Crystal-Inspired Cellular Metamaterials and Triply Periodic Minimal Surfaces
Abstract
:1. Introduction
2. Crystal-Inspired Lattices and TPMS
2.1. Zeolites
2.2. Schwarzites
2.3. Pentadiamond
2.4. TPMS from Crystal Structure
2.5. Quartz
2.6. Liquid Crystals
2.7. Polymers and Elastomers
2.8. High-Throughput Approach
3. Strut (Truss)-Based Crystal-Inspired Lattices
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nosonovsky, M.; Rohatgi, P.K. Biomimetics in Materials Science; Springer Series in Materials Science; Springer: New York, NY, USA, 2012; Volume 152, ISBN 978-1-4614-0925-0. [Google Scholar]
- Hasan, M.S.; Nosonovsky, M. Lotus Effect and Friction: Does Nonsticky Mean Slippery? Biomimetics 2020, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Nosonovsky, M. Cultural Implications of Biomimetics: Changing the Perception of Living and Non-Living. MOJ Appl. Bionics Biomech. 2018, 2, 230–236. [Google Scholar] [CrossRef]
- Mackay, A.L. Periodic Minimal Surfaces. Physica B+C 1985, 131, 300–305. [Google Scholar] [CrossRef]
- Deng, Y.; Mieczkowski, M. Three-Dimensional Periodic Cubic Membrane Structure in the Mitochondria of Amoebae Chaos Carolinensis. Protoplasma 1998, 203, 16–25. [Google Scholar] [CrossRef]
- Von Schnering, H.G.; Nesper, R. How Nature Adapts Chemical Structures to Curved Surfaces. Angew. Chem. Int. Ed. Engl. 1987, 26, 1059–1080. [Google Scholar] [CrossRef]
- Rocha, F.; Delmelle, R.; Georgiadis, C.; Proost, J. Electrochemical Performance Enhancement of 3D Printed Electrodes Tailored for Enhanced Gas Evacuation during Alkaline Water Electrolysis. Adv. Energy Mater. 2023, 13, 2203087. [Google Scholar] [CrossRef]
- Fan, X.; Tang, Q.; Feng, Q.; Ma, S.; Song, J.; Jin, M.; Guo, F.; Jin, P. Design, Mechanical Properties and Energy Absorption Capability of Graded-Thickness Triply Periodic Minimal Surface Structures Fabricated by Selective Laser Melting. Int. J. Mech. Sci. 2021, 204, 106586. [Google Scholar] [CrossRef]
- Shevchenko, V.; Balabanov, S.; Sychov, M.; Karimova, L. Prediction of Cellular Structure Mechanical Properties with the Geometry of Triply Periodic Minimal Surfaces (TPMS). ACS Omega 2023, 8, 26895–26905. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Ohnuki, R.; Yoshioka, S. Discovery of I-WP Minimal-Surface-Based Photonic Crystal in the Scale of a Longhorn Beetle. J. R. Soc. Interface 2021, 18, 20210505. [Google Scholar] [CrossRef]
- Lei, H.-Y.; Li, J.-R.; Wang, Q.-H.; Xu, Z.-J.; Zhou, W.; Yu, C.-L.; Zheng, T.-Q. Feasibility of Preparing Additive Manufactured Porous Stainless Steel Felts with Mathematical Micro Pore Structure as Novel Catalyst Support for Hydrogen Production via Methanol Steam Reforming. Int. J. Hydrogen Energy 2019, 44, 24782–24791. [Google Scholar] [CrossRef]
- Thomas, N.; Sreedhar, N.; Al-Ketan, O.; Rowshan, R.; Abu Al-Rub, R.K.; Arafat, H. 3D Printed Triply Periodic Minimal Surfaces as Spacers for Enhanced Heat and Mass Transfer in Membrane Distillation. Desalination 2018, 443, 256–271. [Google Scholar] [CrossRef]
- Sreedhar, N.; Thomas, N.; Al-Ketan, O.; Rowshan, R.; Hernandez, H.; Abu Al-Rub, R.K.; Arafat, H.A. 3D Printed Feed Spacers Based on Triply Periodic Minimal Surfaces for Flux Enhancement and Biofouling Mitigation in RO and UF. Desalination 2018, 425, 12–21. [Google Scholar] [CrossRef]
- Karcher, H.; Polthier, K. Construction of Triply Periodic Minimal Surfaces. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1996, 354, 2077–2104. [Google Scholar] [CrossRef]
- Schwarz, H.A. Gesammelte Mathematische Abhandlungen; Springer: Berlin/Heidelberg, Germany, 1890; ISBN 978-3-642-50356-6. [Google Scholar]
- Shevchenko, V.Y.; Makogon, A.I.; Sychov, M.M.; Nosonovsky, M.; Skorb, E.V. Reaction–Diffusion Pathways for a Programmable Nanoscale Texture of the Diamond–SiC Composite. Langmuir 2022, 38, 15220–15225. [Google Scholar] [CrossRef] [PubMed]
- Michielsen, K.; Stavenga, D. Gyroid Cuticular Structures in Butterfly Wing Scales: Biological Photonic Crystals. J. R. Soc. Interface 2008, 5, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Pouya, C.; Overvelde, J.T.B.; Kolle, M.; Aizenberg, J.; Bertoldi, K.; Weaver, J.C.; Vukusic, P. Characterization of a Mechanically Tunable Gyroid Photonic Crystal Inspired by the Butterfly Parides Sesostris. Adv. Opt. Mater. 2016, 4, 99–105. [Google Scholar] [CrossRef]
- Lai, M.; Kulak, A.N.; Law, D.; Zhang, Z.; Meldrum, F.C.; Riley, D.J. Profiting from Nature: Macroporous Copper with Superior Mechanical Properties. Chem. Commun. 2007, 34, 3547–3549. [Google Scholar] [CrossRef]
- Li, W.; Yu, G.; Yu, Z. Bioinspired Heat Exchangers Based on Triply Periodic Minimal Surfaces for Supercritical CO2 Cycles. Appl. Therm. Eng. 2020, 179, 115686. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Abu Al-Rub, R.K. Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Adv. Eng. Mater. 2019, 21, 1900524. [Google Scholar] [CrossRef]
- Meza, L.R.; Zelhofer, A.J.; Clarke, N.; Mateos, A.J.; Kochmann, D.M.; Greer, J.R. Resilient 3D Hierarchical Architected Metamaterials. Proc. Natl. Acad. Sci. USA 2015, 112, 11502–11507. [Google Scholar] [CrossRef]
- Ambekar, R.S.; Oliveira, E.F.; Kushwaha, B.; Pal, V.; Machado, L.D.; Sajadi, S.M.; Baughman, R.H.; Ajayan, P.M.; Roy, A.K.; Galvao, D.S.; et al. On the Mechanical Properties of Atomic and 3D Printed Zeolite-Templated Carbon Nanotube Networks. Addit. Manuf. 2021, 37, 101628. [Google Scholar] [CrossRef]
- Maskery, I.; Aboulkhair, N.T.; Aremu, A.O.; Tuck, C.J.; Ashcroft, I.A. Compressive Failure Modes and Energy Absorption in Additively Manufactured Double Gyroid Lattices. Addit. Manuf. 2017, 16, 24–29. [Google Scholar] [CrossRef]
- Yu, S.; Sun, J.; Bai, J. Investigation of Functionally Graded TPMS Structures Fabricated by Additive Manufacturing. Mater. Des. 2019, 182, 108021. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, Z.; Deng, J.; Guo, X.; Cheng, B.; Hou, H. Acoustic Metamaterials for Noise Reduction: A Review. Adv. Mater. Technol. 2022, 7, 2100698. [Google Scholar] [CrossRef]
- Jung, H.; Jo, H.; Lee, W.; Kim, B.; Choi, H.; Kang, M.S.; Lee, H. Electrical Control of Electromagnetically Induced Transparency by Terahertz Metamaterial Funneling. Adv. Opt. Mater. 2019, 7, 1801205. [Google Scholar] [CrossRef]
- Wu, L.; Li, B.; Zhou, J. Isotropic Negative Thermal Expansion Metamaterials. ACS Appl. Mater. Interfaces 2016, 8, 17721–17727. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, C.; Li, Y.; Li, J.; Qiao, L.; Zhou, J.; Bai, Y. Programmable Mechanical Metamaterials with Tailorable Negative Poisson’s Ratio and Arbitrary Thermal Expansion in Multiple Thermal Deformation Modes. ACS Appl. Mater. Interfaces 2022, 14, 35905–35916. [Google Scholar] [CrossRef] [PubMed]
- Narayana, S.; Sato, Y. DC Magnetic Cloak. Adv. Mater. 2012, 24, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ai, B.; Wong, Z.J. Soft Optical Metamaterials. Nano Converg. 2020, 7, 18. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A Tool for Manipulating and Converting Atomic Data Files. Comput. Phys. Commun. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Yu, S.; Hwang, Y.H.; Lee, K.T.; Kim, S.O.; Hwang, J.Y.; Hong, S.H. Outstanding Strengthening and Toughening Behavior of 3D-Printed Fiber-Reinforced Composites Designed by Biomimetic Interfacial Heterogeneity. Adv. Sci. 2022, 9, 2103561. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Liu, L.; Chen, Y.; Chu, M.; Sun, H.; Shan, W.; Chen, Y. 3D-Printed Cactus-Inspired Spine Structures for Highly Efficient Water Collection. Adv. Mater. Interfaces 2020, 7, 1901752. [Google Scholar] [CrossRef]
- Lee, J.M.; Sing, S.L.; Zhou, M.; Yeong, W.Y. 3D Bioprinting Processes: A Perspective on Classification and Terminology. Int. J. Bioprinting 1970, 4, 151. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Rowshan, R.; Alami, A.H. Biomimetic Materials for Engineering Applications. In Encyclopedia of Smart Materials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 25–34. [Google Scholar]
- Srivastava, A.; Ambekar, R.S.; Gupta, B.; Tiwary, C.S.; Gupta, A.K. Schwarzite-Based 3D-Printed Carriers for Enhanced Performance of Sequencing Batch Biofilm Reactor (SBBR) for Wastewater Treatment. J. Environ. Chem. Eng. 2024, 12, 111794. [Google Scholar] [CrossRef]
- Ellebracht, N.C.; Roy, P.; Moore, T.; Gongora, A.E.; Oyarzun, D.I.; Stolaroff, J.K.; Nguyen, D.T. 3D Printed Triply Periodic Minimal Surfaces as Advanced Structured Packings for Solvent-Based CO2 Capture. Energy Environ. Sci. 2023, 16, 1752–1762. [Google Scholar] [CrossRef]
- Hsieh, M.-T.; Begley, M.R.; Valdevit, L. Architected Implant Designs for Long Bones: Advantages of Minimal Surface-Based Topologies. Mater. Des. 2021, 207, 109838. [Google Scholar] [CrossRef]
- Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone Biomaterials and Interactions with Stem Cells. Bone Res. 2017, 5, 17059. [Google Scholar] [CrossRef]
- Costanza, G.; Solaiyappan, D.; Tata, M.E. Properties, Applications and Recent Developments of Cellular Solid Materials: A Review. Materials 2023, 16, 7076. [Google Scholar] [CrossRef]
- Kosinov, N.; Gascon, J.; Kapteijn, F.; Hensen, E.J.M. Recent Developments in Zeolite Membranes for Gas Separation. J. Memb. Sci. 2016, 499, 65–79. [Google Scholar] [CrossRef]
- Taarning, E.; Osmundsen, C.M.; Yang, X.; Voss, B.; Andersen, S.I.; Christensen, C.H. Zeolite-Catalyzed Biomass Conversion to Fuels and Chemicals. Energy Environ. Sci. 2011, 4, 793–804. [Google Scholar] [CrossRef]
- Rahman, R.O.A.; El-Kamash, A.M.; Hung, Y.-T. Applications of Nano-Zeolite in Wastewater Treatment: An Overview. Water 2022, 14, 137. [Google Scholar] [CrossRef]
- Yu, L.; Nobandegani, M.S.; Holmgren, A.; Hedlund, J. Highly Permeable and Selective Tubular Zeolite CHA Membranes. J. Memb. Sci. 2019, 588, 117224. [Google Scholar] [CrossRef]
- Krishna, R.; van Baten, J.M. Using Molecular Simulations for Screening of Zeolites for Separation of CO2/CH4 Mixtures. Chem. Eng. J. 2007, 133, 121–131. [Google Scholar] [CrossRef]
- Endo, M.; Yoshikawa, E.; Muramatsu, N.; Takizawa, N.; Kawai, T.; Unuma, H.; Sasaki, A.; Masano, A.; Takeyama, Y.; Kahara, T. The Removal of Cesium Ion with Natural Itaya Zeolite and the Ion Exchange Characteristics. J. Chem. Technol. Biotechnol. 2013, 88, 1597–1602. [Google Scholar] [CrossRef]
- Inami, H.; Abe, C.; Hasegawa, Y. Development of Ammonia Selectively Permeable Zeolite Membrane for Sensor in Sewer System. Membranes 2021, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hong, M.; Song, J.; Kim, N.; Min, K. Correlating Atomistic Characteristics of Zeolites to Their 3D-Printed Macro Structural Properties for Prediction of Mechanical Response. Mater. Des. 2023, 233, 112189. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Fogarty, J.C.; Aktulga, H.M.; Grama, A.Y.; van Duin, A.C.T.; Pandit, S.A. A Reactive Molecular Dynamics Simulation of the Silica-Water Interface. J. Chem. Phys. 2010, 132, 174704. [Google Scholar] [CrossRef]
- Du, T.; Sørensen, S.S.; Zhou, Q.; Bauchy, M.; Smedskjaer, M.M. Accessing a Forbidden Disordered State of a Zeolitic Imidazolate Framework with Higher Stiffness and Toughness through Irradiation. Chem. Mater. 2022, 34, 8749–8759. [Google Scholar] [CrossRef]
- Felix, L.C.; Woellner, C.F.; Galvao, D.S. Mechanical and Energy-Absorption Properties of Schwarzites. Carbon 2020, 157, 670–680. [Google Scholar] [CrossRef]
- Baerlocher, C.; Brouwer, D.; Marler, B.; McCusker, L.B. Database of Zeolite Structures. Available online: https://www.iza-structure.org/databases/ (accessed on 17 March 2024).
- Evans, J.D.; Coudert, F.-X. Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning. Chem. Mater. 2017, 29, 7833–7839. [Google Scholar] [CrossRef]
- Mackay, A.L.; Terrones, H. Diamond from Graphite. Nature 1991, 352, 762. [Google Scholar] [CrossRef]
- Terrones, H.; Terrones, M. Curved Nanostructured Materials. New J. Phys. 2003, 5, 126. [Google Scholar] [CrossRef]
- Terrones, H.; Mackay, A.L. The Geometry of Hypothetical Curved Graphite Structures. Carbon 1992, 30, 1251–1260. [Google Scholar] [CrossRef]
- Lenosky, T.; Gonze, X.; Teter, M.; Elser, V. Energetics of Negatively Curved Graphitic Carbon. Nature 1992, 355, 333–335. [Google Scholar] [CrossRef]
- Herkal, S.; Rahman, M.M.; Nagarajaiah, S.; Harikrishnan, V.V.J.; Ajayan, P. 3D Printed Metamaterials for Damping Enhancement and Vibration Isolation: Schwarzites. Mech. Syst. Signal Process. 2023, 185, 109819. [Google Scholar] [CrossRef]
- Singh, H.; Santos, A.B.; Das, D.; Ambekar, R.S.; Saxena, P.; Woellner, C.F.; Katiyar, N.K.; Tiwary, C.S. Stress Concentration Targeted Reinforcement Using Multi-Material Based 3D Printing. Appl. Mater. Today 2024, 36, 102010. [Google Scholar] [CrossRef]
- Saatchi, D.; Oh, S.; Oh, I. Biomimetic and Biophilic Design of Multifunctional Symbiotic Lichen–Schwarz Metamaterial. Adv. Funct. Mater. 2023, 33, 2214580. [Google Scholar] [CrossRef]
- Bastos, L.V.; Ambekar, R.S.; Tiwary, C.S.; Galvao, D.S.; Woellner, C.F. Mechanical Energy Absorption of Architecturally Interlocked Petal-Schwarzites. Carbon Trends 2023, 13, 100299. [Google Scholar] [CrossRef]
- Miller, D.C.; Terrones, M.; Terrones, H. Mechanical Properties of Hypothetical Graphene Foams: Giant Schwarzites. Carbon 2016, 96, 1191–1199. [Google Scholar] [CrossRef]
- Felix, L.C.; Ambekar, R.S.; Woellner, C.F.; Kushwaha, B.; Pal, V.; Tiwary, C.S.; Galvao, D.S. Mechanical Properties of 3D-Printed Pentadiamond. J. Phys. D Appl. Phys. 2022, 55, 465301. [Google Scholar] [CrossRef]
- Liu, X.; Yu, P.; Lu, C. Mechanical property and thermal conductivity of pentadiamond: A comprehensive molecular dynamics study. Comp. Mater. Sci. 2022, 203, 111039. [Google Scholar] [CrossRef]
- Ashby, M. The Properties of Foams and Lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Hao, L.; Hussein, A.; Young, P.; Raymont, D. Advanced Lightweight 316L Stainless Steel Cellular Lattice Structures Fabricated via Selective Laser Melting. Mater. Des. 2014, 55, 533–541. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, F.; Fu, G.; Zhang, D.; Zhang, T.; Zhou, H. Improved Mechanical Properties and Energy Absorption of BCC Lattice Structures with Triply Periodic Minimal Surfaces Fabricated by SLM. Materials 2018, 11, 2411. [Google Scholar] [CrossRef]
- Gümrük, R.; Mines, R.A.W.; Karadeniz, S. Static Mechanical Behaviours of Stainless Steel Micro-Lattice Structures under Different Loading Conditions. Mater. Sci. Eng. A 2013, 586, 392–406. [Google Scholar] [CrossRef]
- Tsopanos, S.; Mines, R.A.W.; McKown, S.; Shen, Y.; Cantwell, W.J.; Brooks, W.; Sutcliffe, C.J. The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Microlattice Structures. J. Manuf. Sci. Eng. 2010, 132, 041011. [Google Scholar] [CrossRef]
- Leary, M.; Mazur, M.; Williams, H.; Yang, E.; Alghamdi, A.; Lozanovski, B.; Zhang, X.; Shidid, D.; Farahbod-Sternahl, L.; Witt, G.; et al. Inconel 625 Lattice Structures Manufactured by Selective Laser Melting (SLM): Mechanical Properties, Deformation and Failure Modes. Mater. Des. 2018, 157, 179–199. [Google Scholar] [CrossRef]
- Campanelli, S.; Contuzzi, N.; Ludovico, A.; Caiazzo, F.; Cardaropoli, F.; Sergi, V. Manufacturing and Characterization of Ti6Al4V Lattice Components Manufactured by Selective Laser Melting. Materials 2014, 7, 4803–4822. [Google Scholar] [CrossRef] [PubMed]
- Arabnejad, S.; Burnett Johnston, R.; Pura, J.A.; Singh, B.; Tanzer, M.; Pasini, D. High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints. Acta Biomater. 2016, 30, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Al-Ketan, O.; Rowshan, R.; Abu Al-Rub, R.K. Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials. Addit. Manuf. 2018, 19, 167–183. [Google Scholar] [CrossRef]
- Yang, E.; Leary, M.; Lozanovski, B.; Downing, D.; Mazur, M.; Sarker, A.; Khorasani, A.; Jones, A.; Maconachie, T.; Bateman, S.; et al. Effect of Geometry on the Mechanical Properties of Ti-6Al-4V Gyroid Structures Fabricated via SLM: A Numerical Study. Mater. Des. 2019, 184, 108165. [Google Scholar] [CrossRef]
- Yan, C.; Hao, L.; Hussein, A.; Young, P. Ti–6Al–4V Triply Periodic Minimal Surface Structures for Bone Implants Fabricated via Selective Laser Melting. J. Mech. Behav. Biomed. Mater. 2015, 51, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Alabort, E.; Barba, D.; Reed, R.C. Design of Metallic Bone by Additive Manufacturing. Scr. Mater. 2019, 164, 110–114. [Google Scholar] [CrossRef]
- Bobbert, F.S.L.; Lietaert, K.; Eftekhari, A.A.; Pouran, B.; Ahmadi, S.M.; Weinans, H.; Zadpoor, A.A. Additively Manufactured Metallic Porous Biomaterials Based on Minimal Surfaces: A Unique Combination of Topological, Mechanical, and Mass Transport Properties. Acta Biomater. 2017, 53, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Maszybrocka, J.; Gapiński, B.; Dworak, M.; Skrabalak, G.; Stwora, A. The Manufacturability and Compression Properties of the Schwarz Diamond Type Ti6Al4V Cellular Lattice Fabricated by Selective Laser Melting. Int. J. Adv. Manuf. Technol. 2019, 105, 3411–3425. [Google Scholar] [CrossRef]
- Li, S.J.; Xu, Q.S.; Wang, Z.; Hou, W.T.; Hao, Y.L.; Yang, R.; Murr, L.E. Influence of Cell Shape on Mechanical Properties of Ti–6Al–4V Meshes Fabricated by Electron Beam Melting Method. Acta Biomater. 2014, 10, 4537–4547. [Google Scholar] [CrossRef]
- Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A. Mechanical Evaluation of Porous Titanium (Ti6Al4V) Structures with Electron Beam Melting (EBM). J. Mech. Behav. Biomed. Mater. 2010, 3, 249–259. [Google Scholar] [CrossRef]
- Zaharin, H.; Abdul Rani, A.; Azam, F.; Ginta, T.; Sallih, N.; Ahmad, A.; Yunus, N.; Zulkifli, T. Effect of Unit Cell Type and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds. Materials 2018, 11, 2402. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, A.; Yánez, A.; Martel, O.; Deviaene, S.; Monopoli, D. Influence of Load Orientation and of Types of Loads on the Mechanical Properties of Porous Ti6Al4V Biomaterials. Mater. Des. 2017, 135, 309–318. [Google Scholar] [CrossRef]
- Ahmadi, S.M.; Campoli, G.; Amin Yavari, S.; Sajadi, B.; Wauthle, R.; Schrooten, J.; Weinans, H.; Zadpoor, A.A. Mechanical Behavior of Regular Open-Cell Porous Biomaterials Made of Diamond Lattice Unit Cells. J. Mech. Behav. Biomed. Mater. 2014, 34, 106–115. [Google Scholar] [CrossRef]
- Hedayati, R.; Janbaz, S.; Sadighi, M.; Mohammadi-Aghdam, M.; Zadpoor, A.A. How Does Tissue Regeneration Influence the Mechanical Behavior of Additively Manufactured Porous Biomaterials? J. Mech. Behav. Biomed. Mater. 2017, 65, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Almeida, H.A.; Bártolo, P.J. Design of Tissue Engineering Scaffolds Based on Hyperbolic Surfaces: Structural Numerical Evaluation. Med. Eng. Phys. 2014, 36, 1033–1040. [Google Scholar] [CrossRef]
- Zhang, L.; Feih, S.; Daynes, S.; Chang, S.; Wang, M.Y.; Wei, J.; Lu, W.F. Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures under Compressive Loading. Addit. Manuf. 2018, 23, 505–515. [Google Scholar] [CrossRef]
- Zhang, B.; Pei, X.; Zhou, C.; Fan, Y.; Jiang, Q.; Ronca, A.; D’Amora, U.; Chen, Y.; Li, H.; Sun, Y.; et al. The Biomimetic Design and 3D Printing of Customized Mechanical Properties Porous Ti6Al4V Scaffold for Load-Bearing Bone Reconstruction. Mater. Des. 2018, 152, 30–39. [Google Scholar] [CrossRef]
- Kadkhodapour, J.; Montazerian, H.; Darabi, A.C.; Anaraki, A.P.; Ahmadi, S.M.; Zadpoor, A.A.; Schmauder, S. Failure Mechanisms of Additively Manufactured Porous Biomaterials: Effects of Porosity and Type of Unit Cell. J. Mech. Behav. Biomed. Mater. 2015, 50, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Kadkhodapour, J.; Montazerian, H.; Darabi, A.C.; Zargarian, A.; Schmauder, S. The Relationships between Deformation Mechanisms and Mechanical Properties of Additively Manufactured Porous Biomaterials. J. Mech. Behav. Biomed. Mater. 2017, 70, 28–42. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Abu Al-Rub, R.K.; Rowshan, R. The Effect of Architecture on the Mechanical Properties of Cellular Structures Based on the IWP Minimal Surface. J. Mater. Res. 2018, 33, 343–359. [Google Scholar] [CrossRef]
- Ataee, A.; Li, Y.; Brandt, M.; Wen, C. Ultrahigh-Strength Titanium Gyroid Scaffolds Manufactured by Selective Laser Melting (SLM) for Bone Implant Applications. Acta Mater. 2018, 158, 354–368. [Google Scholar] [CrossRef]
- Yan, C.; Hao, L.; Hussein, A.; Bubb, S.L.; Young, P.; Raymont, D. Evaluation of Light-Weight AlSi10Mg Periodic Cellular Lattice Structures Fabricated via Direct Metal Laser Sintering. J. Mater. Process. Technol. 2014, 214, 856–864. [Google Scholar] [CrossRef]
- Sajadi, S.M.; Owuor, P.S.; Schara, S.; Woellner, C.F.; Rodrigues, V.; Vajtai, R.; Lou, J.; Galvão, D.S.; Tiwary, C.S.; Ajayan, P.M. Multiscale Geometric Design Principles Applied to 3D Printed Schwarzites. Adv. Mater. 2018, 30, 1704820. [Google Scholar] [CrossRef]
- Sajadi, S.M.; Woellner, C.F.; Ramesh, P.; Eichmann, S.L.; Sun, Q.; Boul, P.J.; Thaemlitz, C.J.; Rahman, M.M.; Baughman, R.H.; Galvão, D.S.; et al. 3D Printed Tubulanes as Lightweight Hypervelocity Impact Resistant Structures. Small 2019, 15, 1904747. [Google Scholar] [CrossRef]
- Arsentev, M.Y.; Sysoev, E.I.; Makogon, A.I.; Balabanov, S.V.; Sychev, M.M.; Hammouri, M.H.; Moshnikov, V.A. High-Throughput Screening of 3D-Printed Architected Materials Inspired by Crystal Lattices: Procedure, Challenges, and Mechanical Properties. ACS Omega 2023, 8, 24865–24874. [Google Scholar] [CrossRef]
- Ghaemi Khiavi, S.; Mohammad Sadeghi, B.; Divandari, M. Effect of Topology on Strength and Energy Absorption of PA12 Non-Auxetic Strut-Based Lattice Structures. J. Mater. Res. Technol. 2022, 21, 1595–1613. [Google Scholar] [CrossRef]
- Pham, M.-S.; Liu, C.; Todd, I.; Lertthanasarn, J. Damage-Tolerant Architected Materials Inspired by Crystal Microstructure. Nature 2019, 565, 305–311. [Google Scholar] [CrossRef]
- Ahmadi, S.; Yavari, S.; Wauthle, R.; Pouran, B.; Schrooten, J.; Weinans, H.; Zadpoor, A. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties. Materials 2015, 8, 1871–1896. [Google Scholar] [CrossRef]
- Amin Yavari, S.; Wauthle, R.; van der Stok, J.; Riemslag, A.C.; Janssen, M.; Mulier, M.; Kruth, J.P.; Schrooten, J.; Weinans, H.; Zadpoor, A.A. Fatigue Behavior of Porous Biomaterials Manufactured Using Selective Laser Melting. Mater. Sci. Eng. C 2013, 33, 4849–4858. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Li, S.J.; Murr, L.E.; Zhang, Z.B.; Hao, Y.L.; Yang, R.; Medina, F.; Wicker, R.B. Compression Deformation Behavior of Ti–6Al–4V Alloy with Cellular Structures Fabricated by Electron Beam Melting. J. Mech. Behav. Biomed. Mater. 2012, 16, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Wauthle, R.; Ahmadi, S.M.; Amin Yavari, S.; Mulier, M.; Zadpoor, A.A.; Weinans, H.; Van Humbeeck, J.; Kruth, J.-P.; Schrooten, J. Revival of Pure Titanium for Dynamically Loaded Porous Implants Using Additive Manufacturing. Mater. Sci. Eng. C 2015, 54, 94–100. [Google Scholar] [CrossRef]
- Leary, M.; Mazur, M.; Elambasseril, J.; McMillan, M.; Chirent, T.; Sun, Y.; Qian, M.; Easton, M.; Brandt, M. Selective Laser Melting (SLM) of AlSi12Mg Lattice Structures. Mater. Des. 2016, 98, 344–357. [Google Scholar] [CrossRef]
- Mazur, M.; Leary, M.; Sun, S.; Vcelka, M.; Shidid, D.; Brandt, M. Deformation and Failure Behaviour of Ti-6Al-4V Lattice Structures Manufactured by Selective Laser Melting (SLM). Int. J. Adv. Manuf. Technol. 2016, 84, 1391–1411. [Google Scholar] [CrossRef]
- Crump, S.S. Apparatus and Method for Creating Three-Dimensional Objects. U.S. Patent 5,121,329, 9 June 1992. [Google Scholar]
- Smolkov, M.I.; Blatova, O.A.; Krutov, A.F.; Blatov, V.A. Generating Triply Periodic Surfaces from Crystal Structures: The Tiling Approach and Its Application to Zeolites. Acta Crystallogr. Sect. A Found. Adv. 2022, 78, 327–336. [Google Scholar] [CrossRef]
- Markande, S.G.; Saba, M.; Schroeder-Turk, G.; Matsumoto, E.A. A Chiral Family of Triply-Periodic Minimal Surfaces Derived from the Quartz Network. arXiv 2018, arXiv:1805.07034. [Google Scholar]
- Oka, T. A Phase Retrieval Algorithm for Triply Periodic Minimal Surface like Structures. Acta Crystallogr. Sect. A Found. Adv. 2023, 79, 51–58. [Google Scholar] [CrossRef]
- Sood, M.; Wu, C.-M.; Yang, Y.-C. Mechanical Properties of 3D-Printed Lattice Cylindrical Structure with Recyclable Elastomeric and Thermoplastic Polymers. J. Polym. Environ. 2024. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Rao, S.; Rivin, I. A Combinatorial Method for Generating New Zeolite Frameworks. In Proceedings of the Ninth International Zeolite Conference, Montreal, QC, Canada, 5–10 July 1992; pp. 381–388. [Google Scholar]
- Cai, J.; Ma, Y.; Deng, Z. On the Effective Elastic Modulus of the Ribbed Structure Based on Schwarz Primitive Triply Periodic Minimal Surface. Thin-Walled Struct. 2022, 170, 108642. [Google Scholar] [CrossRef]
- Libonati, F.; Graziosi, S.; Ballo, F.; Mognato, M.; Sala, G. 3D-Printed Architected Materials Inspired by Cubic Bravais Lattices. ACS Biomater. Sci. Eng. 2023, 9, 3935–3944. [Google Scholar] [CrossRef]
- Song, K.; Li, D.; Liu, T.; Zhang, C.; Min Xie, Y.; Liao, W. Crystal-Twinning Inspired Lattice Metamaterial for High Stiffness, Strength, and Toughness. Mater. Des. 2022, 221, 110916. [Google Scholar] [CrossRef]
- Liu, C.; Lertthanasarn, J.; Pham, M.-S. The Origin of the Boundary Strengthening in Polycrystal-Inspired Architected Materials. Nat. Commun. 2021, 12, 4600. [Google Scholar] [CrossRef]
- Wu, W.; Kim, S.; Ramazani, A.; Tae Cho, Y. Twin Mechanical Metamaterials Inspired by Nano-Twin Metals: Experimental Investigations. Compos. Struct. 2022, 291, 115580. [Google Scholar] [CrossRef]
- Yin, S.; Guo, W.; Wang, H.; Huang, Y.; Yang, R.; Hu, Z.; Chen, D.; Xu, J.; Ritchie, R.O. Strong and Tough Bioinspired Additive-Manufactured Dual-Phase Mechanical Metamaterial Composites. J. Mech. Phys. Solids 2021, 149, 104341. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, M.; Hao, S.; Liu, Y.; Cui, L.; Yang, H.; Cui, C.; Jiang, D.; Yang, Y.; Lei, H.; et al. 3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material. ACS Appl. Mater. Interfaces 2021, 13, 39915–39924. [Google Scholar] [CrossRef]
- Xiao, R.; Li, X.; Jia, H.; Surjadi, J.U.; Li, J.; Lin, W.; Gao, L.; Chirarattananon, P.; Lu, Y. 3D Printing of Dual Phase-Strengthened Microlattices for Lightweight Micro Aerial Vehicles. Mater. Des. 2021, 206, 109767. [Google Scholar] [CrossRef]
- Chen, L.; Cui, C.; Cui, X.; Lu, J. Mechanical Characteristics of Architected Polycrystal Lattice Affected by the Orientation of Metagrain Boundary. Adv. Eng. Mater. 2023, 25, 2300681. [Google Scholar] [CrossRef]
- Xia, X.; Spadaccini, C.M.; Greer, J.R. Responsive Materials Architected in Space and Time. Nat. Rev. Mater. 2022, 7, 683–701. [Google Scholar] [CrossRef]
Structure | E (GPa) | E/ρ (MJ/kg) | SEA (MJ/kg) | ϵF | SE [%] | H |
---|---|---|---|---|---|---|
H1P08 | 116.0 | 57.54 | 21763 | 0.5 | 0.36 | 0.19 |
H1P18 | 71.86 | 62.22 | 44075 | 0.71 | 0.45 | 0.68 |
H1P38 | 30.17 | 48.19 | 14.68 | 0.86 | 0.49 | 0.76 |
H1P78 | 12.78 | 38.49 | 14.71 | 0.93 | 0.4 | 0.56 |
H2P08 | 86.21 | 45.95 | 34.18 | 0.84 | 0.39 | 0.29 |
H2P18 | 48.85 | 46.22 | 36.73 | 0.91 | 0.29 | 0.41 |
H2P38 | 19.14 | 31.12 | 44.22 | 0.95 | 0.44 | 0.6 |
H3P08 | 53.05 | 45.93 | 37.12 | 0.91 | 0.36 | 0.31 |
H3P18 | 24.52 | 36.49 | 45.87 | 0.96 | 0.38 | 0.42 |
H4P08 | 24.43 | 35.67 | 45.95 | 0.96 | 0.4 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsentev, M.; Topalov, E.; Balabanov, S.; Sysoev, E.; Shulga, I.; Akhmatnabiev, M.; Sychov, M.; Skorb, E.; Nosonovsky, M. Crystal-Inspired Cellular Metamaterials and Triply Periodic Minimal Surfaces. Biomimetics 2024, 9, 285. https://doi.org/10.3390/biomimetics9050285
Arsentev M, Topalov E, Balabanov S, Sysoev E, Shulga I, Akhmatnabiev M, Sychov M, Skorb E, Nosonovsky M. Crystal-Inspired Cellular Metamaterials and Triply Periodic Minimal Surfaces. Biomimetics. 2024; 9(5):285. https://doi.org/10.3390/biomimetics9050285
Chicago/Turabian StyleArsentev, Maxim, Eduard Topalov, Sergey Balabanov, Evgenii Sysoev, Igor Shulga, Marsel Akhmatnabiev, Maxim Sychov, Ekaterina Skorb, and Michael Nosonovsky. 2024. "Crystal-Inspired Cellular Metamaterials and Triply Periodic Minimal Surfaces" Biomimetics 9, no. 5: 285. https://doi.org/10.3390/biomimetics9050285
APA StyleArsentev, M., Topalov, E., Balabanov, S., Sysoev, E., Shulga, I., Akhmatnabiev, M., Sychov, M., Skorb, E., & Nosonovsky, M. (2024). Crystal-Inspired Cellular Metamaterials and Triply Periodic Minimal Surfaces. Biomimetics, 9(5), 285. https://doi.org/10.3390/biomimetics9050285