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Abstract: As IoT metering devices become increasingly prevalent, the smart energy grid encounters
challenges associated with the transmission of large volumes of data affecting the latency of control
services and the secure delivery of energy. Offloading computational work towards the edge is a
viable option; however, effectively coordinating service execution on edge nodes presents significant
challenges due to the vast search space making it difficult to identify optimal decisions within a limited
timeframe. In this research paper, we utilize the whale optimization algorithm to decide and select the
optimal edge nodes for executing services’ computational tasks. We employ a directed acyclic graph
to model dependencies among computational nodes, data network links, smart grid energy assets,
and energy network organization, thereby facilitating more efficient navigation within the decision
space to identify the optimal solution. The offloading decision variables are represented as a binary
vector, which is evaluated using a fitness function considering round-trip time and the correlation
between edge-task computational resources. To effectively explore offloading strategies and prevent
convergence to suboptimal solutions, we adapt the feedback mechanisms, an inertia weight coefficient,
and a nonlinear convergence factor. The evaluation results are promising, demonstrating that the
proposed solution can effectively consider both energy and data network constraints while enduring
faster decision-making for optimization, with notable improvements in response time and a low
average execution time of approximately 0.03 s per iteration. Additionally, on complex computational
infrastructures modeled, our solution shows strong features in terms of diversity, fitness evolution,
and execution time.

Keywords: whale optimization algorithm; cloud–edge offloading; smart grid; energy efficiency;
directed acyclic graph

1. Introduction

The adoption and incorporation of Internet-of-Things (IoT) technologies in different
economic sectors has led to the production of significant volumes of data, with high
velocity and heterogeneity challenging the management processes requiring near real-
time monitoring and control [1]. In the smart energy grid, smart metering devices and
the prospect of small-scale renewable integration generate data processing and decision-
making challenges for ensuring security in energy delivery and balancing the demand with
the supply [2]. By connecting many IoT devices, a large quantity of data are fed and need
to be considered in energy management processes that may be controlled and coordinated
from a central location in the cloud [3].

However, in such scenarios, the entire data flow transfer to the cloud proves inefficient
in terms of response time and bandwidth, a viable option being the offloading of computa-
tional tasks towards the edge [4]. It is facilitated by recent advances in edge computing
and IoT technologies that have further expanded and decentralized the cloud paradigm
with edge and fog resources to ensure the integration of computational capabilities closer
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to data sources [5]. Edge nodes with enough processing capacity are deployed to analyze
energy IoT data and enable quicker decision-making processes to enhance the optimization
of various collaborative and decentralized subsystems, allowing for efficient local energy
management that contributes to the central grid objectives [6].

The edge computing paradigm enables offloading computational tasks from the cloud
context closer to edge devices rather than only relying on the cloud for data processing. Such
strategies can improve the smart grid operation, facilitating near real-time decision-making
as it reduces the latency and usage of data network resources while addressing pressing
issues related to the wide-area network capacity in transferring large quantities of data
towards the cloud [7]. In addition, offloading computation reduces risks associated with
data privacy and security breaches during data transit to the cloud. Processing sensitive
information locally at the edge enhances data security and regulatory compliance, a vital
consideration in smart grid systems where privacy and security are required [8]. Moreover,
it enhances scalability, enabling distributed computing across interconnected devices and
fostering dynamic and responsive systems, a key requirement for accommodating the
evolving needs of smart grid operations. Thus, edge computing can play a significant
role by reducing operational costs associated with cloud usage and optimizing resource
allocation while minimizing data transfer overheads, which can make the smart grid
decentralization and energy transition more cost-efficient and sustainable in the long
run [6,9].

Even though the computational task offloading towards the edge brings significant
benefits within smart grid contexts, from a decision-making perspective, determining
where it is optimal to offload a task from the cloud node to the fog or edge nodes presents
a significant challenge. The vast search space involved in evaluating various factors such
as data volume, computational requirements, network conditions, and resource availability
makes it difficult to identify efficient decisions within a limited timeframe. Heuristic
methods can be employed to effectively model the optimization problem, leveraging on
balancing the search space exploration and exploitation tailored to the unique requirements
of smart grid operations [10,11]. Swarm-based algorithms are effective in addressing
large and complex search spaces with multiple local optima. This is especially relevant in
edge offloading, where there are various criteria to consider, such as resource availability,
latency, and response time [12]. They are also effective for optimization problems in
smart grid decentralization, such as computation resources allocation and scheduling,
where traditional methods may struggle to find optimal solutions [13]. Incorporating
heuristic algorithms into the decision-making process for edge offloading can boost the
performance and efficiency of edge–cloud systems, characterized by rapid decision-making
and a minimal use of computational resources [14].

In this paper, we address the above-presented challenges related to offloading decision-
making by leveraging whale optimization to facilitate the optimal selection of edge nodes
for the execution of virtualized tasks. We use directed acyclic graphs (DAGs) to model the
spatial and logical dependencies of the computational nodes and the data network links, as
well as the smart grid energy assets and energy network organization. The model foresees
four different layers built one on top of the other: the physical smart grid infrastructure
layer featuring the assets that are consuming or producing electricity, the edge node layer
comprising computational devices closer to the energy assets, the fog device layer featuring
intermediate nodes positioned between edge devices and centralized cloud servers in a
network infrastructure, and the cloud layer. The constructed model facilitates more efficient
navigation in the decision space by considering the inherent structure, nodes’ physical
capabilities, and network dependencies within the computational continuum. On top of the
graph model, we map and adapt the whale optimization algorithm (WOA) [15] to explore
solution spaces and accelerate convergence toward optimal solutions. The offloading deci-
sion variables are represented as a binary vector, where each index corresponds to a specific
computational node, and the total number of nodes determines the vector’s dimension.
A fitness function is then defined to assess the quality of candidate solutions (whales)
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within the tasks’ offloading search space. This function is constructed based on components
derived from the DAG, such as the round-trip time (RTT) between cloud and edge nodes,
as well as the Euclidean distance between the requested task and the available compu-
tation resources of each node. The three primary phases—encircling, exploitation, and
exploration—are tailored to address the task offloading problem. We integrate the enhance-
ments proposed in [3], including the feedback mechanism, the nonlinear convergence factor,
and the inertia weight coefficient. These adjustments facilitate the adaptive exploration
of offloading strategies, ensuring effective resource utilization across the computational
continuum while mitigating premature convergence to suboptimal solutions. As a result,
the WOA coupled with the graph model enables informed and optimal edge-offloading
decision-making, thereby enhancing system performance and efficiency.

The novel contributions of this paper are:

• A DAG model for spatial and logical dependencies of computational nodes, data
network links, smart grid energy assets, and an energy network organized in four
layers to enable efficient edge-offloading decision-making in a smart grid.

• A whale optimization algorithm adaptation for edge offloading, using binary decision
variables for mapping workload to computational resources and a fitness function
based on RTT and distance between tasks and available resources.

• Enhancements, including a feedback mechanism, nonlinear convergence factor, and
an inertia weight coefficient, to efficiently explore offloading strategies in the solution
space and avoid premature convergence.

• Evaluation of a smart grid scenario considering the offloading of energy balancing
service with energy and data network constraints, necessitating fast decision-making
for optimization.

The rest of the paper is organized as follows. Section 2 presents the related work on
swarm-based heuristics applications for edge-offloading and orchestration decision-making.
Section 3 provides an overview of the proposed solution focusing on computational contin-
uum resource modeling and whale optimization. Section 4 presents the obtained results
considering the smart grid-driven scenario and service, Section 5 discusses the results, and
Section 6 concludes the paper and presents future work.

2. Related Work

Metaheuristic optimization algorithms play a pivotal role in making edge–fog–cloud
offloading decisions due to their ability to explore complex solution spaces, adapt to
changing conditions, and optimize resource allocation [16]. These algorithms offer ro-
bust solutions against the local optimum, ensuring that the global optimal solution is
achieved. Their parallel and distributed nature enables scalable optimization, which can
offer promising solutions for near-to-real-time decision-making in smart grids [13]. Due to
their properties, they can be utilized to effectively allocate and oversee computational tasks
across edge devices, considering factors like resource availability, latency, and response
time for building edge-offloading decision-making processes with improved performance
and efficiency. They can be used to find a close-to-optimal solution in complex solution
spaces where traditional methods can hardly be applied.

The whale optimization algorithm (WOA) is a technique that emulates the communal
hunting patterns of humpback whales, specifically drawing inspiration from their bubble-
net feeding method [17]. It gained notoriety for different research approaches to solving
optimization problems [18] leading to specific variations, improvements, and hybridization
solutions tackling its weaknesses such as local optima trapping, exploration and exploita-
tion imbalance, and low population diversity [19]. The metaheuristic algorithm is adaptable
and is suitable for diverse smart grid scenarios and applications, which often vary greatly
and demand flexibility and the ability to accommodate changing resource availability.

In the edge–fog–cloud domain, several approaches have tried to use or improve the
standard WOA for resource allocation and job scheduling. Sing et al. [20] apply the WOA to
develop a fog computing resource allocation algorithm for IoT applications. The approach
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initially uses a task classification and buffering technique based on dynamic fuzzy c-means
clustering to classify tasks and employ the least slack time scheduling for parallel virtual
queues. Then, task offloading and optimal resource allocation are performed, to decide task-
offloading strategies and optimize resource allocation among fog nodes using the WOA
to ensure enhanced throughput. The authors report a decrease in energy consumption
and an increase in performance compared to a multi-objective monotonically increasing
sorting-based algorithm. Mangalampalli et al. [15] elaborate on the task scheduling prob-
lem in cloud computing, emphasizing energy consumption and power cost reduction in
data centers. Their approach utilizes the WOA to schedule tasks, mapping them to suitable
virtual machines (VMs) considering task computations and VM priorities. By integrating
the WOA, the proposed approach focuses on boosting energy efficiency and cutting down
power expenses within cloud computing settings. Goyal et al. [21] present a method for op-
timizing resource allocations, reducing energy consumption in cloud infrastructure. Their
approach employs a population of search agents that undergo fitness evaluation and itera-
tive refinement to converge toward optimal solutions. Using a randomized search strategy,
the algorithm dynamically adjusts agent positions based on fitness evaluations. The WOA
plays a crucial role in achieving efficiency in cloud environments by balancing load, energy
efficiency, and resource scheduling optimization and features better results when compared
with particle swarm optimization (PSO), cat swarm optimization (CSO), BAT, and the
cuckoo search algorithm (CSA). Abdel-Basset et al. [22] describe an enhanced version of
the WOA for allocating dependent tasks in multi-processing systems, aiming to minimize
energy consumption and makespan. It employs dynamic voltage and frequency scaling to
reduce energy consumption in processing cores. Using specialized discretization methods
and crossover operations, the technique generates high-quality candidate schedules while
considering task dependencies. Its load-balancing strategy effectively reduces the load on
heavy cores, leading to decreased static energy consumption. Yang et al. [23] designed an
algorithm utilizing the WOA to tackle task allocation in IoT networks. By mimicking whale
behaviors, it identified optimal positions for task allocation, promising energy efficiency
and low-latency communication. The algorithm efficiently allocated tasks by evaluating
optimal path nodes, assigning allocation abilities, and ensuring effective execution, encom-
passing both local and global processes for IoT optimization. Yaser et al. [24] introduce an
algorithm designed to deploy services in fog environments in a way that emphasizes both
reliability and energy efficiency, utilizing the WOA. Its objective is to minimize total power
consumption while considering resource usage and traffic transmission among different
services located on fog nodes. The algorithm includes reliability limitations as constraints
in the optimization model. It executes update procedures for both exploration and ex-
ploitation, integrating additional unbiased updates by leveraging random whale positions
for exploration and employing specialized updates for exploitation. Samoilenko et al.
present the whale optimization method as a solution for task-offloading issues in cloud–fog
environments [25]. This method utilizes the WOA for real-time, dynamic decision-making
to improve quality-of-service aspects like execution delay and energy usage. It uses a group
of potential solutions, depicted as whales, to optimally resolve the complex task-offloading
challenge. In [26], an IoT service deployment solution in a fog infrastructure is proposed
that uses the WOA to determine an efficient service placement plan. QoS requirements of
IoT services and fog node capabilities are used as inputs, while throughput and energy
consumption are considered in the objective functions. The evaluation shows that better
resource usage, reduced service delay, and energy consumption can be obtained compared
with other metaheuristics.

To overcome some of the WOA issues, researchers have tried to hybridize it with
other algorithms while targeting edge–fog offloading in smart grid problems. Saoud
et al. [27] propose a hybrid algorithm combining WOA and BAT methods, integrating BAT
within the WOA’s search space and implementing a condition-based location update for
each search agent. This approach aims to enhance the WOA’s exploration capabilities,
mitigating the risk of local optima and addressing convergence challenges. Their combined
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strengths contribute to effective load balancing for scheduled resources in smart grids.
The WOA-BAT hybrid algorithm emerges as a robust solution for optimizing smart grid
operations, leveraging the complementary features of both the WOA and BAT. Amit
et al. [28] focus on solving task scheduling problems in cloud environments through a
hybrid metaheuristic approach. The authors highlight the limitations in the standard
WOA related to solution diversity, convergence speed, and exploration–exploitation trade-
off and propose h-DEWOA, integrating enhancements like chaotic maps for improved
exploration, opposition-based learning for solution diversity, and differential evolution
for enhanced exploration. A dedicated mechanism balances the fitness function to ensure
a trade-off between exploration and exploitation. Kang et al. [29] present an intelligent
hybrid whale optimization algorithm for multi-objective task selection in edge computing.
It optimizes task selection by considering execution time and economic profits, addressing
uncertainty with a fuzzy function. The algorithm enhances task selection by handling
five interactive constraints and integrating strategies from the WOA to overcome local
optima. Evaluation using synthetic datasets shows superior performance compared to the
traditional WOA, as demonstrated by diversity metrics and hypervolume assessments.
Huang et al. [30] enhance the WOA-based multi-objective algorithm for mobile edge
computing offloading utilizing the gravity reference point method. The proposed technique
enhances solution diversity, enabling trade-offs between time and energy consumption. Its
improved diversity leads to enhanced convergence and optimal solutions outperforming
traditional approaches. Feng et al. [31] hybridize grey wolf optimization (GWO) and the
WOA to tackle computation offloading optimization in IoT and mobile edge computing
systems. Their model incorporates three normalized targets for detailed offloading strategy
evaluation, ensuring equal importance across factors. By considering suboptimal solutions,
the algorithm aims for enhanced performance, seeking the most optimized value for the
function. Anoop et al. [32] merge the differential evaluation with the WOA to optimize
edge-offloading tasks. This hybrid approach addresses the shortcomings of traditional
heuristic algorithms by leveraging the exploratory strength of the WOA and the detailed
search efficiency of a differential evaluation. Inspired by the humpback whales’ spiral
hunting technique, this algorithm enhances offloading strategies, leading to reduced energy
use and quicker response times. In [33], the authors address the task scheduling problem
in fog environments formulated as an integer linear programming optimization model
that focuses on time and energy consumption efficiency. They propose a combination
of the WOA, opposition-based learning, and chaos theory for solving the optimization
problem. In the initialization phase of the WOA, opposition-based learning is applied to
enhance diversity. Additionally, chaos theory is incorporated into the WOA to minimize
the effects of random movements and steer more accurately toward the optimal solution.
Lin et al. [34] approach smart grids’ optimal energy management problem by proposing a
DAG-based framework to secure the data transactions above cloud–fog infrastructures and
an agent-based approach to allow nodes to make a consensus. The WOA is used to solve the
optimization problem for minimizing the grid network power loss of neighboring agents.

As analyzed above, the decision-making for computational tasks’ edge offloading in
smart grids involves balancing factors like latency, energy efficiency, resource optimization
to ensure optimal performance and reliability of the grid. Energy services’ tasks that
require low latency and deal with large data volumes should be offloaded to edge devices.
Whale optimization supports dynamic decision-making to adapt to changing conditions
in the grid, such as fluctuations in energy demand or the availability of renewable energy
sources. Additionally, the WOA is a good choice as it can be adapted to balance exploration
and exploitation of the search space, while aiming for optimization considering both
computational and data network constraints as well as the energy network and smart grid
services constraints.

Furthermore, we map and adapt the original WOA algorithm to the specific problem
of computational tasks’ offloading towards the edge by modeling the solutions as binary
decision variables storing the workload distribution and defining a fitness function based
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on the RTT and distance between tasks and available resources. As the energy grid and
computational continuum infrastructures can be complex and difficult to consider in
decision-making, we consider a DAG model to represent the decision variables and provide
a comprehensive view of the dynamics. Our work considers several enhancements to the
whale optimization algorithm, including a feedback mechanism, nonlinear convergence
factor, and inertia weight coefficient [21,27]. These enhancements facilitate a more efficient
exploration of offloading strategies within the solution space, thereby avoiding premature
convergence and improving overall performance. Finally, we evaluate our approach in the
context of a smart grid scenario, focusing on the offloading of energy balancing services
while considering energy and data network constraints. We highlight the need for fast
decision-making to optimize energy utilization and ensure grid stability, demonstrating
the practical relevance and effectiveness of our proposed techniques.

3. Materials and Methods

In this section, we present the edge-offloading decision-making process focusing on en-
ergy and computational resource modeling and the WOA adaptation and implementation
for this specific case.

3.1. Energy and Computational Networks Resources

We model the computing continuum as a connected computationally directed
acyclic graph:

G = (V, E) (1)

where V represents a finite set of vertices representing computational nodes available in
edges, the fog, or the cloud, and E is a set of ordered pairs of vertices, representing directed
edges that model the data network links between the computational nodes. For each type of
node and edge, we define the relevant properties as graph annotations to enable the whale
optimization algorithm to reason on top and to take optimal task-offloading decisions.

In the graph, we define layers considering the overlaps and interactions among the
data network and computational resources and the smart grid energy network: the physical
energy asset layer, edge node layer, fog node layer, and cloud node layer. Each layer fulfills
distinct tasks crucial to the overall computational ecosystem of the smart grid. The DAG
provides a formal representation to express the interactions and dependencies among these
layers, defining the roles and contributions for each layer.

The energy asset layer models the devices and resources of the smart grid that generate,
store, or consume electrical energy. It consists of renewable-energy generators (e.g., solar
panels, wind turbines), conventional power plants, energy storage systems, electric vehicle
power stations, and residential prosumers. The energy assets play a fundamental role in
the smart grid management, making the integration of renewable energy sources possible,
participating in the demand response programs, and providing energy services to enhance
resilience and reliability for the overall smart grid. To effectively contribute to closer-to-
real-time management and control, the management tasks should be offloaded to nodes
closer to their physical or logical locations.

The annotation model for this type of node is presented in Figure 1. It is organized
into three main sections. The first section contains general information about the assets,
such as the unique identifier and the physical position of the asset using longitude and
latitude coordinates. The second section describes energy metrics for the assets, detailing
their energy-related behavior including the maximum capacity of the asset, average daily
energy consumption, and peak hourly energy consumption.

The third section provides details about the connection point to the electrical grid,
including the identifiers of the substation and feeder the asset is connected to, and integra-
tion details of the asset with the electrical grid, such as the connection status, direction of
power flow, power factor, etc.
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The edge node layer models the edge nodes as computational units situated at the edge
of the data network, typically near energy assets within the smart grid infrastructure. They
are critical points for aggregating, analyzing, and transmitting data generated by energy
assets, and executing tasks such as closer-to-real-time control and the optimization of grid
operations. The edge nodes play a role in improving the responsiveness and reliability of
the energy network and efficiency of the data and computational network as they enable the
local energy data processing, reducing the latency associated. In the DAG representation,
edge nodes are represented as vertices V, while the edges E in our case represent the
connection with one or more energy assets of the smart grid.

The annotation model for the edge nodes is presented in Figure 2. The model contains
two main sections to ensure clarity and interoperability within the network environment,
both being valuable information for making proper offloading decisions. The first section
represents the type of node, indicating its role within the network, the geographical region
where the node is located, aiming for effective resource management, the precise latitude
and longitude coordinates, facilitating analysis and positioning within the smart grid
infrastructure, and the unique identifier. The second section contains the computational
resources required by the node, including CPU speed, RAM size, and storage capacity.
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The annotation model for data links between the edge nodes and energy assets is
illustrated in Figure 3. The model represents the network connectivity parameters between
an edge node and an energy asset. It includes properties such as latency, bandwidth,
and distance, to assess the performance and positioning within the network connection.
Latency measures the time delay in data transmission, bandwidth specifies the maximum
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data transfer rate, and distance indicates the physical separation between the entities.
Additionally, unique identifiers for both the edge node and the energy assets are included
to express the communication within the network infrastructure.
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The fog layer models nodes that are strategically positioned between edge and cloud
layers to facilitate edge node orchestration for data processing and offloading tasks from
the cloud. Their proximity to both edge nodes and energy assets enables them to host
critical services such as AI/ML tasks for energy management which may enhance grid
efficiency and reliability. Represented as vertices in the DAG model, fog nodes maintain
a vital role in balancing local and cloud-based processing on one side and ensuring fast
decision-making for smart grid optimal operation on the other side.

The annotation model for fog nodes follows the same structure as for edge nodes,
albeit with significantly higher values for properties like CPU speed, RAM size, and
storage capacity. These improved capacities underscore the enhanced computational power
of fog nodes and their essential role in supporting diverse tasks within the smart grid.
Additionally, the annotation model for data links between fog and edge nodes follows a
similar structure to the edge node-to-energy asset connection model. In this context, data
links between fog and edge nodes show substantially higher values for properties like
bandwidth and lower latency, highlighting the superior data processing capabilities and
faster communication speeds inherent to fog nodes. These distinctions are important in
optimizing network performance, enhancing data transmission efficiency, and ultimately
facilitating the smooth operation of the smart grid infrastructure.

The cloud layer models nodes that represent a centralized computing environment
situated remotely from the grid’s edge, offering extensive computational resources for
tasks like data analytics, machine learning algorithms, and long-term planning. Unlike
edge and fog nodes, cloud nodes provide robust computing capabilities, symbolized as
vertices V in the DAG model, with edges E connecting them to fog nodes. The annotation
model for cloud nodes maintains a structure like that of edge Nodes, featuring properties
like CPU speed, RAM size, and storage capacity, which typically have significantly higher
values than edge and fog nodes. Distinct differences emerge in values for properties like
bandwidth, latency, and distance in the annotation model for data links between cloud
nodes and fog nodes. These differences underscore the remote nature of cloud nodes and
their reliance on high-speed, long-distance communication links to interact with fog nodes
at the network edge. These distinctions are crucial for optimizing network performance
and facilitating efficient data transmission within the smart grid infrastructure.

3.2. WOA-Based Offloading Technique

Figure 4 illustrates the data flow of the offloading decision process. In our approach,
each whale represents the nodes within the computational continuum resources deployed
on top of the smart grid being modeled using the DAG nodes’ annotation model (denoted
as M). This model encapsulates crucial computational characteristics necessary for making
informed offloading decisions, including geolocation and communication links, as specified
by the DAG links’ annotation model (denoted as N). The cloud fog nodes’ mapping
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(denoted by O) stores the nodes’ unique identifiers and their properties and links and is
essential for the result of the offloading decision.
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In the offloading process, cloud nodes should identify potential fog/edge nodes based
on factors such as round-trip time (RTT) and computational compatibility with the task
requirements. This entails evaluating the distance, both in terms of network latency and
computational capability, between the tasks and the available nodes.

The offloading decisions’ variable employs a whale representation as a binary vector:

X = [x1, x2, . . . xnodes], xi = {0, 1} (2)

where the nodes dimension represents the total number of computational nodes and each
index in the vector identifies a specific node. The indexes marked with 0 represent the
nodes with no computational tasks offloaded or assigned, while the nodes marked with
1 represent the nodes selected for tasks offloading based on the considered criteria. The
decision-making and optimal selection of nodes are performed by using an adapted version
of the hybrid modified whale optimization algorithm [21].

A fitness function is defined to evaluate the quality of candidate solutions (whales) in
the search space of tasks’ offloading. We incorporated into the fitness function constraints
associated with RTT between cloud and edge nodes and with the Euclidean distance D
between the task requested and node available computation resources:

F(X) = min
RTT,D

(X) (3)

In this way, the function penalizes solutions that violate these types of constraints,
thereby directing the search towards feasible and optimal solutions.

Minimizing the RTT is crucial for near real-time and time-sensitive smart grid manage-
ment applications in computational continuum offloading scenarios. The RTT represents
the duration required for data to traverse from an edge device to a cloud one and subse-
quently return:

RTT =

(
Pd + Td +

l
1000

)
∗ 1000 (4)

where Pd is the propagation delay representing the duration for a signal to traverse the
distance between the sender and receiver, computed as the ratio of distance and the speed
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of light, Td is the transmission delay representing the time required to transmit a packet
from the host to the transmission medium and l is the transmission delay or latency.

The parameters derived from the DAG annotation model constructed for the edge–fog–
cloud network of resources are converted to their respective units (i.e., bandwidth in bits
per second, distance in meters). The propagation and transmission delays are computed
and combined with the latency, all expressed in seconds. Finally, the cumulative delay is
converted back to milliseconds before being returned as the result.

Computational resources such as CPU, storage, and RAM are integral in facilitating
the offloading of specific tasks from the cloud and fog to the edge. The availability of these
computational resources plays a crucial role in determining the feasibility of offloading.
We used the Euclidean distance to determine the matching between the workload tasks’
computational resources’ requirements and the node available resources considering CPU,
storage (HDD), and RAM as its dimensions.

D =
√
( taskCPU − NodeCPU)

2 + ( taskRAM − NodeRAM)2 + ( taskHDD − NodeHDD)
2 (5)

This indicates the dissimilarity between the computational requirements of the tasks
and edge nodes and the computational capacity of the edge node, guiding the decision-
making process for offloading.

In the whale optimization algorithm (WOA), as introduced in [15,20], three main
phases are defined: the encircling phase, the exploitation phase, and the exploration phase.

During the encircling phase, the whales coordinate towards their prey, which repre-
sents the optimal edge-offloading solution. Thus, the offloading agents X update their
positions using the following relations [20]:

D→ =
∣∣C→ ∗ X→′(t)− X→(t)| (6)

X→(t + 1) = X→′(t)− A→ ∗ D (7)

where t represents the current iteration of the algorithm, X→′(t) is the position in the
search space of a potential edge-offloading solution determined by virtually placing the
task on an available node. A→ and C→ are coefficients of the vectors which are randomly
generated with values in the range [0, 1]. Those are used to control the exploration of
potential offloading decisions across the available nodes.

The exploitation phase represents the bubble-net method for attacking the prey and
is based on two steps: the shrinking encircling and the update of the spiral position. The
shrinking encircling involves randomly generated values from the A→ vector in the range
[−a, a], where a decreases linearly. This reduces the range of exploration, focusing the
search on potentially optimal offloading decisions.

In the spiral updating position step, the algorithm computes the distance between the
current offloading decision X→′ (t) and potential target location X→ (t) representing the
prey [20]:

D→′′
= X→′ (t)− X→ (t) (8)

Then, it determines the updated position X→ (t + 1), considering factors such as the
distance of the target and the shape of the spiral path:

X→ (t + 1) = D→′′ ∗ bl ∗ cos (2l) + X→′ (9)

where the shape of the spiral path is defined by constants b and l, randomly generated in
the range [−1, 1].

In our offloading decision process, the shrinking encircling and spiral updating po-
sition steps are linked to the adjustment of offloading decisions based on minimizing
factors such as the RTT (relation (4)) and computational distance between tasks and nodes
(relation (5)).
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In the exploration phase, the process is analogous to the behavior of whales searching
for prey. The solution agents X→ explore potential new solutions X→ (t + 1) randomly
based on their current positions [20]:

X→ (t + 1) = X→ rand − A→ ∗ D (10)

where X→ rand represents a randomly selected position vector from the population in the
current iteration, A→ is the coefficient vector that controls the step size for updating the
offloading decision, and D→ is the difference vector between the current position and the
best solution found so far.

The WOA takes as inputs the population size, maximum number of iterations, and
initial values for the parameters a, A, and C. Initially, the offloading agents, representing
the search agents, are randomly generated, and their fitness values are computed. The best
search agent is identified based on its fitness value.

We incorporated the enhancements introduced in [21], specifically the feedback mech-
anism, the nonlinear convergence factor, and the inertia weight coefficient to facilitate
the adaptive exploration of offloading strategies, ensuring an effective utilization of re-
sources across the computational continuum while avoiding premature convergence to
suboptimal solutions.

The feedback mechanism ensures that if the optimal offloading decisions remain
unchanged for a certain number of iterations, the algorithm introduces randomness to
prevent stagnation and escape local optima in the offloading decisions. This improves the
overall convergence accuracy of the algorithm for making proper edge-offloading decisions.

The convergence factor A→, defined in relation (7), is based on the current iteration t
and the maximum number of iterations tmax. Unlike the traditional linear decrease of A→,
the nonlinear decline introduced by [27] aims to determine the number a in the interval
[−a, a] in which A→ takes values as:

a = 2 + 2 ∗ cos (2 x (1 + tmax)) (11)

This enhances convergence speed while ensuring a balance between exploration and
exploitation. As a result, the algorithm can efficiently explore the search space of potential
offloading solutions across edge and fog nodes.

The updated position of a solution X→ (t + 1) is determined by considering an addi-
tional inertia weight coefficient [21] w:

X→(t + 1) = w ∗ X→′(t)− A→ ∗ D (12)

The weight coefficient is determined like in particle swarm optimization based on the
current iteration t and the maximum number of iterations tmax:

w = 0.5 + 0.5 ∗ ( t
tmax

)2 (13)

In the offloading decision, it adjusts the impact of historical offloading decisions on
the current search direction, enhancing the accuracy and speed of the search process. It
gradually increases from 0.5 to 1 over iterations, enhancing accuracy and speeding up
convergence. This adaptation aids in fine-tuning the exploration and exploitation trade-off
during the optimization process.

On top of the X vector result, our approach identifies the most suitable node for
making the offloading decision thus tasks associated with the candidate node for offloading
are shifted to the best target node. The result includes information such as the total number
of nodes, and the number of nodes selected for offloading. The vector of nodes to offload
contains specific details for each node, such as the best offloading target and relevant
distance metrics.
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Algorithm 1 shows the WOA algorithm applied to the edge offloading in a smart grid.
It takes as input the DAG model describing the energy and computation infrastructure, the
tasks to be relocated with their requirements, and WOA parameters such as the number
of iterations, size of the population, etc. First, the initial population is generated by
considering the DAG model and tasks to be relocated and the fitness function is evaluated
on each member to determine the best one using RTT and computational requirements
distance as criteria (see lines 1–3). The best member of the population constitutes the
prey in the following whale hunting steps. At each iteration, whales explore the search
space and update their positions based on the exploration and exploitation equations
(lines 6–14). Similarly to [21], we integrated a feedback mechanism to prevent stagnation
and escape local optima during optimization (lines 19–20). It introduces randomness
to the search process if optimal offloading decisions remain unchanged. This ensures a
continued exploration of the solution space for node selection in offloading decisions, where
multiple local optima may exist. The adaptive feedback mechanism considers the RTT and
computational distance among tasks and node resources. The parameters are dynamically
adjusted based on these factors to prioritize solutions, minimizing both resource usage and
communication latency by balancing exploration and exploitation through the adaptation
process (lines 10–15). To adapt the WOA to the binary problem of edge offloading in a smart
grid, we used a threshold-based mapping technique. After each algorithm iteration of the
algorithm, the continuous solutions are converted into binary solutions using thresholds
(see line 23).

Algorithm 1: WOA for computational offloading decision-making in a smart grid

Inputs: DAGmodel—energy and computational nodes and links, population size Psize, maximum
number of iterations tmax, WOA parameters (a, A, C ), tasks—workload to be relocated
Outputs: Xsol—Best offloading decision solution
Begin
1. P = {Xi} = genInitialPopulation(DAGmodel , tasks )
2. Foreach Xi determine the fitness value F(Xi)
3. Select Xbest = min F(Xi)
4. Set initial values for c, A, D, tmax, t = 0
5. while(t < tmax) do
6. Foreach solution X′

i (t) in P, do
7. Encircling phase:
8. Calculate distance between X′

i (t) and Xbest(t)
9. Determine position Xi(t + 1 ) using X′

i (t) and Xbest(t) in relations (6) and (7)
10. Exploitation phase:
11. Determine position Xi(t + 1 ) using X′

i (t) and Xbest(t) in relations (8) and (9)
12. Random exploration phase:
13. Explore new solutions Xi(t + 1 ) using relation (10)
14. Inertia-based exploration phase:
15. Explore new solutions Xi(t + 1 ) using inertia weight in relations (12) and (13)
16. End Foreach
17. Foreach Xi(t + 1), determine the fitness value F(Xi(t + 1))
18. Select Xbest= minF(Xi(t + 1))
19. If Xbest remains unchanged for several iterations do
20. Update exploitation / exploration parameters
21. t = t + 1
22. end while
23. Foreach Xi(t + 1), apply threshold mapping to convert continuous values to binary.
24. return Xsol = Xbest
End
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4. Results

In this section, we evaluate the effectiveness of the proposed WOA technique in
facilitating offloading within the computing continuum considering a smart grid scenario.
Figure 5 presents an overview of the considered scenario for computational resources’
distribution over the smart grid for efficient delivery of energy services. The microgrid
system operator (MSO), positioned closer to the edge nodes, oversees the distribution
of electricity within a specific area or locality such as a neighborhood. It deals with the
local coordination of energy assets part of the microgrid to ensure an efficient and reliable
energy supply while optimizing performance and minimizing costs. It has a limited view
of the assets and coordination problems outside the microgrid. The distribution system
operator (DSO) oversees a larger geographical region, facilitating the flow of electricity
among various microgrids. This includes tasks such as managing voltage levels, balancing
loads, and ensuring the reliability and stability of the electrical grid within a city. To
achieve this, the DSO utilizes a fog/cloud infrastructure to integrate monitored data from
numerous energy assets and neighborhoods. This integrated information allows for optimal
decision-making in response to supply fluctuations and grid conditions.
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We considered an energy balancing service in a smart grid with both energy and
data network constraints, necessitating fast decision-making for optimization. The energy
balancing service monitors energy generation from prosumers, energy demand from con-
sumers, and energy storage capacities. It should continuously adjust energy flow to ensure
a balance between supply and demand in real time. Additionally, the data network has
constraints such as bandwidth limitations for transmitting real-time energy data between
sensors, meters, and control centers which generates latency in decision-making. Thus,
the service response time is influenced by the time it takes to monitor the energy demand
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and supply (Tmonitor) and transmit the data (Ttransmision−data), decide Tdecision on power flow
control actions, transmit the decision (Ttransmision−decision), and enforce the action:

Tservice
response = Tmonitor + Ttransmision−data + Tdecision + Ttransmision−decision (14)

In this case, edge offloading should enable faster data processing at the data network
edge, allowing for a quicker analysis and decision-making as it decreases the latency and
increases locality thus minimizing the data and decision transmission times. In the case of
DSO, this means that the workload dealing with load balancing and grid stability could be
offloaded onto edge nodes deployed at the microgrid level to act swiftly without relying
solely on centralized fog/cloud servers. In this case, the aim is to reduce overall latency
by processing data closer to the edge, thereby minimizing the round-trip time (RTT). By
processing data locally at the edge, the need for transmitting data to remote fog and cloud
servers is reduced, leading to shorter RTTs and thus faster service reaction time.

We started by modeling the energy and computational resources based on the defined
scenario, using the DAG model described in Section 3.1. Subsequently, we utilized the
WOA offloading technique presented in Section 3.2 to simulate and prompt offloading
decisions aimed at minimizing service response times.

The energy asset layer comprised five communities of prosumers organized in micro-
grids with a total number of 125 prosumers and 23 consumers distributed per microgrid as
described in Table 1. The prosumers may have photovoltaic (PV) solar panel systems for
production and use their own consumption devices. Prosumers were classified into three
categories based on their energy production capacity: low (up to 3 kW PV), medium (5 kW
PV), and high (up to 7 kW PV). In the second, fourth, and fifth microgrids, some of the
assets were only consumed without any local production on site. The surplus of energy
could be stored in a centralized storage system at the level of each microgrid.

Table 1. The prosumers and consumers on each microgrid for the energy asset layer.

Microgrid ID No. Energy
Assets

Production Capacity Prosumers
Consumers

Low Medium High

1 20 10 0 10 0
2 20 5 7 3 5
3 30 15 10 5 0
4 35 12 13 0 10
5 43 20 8 7 8

The edge node layer contained 20 edge nodes connecting to prosumers and microgrids
defined in the energy asset layer. Their computational capacities’ range varied as presented
in Table 2.

Table 2. Edge node layer’s distribution of devices.

# Connected
Prosumers # Edge Nodes

Low-Capacity Nodes
(35 GHz CPU, 2 GB RAM,

and 10 GB Storage)

Medium-Capacity Nodes
(45 GHz CPU, 4 GB RAM,

and 25 GB Storage)

High-Capacity Nodes
(50 GHz CPU, 8 GB RAM,

and 32 GB Storage)

30 5 2 3 0
45 4 2 1 1
25 3 3 0 0
25 8 5 2 1



Biomimetics 2024, 9, 302 15 of 22

The fog node layer consisted of three microdata centers (DCs) with a total number of
12 fog nodes with links to the edge node layer. Micro DCs contain servers and virtual ma-
chines, which are close to the generation of data, in this case to the edge nodes layer. Within
these micro DCs, we defined three capacity ranges to express the diverse computational
capacities, as shown in Table 3.

Table 3. Fog node specification and edge layer connection.

# Connected
Edge Nodes # Fog Nodes

Low-Capacity Nodes
(40 GHz CPU, 4 GB RAM,

and 16 GB Storage)

Medium-Capacity Nodes
(48 GHz CPU, 8 GB RAM,

and 28 GB Storage)

High-Capacity Nodes
(50 GHz CPU, 16 GB RAM,

and 32 GB Storage)

7 4 2 2 0
8 5 2 2 1
5 3 1 2 0

The connections from the fog layer to the edge layer maintained a latency within the
scope of 50 to 100 milliseconds, alongside a bandwidth varying from 10 to 500 megabits
per second and distances ranging from 200 to 700 km.

The cloud node layer included three clouds from different regions, with a total number
of 10 nodes with links to the fog nodes. These clouds could be in a faraway location
from the micro DCs of fog nodes and devices of edge nodes. Table 4 shows the diverse
computational capacities of the DC nodes. The connections from the cloud layer to the fog
layer contained a latency within the scope of 50 to 110 milliseconds, alongside a bandwidth
varying from 100 to 1000 megabits per second and distances ranging from 300 to 1000 km.

Table 4. Distribution in terms of cloud nodes.

# Connected
Fog Nodes # Cloud Nodes

Low-Capacity Nodes
(42 GHz CPU, 8 GB RAM,

and 25 GB Storage)

Medium-Capacity Nodes
(48 GHz CPU, 16 GB RAM,

and 30 GB Storage)

High-Capacity Nodes
(50 GHz CPU, 32 GB RAM,

and 32 GB Storage)

2 2 2 0 0
7 3 1 2 0
3 5 1 2 2

The DAG model generated for the presented scenario is illustrated in Figure 6.
To make offloading decisions using the proposed WOA-based technique on top of the

DAG, we set specific thresholds as shown in Table 5 to ensure that the balancing services’
response time request was met and minimized.

Table 5. WOA thresholds for offloading decision-making in case of an energy balancing service.

Parameter Name Specific Threshold

Euclidean distance <10
Round-trip time (RTT) <90 ms

Number of epochs <250
Population size <20

Table 6 presents the offloading computations results based on the WOA from cloud to
fog nodes, and subsequently from fog to edge nodes. A noticeable improvement in response
time was observed when comparing the distances and RTT before and after offloading,
indicating enhanced performance. For instance, tasks initially assigned to cloud node ID
2 were offloaded to fog node ID 5, resulting in a decrease in both computational distance
(6.07) and round-trip time (89.71 ms), bringing them comfortably under the thresholds.
Similar improvements were observed across other offloaded tasks, such as those initially
assigned to the cloud node with IDs 8 and 10, now processed more efficiently at the fog
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node with IDs 10 and 9, respectively. Furthermore, the offloading decisions from fog to
edge nodes also contributed to the enhanced response time. Tasks originally handled by
fog node IDs 8, 9, and 10 were efficiently processed at the edge node with IDs 17, 9, and 2,
respectively, leading to reduced computational distances and round-trip times.

Biomimetics 2024, 9, x FOR PEER REVIEW 15 of 22 
 

 

The fog node layer consisted of three microdata centers (DCs) with a total number of 
12 fog nodes with links to the edge node layer. Micro DCs contain servers and virtual 
machines, which are close to the generation of data, in this case to the edge nodes layer. 
Within these micro DCs, we defined three capacity ranges to express the diverse compu-
tational capacities, as shown in Table 3. 

Table 3. Fog node specification and edge layer connection. 

# Connected 
Edge Nodes 

# Fog 
Nodes 

Low-Capacity Nodes (40 GHz 
CPU, 4 GB RAM, and 16 GB 

Storage) 

Medium-Capacity Nodes (48 GHz 
CPU, 8 GB RAM, and 28 GB Storage) 

High-Capacity Nodes (50 GHz CPU, 
16 GB RAM, and 32 GB Storage) 

7 4 2 2 0 
8 5 2 2 1 
5 3 1 2 0 

The connections from the fog layer to the edge layer maintained a latency within the 
scope of 50 to 100 milliseconds, alongside a bandwidth varying from 10 to 500 megabits 
per second and distances ranging from 200 to 700 km. 

The cloud node layer included three clouds from different regions, with a total number 
of 10 nodes with links to the fog nodes. These clouds could be in a faraway location from 
the micro DCs of fog nodes and devices of edge nodes. Table 4 shows the diverse compu-
tational capacities of the DC nodes. The connections from the cloud layer to the fog layer 
contained a latency within the scope of 50 to 110 milliseconds, alongside a bandwidth 
varying from 100 to 1000 megabits per second and distances ranging from 300 to 1000 km. 

Table 4. Distribution in terms of cloud nodes. 

# Connected 
Fog Nodes 

# Cloud 
Nodes 

Low-Capacity Nodes (42 GHz 
CPU, 8 GB RAM, and 25 GB 
Storage) 

Medium-Capacity Nodes (48 GHz 
CPU, 16 GB RAM, and 30 GB Stor-
age) 

High-Capacity Nodes (50 GHz CPU, 
32 GB RAM, and 32 GB Storage) 

2 2 2 0 0 
7 3 1 2 0 
3 5 1 2 2 

The DAG model generated for the presented scenario is illustrated in Figure 6. 

 
Figure 6. DAG for the described smart grid scenario.

Table 6. Task-offloading decision table.

Source Node ID Target Node ID
(Offloading) Initial Distance Initial RTT Final

Distance Final RTT RTT Reduction

Cloud_node_2 Fog_node_5 12.01 93.03 ms 6.07 89.71 ms −3.32 Ms
Cloud_node_8 Fog_node_10 6.05 100.00 ms 5.02 75.08 ms −24.92 Ms

Cloud_node_10 Fog_node_9 5.09 91.30 ms 6.14 78.03 ms −13.27 Ms
Fog_node_8 Edge_node_17 11.01 90.05 ms 4.51 76.85 ms −13.20 Ms
Fog_node_9 Edge_node_9 10.05 92.45 ms 5.86 73.20 ms −19.25 Ms

Fog_node_10 Edge_node_2 11.05 93.05 ms 4.31 82.01 ms −11.04 Ms

In terms of the WOA for edge offloading, the convergence occurred after iteration
230, where the fitness value stabilized, suggesting the algorithm likely found near-optimal
solutions for task offloading to the edge for the considered smart grid scenario. The average
execution time remained at low values and was stable at 0.03 s per iteration for most of the
WOA optimization process (see Figure 7). The spikes in the runtime chart at iterations 45
and 240, each taking 0.07 s, suggest the inference of other tasks executed in the background
on the device where the offloading algorithm was run.

The time and space complexity of the developed edge-offloading algorithm is given
by the number of iterations required by the WOA to converge to a near-optimal solution. It
depends on the population size (Psize), search space dimensions, and convergence rate in
the number of iterations (tmax). The search space dimension is determined by the number
of computational nodes (|X|) available in the edge and fog layers and the number of tasks
to be offloaded (ntasks):

O(Psizex|X|xntasksxtmax) (15)
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Additionally, the space complexity of our implementation depends on the memory
requirements for storing the vectors representing each element of the population (see
relation (2)) and additional data structures used during the optimization process, which in
our case were neglectable.

5. Discussion

To analyze the effectiveness of the proposed WOA for edge offloading, we varied the
node distribution for the edge, fog, and cloud layers as shown in Table 7, and determined
the impact on heuristic features such as diversity, fitness function evolution, exploitation
vs. exploration, and execution time.

Table 7. DC distribution in terms of cloud nodes.

Layer
No. Nodes Node Computational Resources

Data Connection with Lower Layers
Scenario 1 Scenario 2 Processor RAM Storage

Edge 50 70 30–50 GHz 2–8 GB 8–16 GB N/A

Fog 30 35 40–50 GHz 4–16 GB 16–32 GB

Links to edge

• Latency: 50–100 ms
• Bandwidth: 1–10 Mbps
• Distance: 200–500 km

Cloud 20 20 45–50 GHz 8–32 GB 20–32 GB

Links to fog

• Latency: 70–100 ms
• Bandwidth: 100–1000 Mbps
• Distance: 500–1000 km

We used the diverse set of nodes and their respective computational capabilities to
generate DAGs with different levels of complexity for two task-offloading scenarios. By
strategically allocating tasks based on their computational requirements and data connec-
tion constraints, our solution sought to determine the optimal task-offloading allocation for
specific scenario configurations.
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The diversity feature measures the variety of the offloading solutions within the overall
population of whales. The diversity is measured by calculating the Euclidean distance
between each pair of solutions in the population to quantify the spread or distribution of
edge-offloading solutions determined. A higher average value reflects a higher diversity
and ensures that a wider range of potential solutions are generated, leading to a better
exploration of the search space.

We analyzed diversity among solutions for the two generated scenarios aiming to
determine the impact of increasing the number of nodes. In scenario 1, the diversity showed
large fluctuations from 0.0 to 0.5, indicating a broad exploration of solutions (see Figure 8a).
From the 300th iteration onwards, it stabilized between 0.3 and 0.4, suggesting convergence
towards consistent solutions. By the 500th iteration, diversity settled at 0.35, indicating
a moderate level of diversity among the solutions. In scenario 2, where we raised the
number of edge and fog nodes as previously defined, only after the 2800th iteration did
the diversity measurements stabilize, suggesting convergence towards consistent solutions
(see Figure 8b). More computational nodes provide additional opportunities for solutions
exploration and thus lead to a higher diversity initially. However, convergence towards
consistent solutions takes longer (in terms of algorithm iterations) due to the increased
complexity introduced by the additional edge/fog nodes.
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Next, we examined the global fitness evolution to analyze how effectively the WOA
improved task-offloading solutions over time and how close it came to finding the opti-
mal or near-optimal solution. In scenario 1, with a lower number of nodes (Figure 9a),
convergence was reached after the 250th iteration without any spikes, indicating smooth
improvement towards an optimal solution. In scenario 2 (Figure 9b), where more nodes
were defined, convergence was achieved only after 1300 iterations, showing the nonlin-
ear relationship between the number of nodes and convergence complexity. Even in this
case the converge showed efficient improvement towards an optimal solution without
encountering spikes.

The third aspect analyzed was how well the WOA balanced the exploration (diversi-
fication) and exploitation (intensification) of the search space during the edge-offloading
decision-making process. When the exploration vs. exploitation percentages stabilize, it
indicates that the algorithm has achieved a balance between exploring new solutions and
exploiting known promising regions within the search space. This happened for the final
iteration 500 for 50 edge nodes (Figure 10a) and from the 2700th iteration onwards for the
70-edge-node case (Figure 10b). The obtained balance results for the defined scenarios show
that the proposed algorithm explored the search space sufficiently to avoid getting trapped
in local optima while also exploiting promising edge-offloading solutions to converge
towards the global optimum.
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In terms of algorithm execution time, the chart in Figure 10 exhibits occasional spikes,
suggesting concurrent processes were active. Despite these spikes, the average runtime
remained consistent at 0.25 s per iteration for scenario 1 (Figure 11a). The maximum
observed runtime occurred during the 400th iteration, reaching 0.45 s. For scenario 2
(Figure 11b), spikes persisted until the 2700th iteration, with an average runtime of 0.5 s.
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6. Conclusions

In this paper, we adapted and applied the whale optimization algorithm for edge-
offloading decision-making in a smart grid. We used a directed acyclic graph to model the
dependencies of computational nodes, data network links, smart grid energy assets, and
energy network organization using four layers: physical smart grid infrastructure, edge
nodes, fog devices, and cloud. The whale optimization was implemented on top of the
graph model to explore the solution space and efficiently converge toward optimal solutions.
The offloading decision variables were represented as a binary vector, and a fitness function
evaluated the quality of candidate solutions using components derived from the DAG,
such as the round-trip time and the distance between the task requests and each node’s
computation resources. We adapted the feedback mechanism, nonlinear convergence factor,
and inertia weight coefficient to enable an adaptive exploration of offloading strategies,
ensuring effective resource use and optimal edge-offloading decisions.

The evaluation results were promising, demonstrating that the proposed solution
could effectively consider both energy and data network constraints for an energy-balancing
service in the smart grid. The response time showed improvement when compared to
distances and round-trip time (RTT) before and after offloading, indicating enhanced
performance. The average execution time per iteration remained steady at approximately
0.03 s. Convergence was observed after iteration 230, as indicated by the stabilization of
the fitness value.

Furthermore, when applied to complex computational infrastructures, our solution
demonstrated robust characteristics such as diversity, fitness evolution, and efficient exe-
cution times. The increased number of computational nodes offered more opportunities
for exploring solutions, resulting in higher diversity initially, but the convergence towards
consistent solutions required more iterations. It effectively navigated the search space,
avoiding local optima while capitalizing on promising edge-offloading solutions to con-
verge towards the global optimum. Moreover, the execution time remained consistently
low per iteration.
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