F.S.C.P.; Carvalho, Ó.S.N. Laser-assisted manufacturing of 45S5 Bioglass-coated zirconia structured surfaces targeting medical implants: Adhesive, wettability, mechanical, and bioactivity evaluation. Int. J. Adv. Manuf. Technol. 2022, 119, 1595–1612. [Google Scholar] [CrossRef]
- Peñarrieta-Juanito, G.M.; Costa, M.; Cruz, M.; Miranda, G.; Henriques, B.; Marques, J.; Magini, R.; Mata, A.; Caramês, J.; Silva, F.; et al. Bioactivity of novel functionally structured titanium-ceramic composites in contact with human osteoblasts. J. Biomed. Mater. Res. A 2018, 106, 1923–1931. [Google Scholar] [CrossRef]
- Santiago, M.C.; Gomes-Cornelio, A.L.; de Oliveira, L.A.; Tanomaru-Filho, M.; Salles, L.P. Calcium silicate-based cements cause environmental stiffness and show diverse potential to induce osteogenesis in human osteoblastic cells. Sci. Rep. 2021, 11, 16784. [Google Scholar] [CrossRef]
- Khedmat, S.; Sarraf, P.; Seyedjafari, E.; Sanaei-Rad, P.; Noori, F. Comparative evaluation of the effect of cold ceramic and MTA-Angelus on cell viability, attachment and differentiation of dental pulp stem cells and periodontal ligament fibroblasts: An in vitro study. BMC Oral. Health 2021, 21, 628. [Google Scholar] [CrossRef] [PubMed]
- Valverde, T.M.; Castro, E.G.; Cardoso, M.H.; Martins-Junior, P.A.; Souza, L.M.; Silva, P.P.; Ladeira, L.O.; Kitten, G.T. A novel 3D bone-mimetic scaffold composed of collagen/MTA/MWCNT modulates cell migration and osteogenesis. Life Sci. 2016, 162, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Deligianni, D.D. Multiwalled carbon nanotubes enhance human bone marrow mesenchymal stem cells’ spreading but delay their proliferation in the direction of differentiation acceleration. Cell Adh Migr. 2014, 8, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.T.; Torabinejad, M.; Pitt Ford, T.R.; Brady, K.; McDonald, F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J. Biomed. Mater. Res. 1997, 37, 432–439. [Google Scholar] [CrossRef]
- Rathinam, E.; Rajasekharan, S.; Chitturi, R.T.; Declercq, H.; Martens, L.; De Coster, P. Gene Expression Profiling and Molecular Signaling of Various Cells in Response to Tricalcium Silicate Cements: A Systematic Review. J. Endod. 2016, 42, 1713–1725. [Google Scholar] [CrossRef]
Element | Wt.% |
---|---|
ZrO2 + HfO2 + Y2O3 | >99.9 |
Y2O3 | 5.15 ± 0.20 |
Al2O3 | 0.25 ± 0.10 |
SiO2 | ≤0.02 |
Fe2O3 | ≤0.01 |
Na2O | ≤0.04 |
Element | Wt.% |
---|---|
CaO | 49.20 |
SiO2 | 18.58 |
Bi2O3 | 8.26 |
Al2O3 | 4.48 |
MgO | 0.64 |
SO3 | 0.19 |
Na2O | 1.32 |
Cl | 0.51 |
H2O + CO2 | 16.82 |
Samples Designation | Description |
---|---|
Zr MTA | MTA-coated laser-textured zirconia samples |
Zr textured | Laser-textured zirconia samples |
Zr | Zirconia samples |
Ti | Titanium samples |
Sample | Roughness—Ra (μm) | Standard Deviation (μm) |
---|---|---|
Zr MTA | 0.31 | 0.11 |
Zr textured | 27.73 * | 3.22 |
Zr | 0.19 | 0.14 |
Ti | 0.49 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, B.F.; Silva, N.; Da Cruz, M.B.; Garret, G.; Carvalho, Ó.; Silva, F.; Mata, A.; Francisco, H.; Marques, J.F. Cell Biological and Antibacterial Evaluation of a New Approach to Zirconia Implant Surfaces Modified with MTA. Biomimetics 2024, 9, 155. https://doi.org/10.3390/biomimetics9030155
Fernandes BF, Silva N, Da Cruz MB, Garret G, Carvalho Ó, Silva F, Mata A, Francisco H, Marques JF. Cell Biological and Antibacterial Evaluation of a New Approach to Zirconia Implant Surfaces Modified with MTA. Biomimetics. 2024; 9(3):155. https://doi.org/10.3390/biomimetics9030155
Chicago/Turabian StyleFernandes, Beatriz Ferreira, Neusa Silva, Mariana Brito Da Cruz, Gonçalo Garret, Óscar Carvalho, Filipe Silva, António Mata, Helena Francisco, and Joana Faria Marques. 2024. "Cell Biological and Antibacterial Evaluation of a New Approach to Zirconia Implant Surfaces Modified with MTA" Biomimetics 9, no. 3: 155. https://doi.org/10.3390/biomimetics9030155
APA StyleFernandes, B. F., Silva, N., Da Cruz, M. B., Garret, G., Carvalho, Ó., Silva, F., Mata, A., Francisco, H., & Marques, J. F. (2024). Cell Biological and Antibacterial Evaluation of a New Approach to Zirconia Implant Surfaces Modified with MTA. Biomimetics, 9(3), 155. https://doi.org/10.3390/biomimetics9030155