Bio-Inspired Textiles for Self-Driven Oil–Water Separation—A Simulative Analysis of Fluid Transport
Abstract
:1. Introduction
2. Abstraction of Biological Role Model and Transfer to Technology
2.1. Biomimetic Method
2.2. Results of Biomimetic Process
2.3. Discussion of the Biomimetic Process
3. Oil Transport Inside the Bio-Inspired Textile
3.1. Method
3.1.1. Simulation Setup
3.1.2. Method of Experimental Validation of Simulation
3.1.3. Method of Parameter Variation
3.2. Results of Investigation of Oil-Transport inside the Bio-Inspired Textile
3.2.1. Analysis of the Simulated Flow Field
3.2.2. Experimental Validation of Simulation
3.2.3. Parameter Variation
3.3. Discussion
3.3.1. General Oil Transport
3.3.2. Experimental Validation
3.3.3. Parameter Variation
4. Conclusions
- increasing the pile filament diameter;
- increasing the filament spacing;
- reducing the pile length up to a limit value.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Water contact angle | |
Oil contact angle | |
A | Distance of pile filament |
bc | Boundary condition |
BOA | Bionic oil adsorber |
C | Supplementary variable |
CFD | Computational fluid dynamics |
CFL | Courant–Friedrichs–Lewy |
D | Diameter of pile filament |
GIMP | GNU Image Manipulation Program |
ICEM | ANSYS® ICEM CFD grid generation software |
Normal vector to the surfaces | |
NSE | Navier–Stokes equations |
ρ | Density |
p | Pressure |
S | Length of pile filament |
τ | Shear stress |
t | Time |
u | Velocity |
voil | Oil transport velocity |
V | Volume |
VDI | Verein Deutscher Ingenieure e. V. |
VoF | Volume of fluid |
Appendix A
References
- Fingas, M. Introduction to Oil Spills and their Clean-up. In Handbook of Biodiesel and Petrodiesel Fuels, 1st ed.; Konur, O., Ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2021; pp. 875–889. ISBN 9780367456252. [Google Scholar]
- Statista. Global Oil Production 2022|Statista. Available online: https://www.statista.com/statistics/265229/global-oil-production-in-million-metric-tons/ (accessed on 16 August 2023).
- Helle, I.; Jolma, A.; Venesjärvi, R. Species and habitats in danger: Estimating the relative risk posed by oil spills in the northern Baltic Sea. Ecosphere 2016, 7, e01344. [Google Scholar] [CrossRef]
- Green, J.; Trett, M.W. The Fate and Effects of Oil in Freshwater; Springer: Dordrecht, The Netherlands, 1989; ISBN 978-94-010-6990-8. [Google Scholar]
- Barthlott, W.; Büdel, B.; Mail, M.; Neumann, K.M.; Bartels, D.; Fischer, E. Superhydrophobic Terrestrial Cyanobacteria and Land Plant Transition. Front. Plant Sci. 2022, 13, 880439. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nano-Micro Lett. 2017, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W. Self-Cleaning Surfaces in Plants: The Discovery of the Lotus Effect as a Key Innovation for Biomimetic Technologies. In Handbook of Self-Cleaning Surfaces and Materials; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 359–369. [Google Scholar]
- Barthlott, W.; Moosmann, M.; Noll, I.; Akdere, M.; Wagner, J.; Roling, N.; Koepchen-Thomä, L.; Azad, M.A.K.; Klopp, K.; Gries, T.; et al. Adsorption and superficial transport of oil on biological and bionic superhydrophobic surfaces: A novel technique for oil-water separation. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190447. [Google Scholar] [CrossRef]
- Barthlott, W.; Gries, T.; Klopp, K.; Ditsche, P.; Beek, L.; Akdere, M.; Mail, M. Entwicklung Eines Physikalischen Bionischen Verfahrens zur Entfernung von Ölverschmutzungen auf Wasser unter Einsatz Superhydrophober Fuktionstextilien: BOA (Bionic Oil Adsorber). Abschlussbericht Über Ein Forschungsprojekt Gefördert Unter dem Az 34602/01 von der Deutschen Bundesstiftung Umwelt. 2023. Available online: https://www.dbu.de/OPAC/ab/DBU-Abschlussbericht-AZ-34602_01-Hauptbericht.pdf (accessed on 25 August 2023).
- Beek, L.; Barthlott, W.; Mail, M.; Klopp, K.; Gries, T. Self-Driven Sustainable Oil Separation from Water Surfaces by Biomimetic Adsorbing and Transporting Materials. Separations 2023, 10, 592. [Google Scholar] [CrossRef]
- Malik, A.; Sajjad, S.; Leghari, S.A.K.; Naz, Y.; Masood, M.; Ahmad, I.; Uzair, B. Marvelous oleophillic adsorption ability of SiO2/activated carbon and GO composite nanostructure using polyurethane for rapid oil spill cleanup. Appl. Nanosci. 2021, 11, 1211–1223. [Google Scholar] [CrossRef]
- Mu, L.; Yue, X.; Hao, B.; Wang, R.; Ma, P.-C. Facile preparation of melamine foam with superhydrophobic performance and its system integration with prototype equipment for the clean-up of oil spills on water surface. Sci. Total Environ. 2022, 833, 155184. [Google Scholar] [CrossRef] [PubMed]
- Nandwana, V.; Ribet, S.M.; Reis, R.D.; Kuang, Y.; More, Y.; Dravid, V.P. OHM Sponge: A Versatile, Efficient, and Ecofriendly Environmental Remediation Platform. Ind. Eng. Chem. Res. 2020, 59, 10945–10954. [Google Scholar] [CrossRef]
- Pang, Y.; Yu, Z.; Chen, H.; Xiang, Q.; Wang, Q.; Xie, C.; Liu, Y. Superhydrophobic polyurethane sponge based on sepiolite for efficient oil/water separation. J. Hazard. Mater. 2022, 434, 128833. [Google Scholar] [CrossRef]
- Venkatesan, N.; Yuvaraj, P.; Fathima, N.N. Fabrication of non-fluorinated superhydrophobic and flame retardant porous material for efficient oil/water separation. Mater. Chem. Phys. 2022, 286, 126190. [Google Scholar] [CrossRef]
- Wang, B.; Wang, B.; Zhang, Y.; Ma, S.; Yang, X.; Feng, Y.; Liu, C.; Shen, C. Superhydrophobic porous polyvinylidene fluoride monolith with outstanding environmental suitability for high-efficient continuous oil/water separation under harsh conditions. J. Environ. Chem. Eng. 2022, 10, 107480. [Google Scholar] [CrossRef]
- Zhan, B.; Liu, Y.; Zhou, W.-T.; Li, S.-Y.; Chen, Z.-B.; Stegmaier, T.; Aliabadi, M.; Han, Z.-W.; Ren, L.-Q. Multifunctional 3D GO/g-C3N4/TiO2 foam for oil-water separation and dye adsorption. Appl. Surf. Sci. 2021, 541, 148638. [Google Scholar] [CrossRef]
- Hakeim, O.A.; Abdelghaffar, F.; El-Gabry, L.K. Investigation of Egyptian Chorisia spp. fiber as a natural sorbent for oil spill cleanup. Environ. Technol. Innov. 2022, 25, 102134. [Google Scholar] [CrossRef]
- Lee, C.H.; Johnson, N.; Drelich, J.; Yap, Y.K. The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon 2011, 49, 669–676. [Google Scholar] [CrossRef]
- Liu, B.; Fu, Y.; Guo, Z. Superhydrophobic/Superoleophilic Copper Mesh for Heavy Oil-water Separation. Chem. Lett. 2022, 51, 796–798. [Google Scholar] [CrossRef]
- Wang, M.; Xu, J.; Ren, W.; Wang, J.; Zou, Z.; Wang, X. Laser Electrochemical Deposition Hybrid Preparation of an Oil–Water Separation Mesh with Controllable Pore Diameter Based on a BP Neural Network. Langmuir 2023, 39, 7281–7293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, P.; Gao, Y.; Yun, J. Fabrication of superhydrophobic copper meshes via simply soaking for oil/water separation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128648. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, Y.; Chen, M.; Xu, Z.; Li, L.; Zhou, Y. Metal mesh-based special wettability materials for oil-water separation: A review of the recent development. J. Pet. Sci. Eng. 2021, 205, 108889. [Google Scholar] [CrossRef]
- Bang, J.; Park, S.; Hwang, S.-W.; Oh, J.-K.; Yeo, H.; Jin, H.-J.; Kwak, H.W. Biodegradable and Hydrophobic Nanofibrous Membranes Produced by Solution Blow Spinning for Efficient Oil/Water Separation. SSRN J. 2022, 312, 137240. [Google Scholar] [CrossRef]
- Sun, F.; Li, T.-T.; Ren, H.-T.; Shiu, B.-C.; Peng, H.-K.; Lin, J.-H.; Lou, C.-W. Multi-scaled, hierarchical nanofibrous membrane for oil/water separation and photocatalysis: Preparation, characterization and properties evaluation. Prog. Org. Coat. 2021, 152, 106125. [Google Scholar] [CrossRef]
- Feng, Q.; Zhan, Y.; Yang, W.; Dong, H.; Sun, A.; Liu, Y.; Wen, X.; Chiao, Y.-H.; Zhang, S. Layer-by-layer construction of super-hydrophilic and self-healing polyvinylidene fluoride composite membrane for efficient oil/water emulsion separation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127462. [Google Scholar] [CrossRef]
- Gupta, R.K.; Dunderdale, G.J.; England, M.W.; Hozumi, A. Oil/water separation techniques: A review of recent progresses and future directions. J. Mater. Chem. A 2017, 5, 16025–16058. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Xiong, Y.; Zheng, W.; Liu, W.; He, M.; Li, L.; Liu, J.; Lu, L.; Peng, K. Spider silk bioinspired superhydrophilic nanofibrous membrane for efficient oil/water separation of nanoemulsions. Sep. Purif. Technol. 2022, 280, 119824. [Google Scholar] [CrossRef]
- Gao, Q.; Cheng, S.; Wang, X.; Tang, Y.; Yuan, Y.; Li, A.; Guan, S. Three-dimensional hierarchical nanostructured porous epoxidized natural rubber latex/poly(vinyl alcohol) material for oil/water separation. J. Appl. Polym. Sci. 2022, 139, e52825. [Google Scholar] [CrossRef]
- Jha, P.; Koiry, S.P.; Sridevi, C.; Putta, V.; Gupta, D.; Chauhan, A.K. A strategy towards the synthesis of superhydrophobic/superoleophilic non-fluorinated polypyrrole nanotubes for oil–water separation. RSC Adv. 2020, 10, 33747–33752. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, X.; Yan, L.; Bai, Y.; Li, S.; Sorokin, P.; Shao, L. Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. J. Membr. Sci. 2021, 618, 118525. [Google Scholar] [CrossRef]
- Ubah, P.C.; Dashti, A.F.; Saaid, M.; Imam, S.S.; Adnan, R. Fabrication and response optimization of Moringa oleifera-functionalized nanosorbents for the removal of diesel range organics from contaminated water. Environ. Sci. Pollut. Res. 2023, 30, 4462–4484. [Google Scholar] [CrossRef] [PubMed]
- VDI. Bionik: Grundlagen, Konzeption und Strategie; Beuth: Berlin, Germany, 2021; (6220 Blatt 1). [Google Scholar]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
- Barthlott, W.; Schimmel, T.; Wiersch, S.; Koch, K.; Brede, M.; Barczewski, M.; Walheim, S.; Weis, A.; Kaltenmaier, A.; Leder, A.; et al. The salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv. Mater. 2010, 22, 2325–2328. [Google Scholar] [CrossRef]
- Barthlott, W.; Böhnlein, B.; Mail, M. Grid structures for Stabile Gas Retention under Liquids. WO 2017/108958 A1, 29 June 2017. [Google Scholar]
- Barthlott, W.; Mail, M.; Mayser, M. Bionische Reibungsreduktion: Eine Lufthülle hilft Schffen Treibstoff zu spren. In Bionik: Patente aus der Natur; Bremer Bionik-Kongress, Kesel, A.B., Zehren, D., Eds.; Bionic-Innovations-Centrum: Bremen, Germany, 2015; pp. 126–134. ISBN 978-3-00-048202-1. [Google Scholar]
- Gandyra, D.; Walheim, S.; Gorb, S.; Ditsche, P.; Barthlott, W.; Schimmel, T. Air Retention under Water by the Floating Fern Salvinia: The Crucial Role of a Trapped Air Layer as a Pneumatic Spring. Small 2020, 16, e2003425. [Google Scholar] [CrossRef]
- Karlsruher Institut fuer Technologie. Schiffe Gleiten in einer Hülle aus Luft. Available online: https://www.kit.edu/kit/pi_2019_045_schiffe-gleiten-in-einer-hulle-aus-luft.php (accessed on 26 February 2024).
- Melskotte, J.-E.; Brede, M.; Wolter; Andreas; Barthlott, W.; Leder, A. Schleppversuche an künstlichen, lufthaltenden Oberflächen zur Reibungsreduktion am Schiff. In Fachtagung “Lasermethoden in der Strömungsmesstechnik”; German Association for Laser Anemometry GALA e.V.: Munich, Germany, 2013; pp. 53-1–53-7. [Google Scholar]
- Tricinci, O.; Terencio, T.; Mazzolai, B.; Pugno, N.M.; Greco, F.; Mattoli, V. 3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography. ACS Appl. Mater. Interfaces 2015, 7, 25560–25567. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Akdere, M.; Gürbüz, K.; Beek, L.; Klopp, K.; Ditsche, P.; Mail, M.; Barthlott, W.; Gries, T. Bionic oil adsorbing and transporting surfaces:A simulative determination of parameters for functional textiles. Appl. Surf. Sci. 2022. submitted. [Google Scholar]
- Lecheler, S. Numerische Strömungsberechnung: Schneller Einstieg in ANSYS-CFX durch Einfache Beispiele, 5. Auflage; Springer Vieweg: Wiesbaden, Germany, 2023; ISBN 9783658424060. [Google Scholar]
- Schwarze, R. CFD-Modellierung: Grundlagen und Anwendungen bei Strömungsprozessen; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3642243776. [Google Scholar]
- Laurien, E.; Oertel, H. Numerische Strömungsmechanik: Grundgleichungen und Modelle—Lösungsmethoden—Qualität und Genauigkeit, 6. Aufl.; Springer Vieweg: Wiesbaden, Germany, 2018; ISBN 9783658210601. [Google Scholar]
- ANSYS Inc. ANSYS Fluent Theory Guide 2021 R2; ANSYS: Canonsburg, PA, USA, 2021. [Google Scholar]
- Schulze, L.; Thorenz, C. Mehrphasenmodellierung im Wasserbau. In Wasserbauwerke—Vom Hydraulischen Entwurf bis zum Betrieb; Bundesanstalt für Wasserbau, Ed.; Infozentrum Wasserbau: Karlsruhe, Germany, 2015; pp. 53–58. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Oil in the Sea IV: Inputs, Fates, and Effects; The National Academies Press: Washington, DC, USA, 2022; ISBN 978-0-309-27429-6. [Google Scholar]
- Rengasamy, R.S. Wetting phenomena in fibrous materials. In Thermal and Moisture Transport in Fibrous Materials; Pan, N., Gibson, P., Eds.; CRC Press: Boca Raton, FL, USA; Cambridge, UK, 2011; pp. 156–187. ISBN 9781845692261. [Google Scholar]
- Kissa, E. Wetting and Wicking. Text. Res. J. 1996, 66, 660–668. [Google Scholar] [CrossRef]
Variant | Pile Length S [mm] | Pile Yarn Spacing A [mm] | Pile Yarn Diameter D [µm] | |||
---|---|---|---|---|---|---|
a | − | 1.05 | + | 1.2 | − | 35 |
b | − | 1.05 | + | 1.2 | + | 105 |
c | − | 1.05 | − | 0.4 | − | 35 |
d | − | 1.05 | − | 0.4 | + | 105 |
e | + | 3.15 | − | 0.4 | − | 35 |
f | + | 3.15 | − | 0.4 | + | 105 |
g | + | 3.15 | + | 1.2 | − | 35 |
h | + | 3.15 | + | 1.2 | + | 105 |
Variant | Pile Length S [mm] | Pile Yarn Spacing A [mm] | Pile Yarn Diameter D [µm] | Oil Transport Velocity voil [mm/s] |
---|---|---|---|---|
b | 1.05 | 1.2 | 105 | 4.06 |
i | 0.5 | 1.8 | 210 | 4.28 |
j | 0.75 | 1.6 | 157.5 | 4.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beek, L.; Skirde, J.-E.; Akdere, M.; Gries, T. Bio-Inspired Textiles for Self-Driven Oil–Water Separation—A Simulative Analysis of Fluid Transport. Biomimetics 2024, 9, 261. https://doi.org/10.3390/biomimetics9050261
Beek L, Skirde J-E, Akdere M, Gries T. Bio-Inspired Textiles for Self-Driven Oil–Water Separation—A Simulative Analysis of Fluid Transport. Biomimetics. 2024; 9(5):261. https://doi.org/10.3390/biomimetics9050261
Chicago/Turabian StyleBeek, Leonie, Jan-Eric Skirde, Musa Akdere, and Thomas Gries. 2024. "Bio-Inspired Textiles for Self-Driven Oil–Water Separation—A Simulative Analysis of Fluid Transport" Biomimetics 9, no. 5: 261. https://doi.org/10.3390/biomimetics9050261
APA StyleBeek, L., Skirde, J. -E., Akdere, M., & Gries, T. (2024). Bio-Inspired Textiles for Self-Driven Oil–Water Separation—A Simulative Analysis of Fluid Transport. Biomimetics, 9(5), 261. https://doi.org/10.3390/biomimetics9050261