Usefulness of Probing Sensor Device for Evaluating Meniscal Suture and Scaffold Implantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Probing Sensor
2.2. Reliability of the Probing Sensor
2.3. Evaluation of Appropriate Suture Interval for Meniscal Tear
2.3.1. Evaluation of Tensile Strength Using Probing Sensor
2.3.2. Evaluation of Meniscal Suture Strength Using Biomechanical Test
2.4. Evaluation of Appropriate Suture Interval for Meniscal Scaffold Implantation
2.4.1. Fabrication of the Meniscal Scaffold
2.4.2. Evaluation of Suture Strength in Meniscal Scaffold Implantation Using Probing Sensor
2.4.3. Evaluation of Suture Fixation of Meniscal Scaffold Using Biomechanical Test
2.5. Statistical Analysis
3. Results
3.1. Reliability of the Probing Sensor
3.2. Evaluation of Suture Strength Using Probing Sensor in Porcine Menisci
3.3. Evaluation of Suture Strength Using Probing Sensor in Meniscal Scaffold
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, P.; Taylor, T.K. The knee joint meniscus: A fibrocartilage of some distinction. Clin. Orthop. Relat. Res. 1987, 224, 52–63. [Google Scholar] [CrossRef]
- Voloshin, A.S.; Wosk, J. Shock absorption of meniscectomized and painful knees: A comparative in vivo study. J. Biomed. Eng. 1983, 5, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.S.; Arno, S.; Bell, C.; Salvadore, G.; Borukhov, I.; Oh, C. Function of the medial meniscus in force transmission and stability. J. Biomech. 2015, 48, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.S.; Erkman, M.J. The role of the menisci in force transmission across the knee. Clin. Orthop. Relat. Res. 1975, 109, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Garrett, W.E.; Swiontkowski, M.F.; Callaghan, J.; Rosier, R.N.; Berry, D.J.; Harrast, J.; Derosa, G.P.; Weinstein, J.N. American Board of Orthopaedic Surgery practice of the orthopaedic surgeon: Part-II, certification examination case mix. J. Bone Jt. Surg. Am. 2006, 88, 660–667. [Google Scholar] [CrossRef]
- Beaufils, P.; Becker, R.; Kopf, S.; Matthieu, O.; Pujol, N. The knee meniscus: Management of traumatic tears and degenerative lesions. EFORT Open Rev. 2017, 2, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Seil, R.; Becker, R. Time for a paradigm change in meniscal repair: Save the meniscus! Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1421–1423. [Google Scholar] [CrossRef]
- Badlani, J.T.; Borrero, C.; Golla, S.; Harner, C.D.; Irrgang, J.J. The effects of meniscus injury on the development of knee osteoarthritis: Data from the osteoarthritis initiative. Am. J. Sports Med. 2013, 41, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Baratz, M.E.; Fu, F.H.; Mengato, R. Meniscal tears: The effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am. J. Sports Med. 1986, 14, 270–275. [Google Scholar] [CrossRef]
- Beamer, B.S.; Masoudi, A.; Walley, K.C.; Harlow, E.R.; Manoukian, O.S.; Hertz, B.; Haeussler, C.; Olson, J.J.; Deangelis, J.P.; Nazarian, A.; et al. Analysis of a new all-inside versus inside-out technique for repairing radial meniscal tears. Arthroscopy 2015, 31, 293–298. [Google Scholar] [CrossRef]
- Lucidi, G.A.; Grassi, A.; Agostinone, P.; Di Paolo, S.; Dal Fabbro, G.; D’Alberton, C.; Pizza, N.; Zaffagnini, S. Risk Factors Affecting the Survival Rate of Collagen Meniscal Implant for Partial Meniscal Deficiency: An Analysis of 156 Consecutive Cases at a Mean 10 Years of Follow-up. Am. J. Sports Med. 2022, 50, 2900–2908. [Google Scholar] [CrossRef] [PubMed]
- Rodkey, W.G.; DeHaven, K.E.; Montgomery, W.H.; Baker, C.L., Jr.; Hormel, S.E.; Steadman, J.R.; Cole, B.J.; Briggs, K.K. Comparison of the collagen meniscus implant with partial meniscectomy: A prospective randomized trial. J. Bone Jt. Surg. Am. 2008, 90, 1413–1426. [Google Scholar] [CrossRef] [PubMed]
- Stone, K.R.; Francisco, S.; Steadman, J.R.; Rodkey, W.G.; Li, S.T. Regeneration of Meniscal Cartilage with Use of a Collagen Scaffold. J. Bone Jt. Surg. Am. 1997, 79, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Verdonk, R.; Verdonk, P.; Huysse, W.; Forsyth, R.; Heinrichs, E.L. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am. J. Sports Med. 2011, 39, 774–782. [Google Scholar] [CrossRef]
- Lucidi, G.A.; Grassi, A.; Al-Zu’bi, B.B.H.; Macchiarola, L.; Agostinone, P.; Marcacci, M.; Zaffagnini, S. Satisfactory clinical results and low failure rate of medial collagen meniscus implant (CMI) at a minimum 20 years of follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 4270–4277. [Google Scholar] [CrossRef]
- Li, W.; Pan, J.; Li, J.; Guo, J.; Zeng, C.; Xie, D. Clinical application of polyurethane meniscal scaffold: A meta-analysis. J. Orthop. 2021, 24, 173–181. [Google Scholar] [CrossRef]
- Paxton, E.S.; Stock, M.V.; Brophy, R.H. Meniscal repair versus partial meniscectomy: A systematic review comparing re-operation rates and clinical outcomes. Arthroscopy 2011, 27, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Zaffagnini, S.; Poggi, A.; Reale, D.; Andriolo, L.; Flanigan, D.C.; Filardo, G. Biologic Augmentation Reduces the Failure Rate of Meniscal Repair: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2021, 9. [Google Scholar] [CrossRef]
- Schweizer, C.; Hanreich, C.; Tscholl, P.M.; Ristl, R.; Apprich, S.; Windhager, R.; Waldstein, W. Nineteen percent of meniscus repairs are being revised and failures frequently occur after the second postoperative year: A systematic review and meta-analysis with a minimum follow-up of 5 years. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 2267–2276. [Google Scholar] [CrossRef]
- Müller, S.; Schwenk, T.; de Wild, M.; Dimitriou, D.; Rosso, C. Increased Construct Stiffness with Meniscal Repair Sutures and Devices Increases the Risk of Cheese-Wiring during Biomechanical Load-to-Failure Testing. Orthop. J. Sports Med. 2021, 9. [Google Scholar] [CrossRef]
- Höher, J.; Meier, S. Arthroscopic meniscal repair with an all-inside suture system. Oper. Orthop. Traumatol. 2006, 18, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Achtnich, A.; Rosslenbroich, S.; Beitzel, K.; Imhoff, A.B.; Petersen, W. Arthroscopic refixation of acute proximal anterior cruciate ligament rupture using suture anchors. Oper. Orthop. Traumatol. 2017, 29, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Hananouchi, T.; Uchida, S.; Hashimoto, Y.; Noboru, F.; Aoki, S.K. Comparison of labrum resistance force while pull-probing in vivo and cadaveric hips. Biomimetics 2021, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Hananouchi, T. A probing device for quantitatively measuring the mechanical properties of soft tissues during arthroscopy. J. Vis. Exp. 2020, 159, e60722. [Google Scholar]
- Otsuki, S.; Nakagawa, K.; Murakami, T.; Sezaki, S.; Sato, H.; Suzuki, M.; Okuno, N.; Wakama, H.; Kaihatsu, K.; Neo, M. Evaluation of Meniscal Regeneration in a Mini Pig Model Treated with a Novel Polyglycolic Acid Meniscal Scaffold. Am. J. Sports Med. 2019, 47, 1804–1815. [Google Scholar] [CrossRef] [PubMed]
- Takroni, T.; Laouar, L.; Adesida, A.; Elliott, J.A.; Jomha, N.M. Anatomical study: Comparing the human, sheep and pig knee meniscus. J. Exp. Orthop. 2016, 3, 35. [Google Scholar] [CrossRef]
- Scholes, C.; Houghton, E.R.; Lee, M.; Lustig, S. Meniscal translation during knee flexion: What do we really know? Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 32–40. [Google Scholar] [CrossRef]
- Tsujii, A.; Amano, H.; Tanaka, Y.; Kita, K.; Uchida, R.; Shiozaki, Y.; Horibe, S. Second look arthroscopic evaluation of repaired radial/oblique tears of the midbody of the lateral meniscus in stable knees. J. Orthop. Sci. 2018, 23, 122–126. [Google Scholar] [CrossRef]
- Dürselen, L.; Hebisch, A.; Claes, L.E.; Bauer, G. Gapping phenomenon of longitudinal meniscal tears. Lin. Biomech. 2003, 18, 505–510. [Google Scholar] [CrossRef]
- Noyes, F.R.; Heckmann, T.P.; Barber-Westin, S.D. Meniscus repair and transplantation: A comprehensive update. J. Orthop. Sports Phys. Ther. 2012, 42, 274–290. [Google Scholar] [CrossRef]
- De Caro, F.; Perdisa, F.; Dhollander, A.; Verdonk, R.; Verdonk, P. Meniscus Scaffolds for Partial Meniscus Defects. Clin. Sports Med. 2020, 39, 83–92. [Google Scholar] [CrossRef]
- Filardo, G.; Andriolo, L.; Kon, E.; de Caro, F.; Marcacci, M. Meniscal scaffolds: Results and indications. A systematic literature review. Int. Orthop. 2015, 39, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Kohli, S.; Schwenck, J.; Barlow, I. Failure rates and clinical outcomes of synthetic meniscal implants following partial menis-cectomy: A systematic review. Knee Surg. Relat. Res. 2022, 34, 27. [Google Scholar] [CrossRef]
- Otsuki, S.; Sezaki, S.; Okamoto, Y.; Ishitani, T.; Wakama, H.; Neo, M. Safety and Efficacy of a Novel Polyglycolic Acid Me-niscal Scaffold for Irreparable Meniscal Tear. Cartilage 2023. [Google Scholar] [CrossRef]
- Tuijthof, G.J.; Horeman, T.; Schafroth, M.U.; Blankevoort, L.; Kerkhoffs, G.M. Probing forces of menisci: What levels are safe for arthroscopic surgery. Knee Surg. Sports Traumatol Arthrosc. 2011, 19, 248–254. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sezaki, S.; Otsuki, S.; Ishitani, T.; Iwata, T.; Hananouchi, T.; Okamoto, Y.; Wakama, H.; Neo, M. Usefulness of Probing Sensor Device for Evaluating Meniscal Suture and Scaffold Implantation. Biomimetics 2024, 9, 246. https://doi.org/10.3390/biomimetics9040246
Sezaki S, Otsuki S, Ishitani T, Iwata T, Hananouchi T, Okamoto Y, Wakama H, Neo M. Usefulness of Probing Sensor Device for Evaluating Meniscal Suture and Scaffold Implantation. Biomimetics. 2024; 9(4):246. https://doi.org/10.3390/biomimetics9040246
Chicago/Turabian StyleSezaki, Shunsuke, Shuhei Otsuki, Takashi Ishitani, Takeru Iwata, Takehito Hananouchi, Yoshinori Okamoto, Hitoshi Wakama, and Masashi Neo. 2024. "Usefulness of Probing Sensor Device for Evaluating Meniscal Suture and Scaffold Implantation" Biomimetics 9, no. 4: 246. https://doi.org/10.3390/biomimetics9040246
APA StyleSezaki, S., Otsuki, S., Ishitani, T., Iwata, T., Hananouchi, T., Okamoto, Y., Wakama, H., & Neo, M. (2024). Usefulness of Probing Sensor Device for Evaluating Meniscal Suture and Scaffold Implantation. Biomimetics, 9(4), 246. https://doi.org/10.3390/biomimetics9040246