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Abstract: In this paper, a nonlinear simulation block for a fish robot was designed using MATLAB
Simulink. The simulation block incorporated added masses, hydrodynamic damping forces, restoring
forces, and forces and moments due to dorsal fins, pectoral fins, and caudal fins into six-degree-
of-freedom equations of motion. To obtain a linearized model, we used three different nominal
surge velocities (i.e., 0.2 m/s, 0.4 m/s, and 0.6 m/s). After obtaining output responses by applying
pseudo-random binary signal inputs to a nonlinear model, an identification tool was used to obtain
approximated linear models between inputs and outputs. Utilizing the obtained linearized models,
two-degree-of-freedom proportional, integral, and derivative controllers were designed, and their
characteristics were analyzed. For the 0.4 m/s nominal surge velocity models, the gain margins and
phase margins of the surge, pitch, and yaw controllers were infinity and 69 degrees, 26.3 dB and
85 degrees, and infinity and 69 degrees, respectively. The bandwidths of surge, pitch, and yaw control
loops were determined to be 2.3 rad/s, 0.17 rad/s, and 2.0 rad/s, respectively. Similar characteristics
were observed when controllers designed for linear models were applied to the nonlinear model.
When step inputs were applied to the nonlinear model, the maximum overshoot and steady-state
errors were very small. It was also found that the nonlinear plant with three different nominal surge
velocities could be controlled by a single controller designed for a linear model with a nominal surge
velocity of 0.4 m/s. Therefore, controllers designed using linear approximation models are expected
to work well with an actual nonlinear model.

Keywords: fish robot; system identification; PID controller; six-degree-of-freedom equation

1. Introduction

Autonomous underwater vehicles (AUVs) are designed to mimic the efficient and
agile movements of fish. They are attracting attention because they can be effectively used
for exploration, monitoring, and surveillance of underwater environments [1]. These AUVs
integrate advanced propulsion mechanisms such as Body Caudal Fin (BCF) and Median
and Pectoral Fin (MPF) systems. The BCF system mimics the natural movements of fish,
which propel themselves by flapping their bodies and tails. It is used by more than 85% of
fish species [2].

Several studies have been conducted on the dynamics of fish robots. Humphreys [3]
derived a detailed six-degree-of-freedom (DOF) equation of motion for surge, sway, heave,
roll, pitch, and yaw motions, including moments of inertia and hydrodynamic forces.
Nahon [4] proposed body lift and drag forces to model the hydrodynamic characteristics
of vehicles. The dynamics of an underwater vehicle, Autolycus, have been well described
by Tang [5]. Vorticity control for propulsion and maneuvering was introduced by the
Draper Laboratory, which allows fish to maintain stable swimming [6]. Open Fish utilizes
a simple and effective wire-driven active and passive compliant body to mimic highly
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efficient thunniform swimming [7,8]. Tuna Bot aims to achieve high-performance fish and
overcome the gap between robotic systems and fish swimming capabilities [9].

In UC-Ika 1 [10], inspired by the swimming motion of tuna fish, undulatory motions by
the tail peduncle and caudal fin were used to generate propulsion force. This benefits from a
tail mechanism that plays a crucial role in the dynamic behavior of the robot. A framework
was developed to compute the steady-turning motion of a robotic fish undergoing periodic
body or tail deformation [11]. Flying fish performing gliding flights with tail-beating
motion are being developed for future applications [12,13]. Full-body-length swimming
motion coordinates for anterior, midbody, and posterior displacements were proposed in
iSplash-I to reduce large kinematic errors in existing free-swimming robotic fish [14]. In
iSplash-II, a new fabric technique was introduced to achieve high-speed propulsion at high
frequencies [15].

In previous studies [16,17], pectoral fins were used for roll and pitch controls. Fish
pectoral fins can produce high propulsive performance by driving active and passive fin
deformation. A systematic approach was suggested to control pectoral fins by naturally
accommodating fin constraints and automatically generating “intelligent” behavior (such
as fin backing-up when required) for quick maneuvering [18].

Euler’s angle speed control and 3D performance of a fish robot, including closed-loop
control system responses, can be found in [19]. A two-DOF barycenter mechanism was
proposed to provide body stabilization and serve as an actuating device for active control
design [20]. Zeng et al. [21] proposed an underwater robot based on the hybrid propulsion
of a quadrotor and undulating fin, which combines high-efficiency propulsion using a
bionic undulating fin and stable control via the propeller of an underwater robot. The
hybrid system enables independent heave motion, surge motion, in situ steering, and stable
hovering. Kim et al. [22] proposed an integral sliding mode controller (ISMC) to stabilize
an autonomous underwater vehicle (AUV) with modeling errors.

Aruna et al. [23] analyzed trajectory tracking control methods using a conventional
proportional–integral–derivative (PID) control, H∞ control, and a feedforward (along with
feedback) control. Xiang et al. [24] proposed a simple PID controller to drive individual
AUVs following a 3D path by exploiting the 3D guidance law in the underactuated mode.
Yang et al. [25] suggested the nonlinear formation keeping and mooring control of mul-
tiple autonomous underwater vehicles using the backstepping method. Qiao et al. [26]
developed an effective control method to improve the trajectory tracking control in an
underwater vehicle using an adaptive fast nonsingular integral terminal sliding mode
control. Oktafianto et al. [27] presented a nonlinear model of an autonomous underwater
vehicle (AUV) with six degrees of freedom, which was linearized using the Jacobian matrix.

In this paper, feedback control loops for a fish robot were developed using MAT-
LAB Simulink [28]. A nonlinear model was obtained by incorporating hydrodynamic
effects (damping coefficients and added masses) into conventional six-DOF free body
dynamic equations.

To design a linear feedback controller, a linear model was derived from the nonlinear
model using system identification tools [29]. Using the identified linear model and PID
tuning, we obtained a robust PID controller with large gain and phase margins to overcome
nonlinear uncertainties. The frequency responses of the linear model with a feedback
controller were analyzed to check the gain margin and phase margin. After obtaining the
linear model controller, we applied it to both a linearized model and a nonlinear model to
compare its performances in both ideal and realistic situations. In the following sections,
we will present the complete dynamic equation, the MATLAB Simulink model of the
nonlinear model, linear models for surge, pitch, and yaw motions obtained from nonlinear
model responses, closed-loop PID controllers for surge, pitch, and yaw motions using linear
models, and the final simulation results of the controllers using nonlinear models.
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2. Equation of Motion and Dynamics of Fins

In this section, a complete six-DOF equation of motion was derived to describe the
motion of an underwater vehicle with pectoral, dorsal, and caudal fins.

2.1. Equation of Motion

The vehicle can move freely with six-DOF motions: surge, sway, heave, roll, pitch, and
yaw motions. Figure 1 illustrates the body coordinate system of a fish robot. The origin of
the body frame is at the geometrical center of the fish robot’s body. The prototype structure
is a modified version of Open Fish [7,8]. The center of gravity (CG) is located below the
origin. The center of buoyancy (CB) coincides with the origin of the body coordinate. In our
fish robot, the buoyancy force (B) is equal to the weight (W) to maintain a neutral buoyant
force condition.
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Figure 1. Fish robot coordinate system: (a) side view of the fish robot; (b) top view of the fish robot.

Assuming the xz plane as a plane of symmetry, six-DOF equations of motion are
given by Equations (1)–(6). The right-hand side of each equation represents the sum
of external forces and moments arising from added masses, hydrodynamic damping,
buoyancy, weight, and control. The left-hand side represents rigid body dynamics. The
control forces and moments generated by the control fins are described in Section 2.2. For a
complete derivation, refer to [5].
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Variables u, v, w, p, q, r, ϕ, and θ indicate surge velocity, sway velocity, heave velocity,
roll rate, pitch rate, yaw rate, roll angle, and pitch angle, respectively. Body mass and
the moment of inertia along the x, y, and z axes are m, Ixx, Iyy, and Izz, respectively. The
positions of the center of buoyancy and center of gravity are (xB, yB, zB) and (xG, yG, zG),
respectively.

The added masses corresponding to surge, sway, heave, roll, pitch, and yaw motions
are denoted as X .

u, Y .
v, Z .

w, K .
p, M .

q, N .
r, Y.

r, and Z .
q, respectively. The ellipsoidal body is

assumed to estimate the added mass and moments of inertia of the vehicle [30,31]. The
effects of the control fins were neglected. Assuming a symmetric body, we have N .

v = Y.
r,

M .
w = Z .

q.
The damping forces are represented by Xu|u|u|u|, Yv|v|v|v|, Zw|w|w|w|, Kp|p|p|p|,

Mw|w|w|w|, Mq|q|q|q|, Nr|r|r|r|, and Nv|v|v|v|, illustrating the nonlinear and coupled damp-
ing characteristics of an underwater vehicle in six-DOF motions at a high speed [5–33]. The
forces and moments due to the control fins (i.e., Xc, Yc, Zc, Kc, Mc, and Nc) will be detailed
in Section 2.2.

The relationship between the Euler angle and the body axis rate is given as
Equations (7)–(9) [5]. The yaw angle is denoted as ψ.

.
ϕ = p + qsin ϕtan θ + rcos ϕtan θ, (7)

.
θ = qcos ϕ − rsin ϕ, (8)

.
ψ = qsin ϕsec θ + rcos ϕsec θ. (9)

Tables 1 and 2 show parameters used in the control simulations. They were estimated
based on the size and shape of the body. The damping coefficients were approximated
assuming a flat ellipsoidal body. To be more realistic, a more accurate calculation of these
parameters and verification via real experiments are necessary.

Table 1. Parameters of the fish robot.

Parameter Symbol Value Unit

Length l 5.00 × 10−1 m
Weight w 1.96 × 101 N

Buoyancy B 1.96 × 101 N
Moment of inertia in x-axis Ixx 1.30 × 10−3 kg/m2

Moment of inertia in y-axis Iyy 1.23 × 10−2 kg/m2

Moment of inertia in z-axis Izz 1.23 × 10−2 kg/m2

Position of CB (xB, yB, zB) (0,0,0) m
Position of CG (xG, yG, zG)

(
0, 0, 4.00 × 10−2 ) m
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Table 2. Hydrodynamic parameters of the fish robot.

Added Mass Nonlinear Damping Coefficients

X .
u = −1.00 × 10−1 kg Xu|u| = −9.30 × 10−1

Y .
v = −1.40 × 10−1 kg Yv|v| = −3.43 × 101

Z .
w = −1.40 × 10−1 kg Zw|w| = −3.43 × 101

K .
p = −1.10 × 10−2 kg m2 Kp|p| = −1.00 × 10−1

M .
q = −3.00 × 10−3 kg m2 Mq|q| = −2.77

N .
r = −3.00 × 10−3 kg m2 Nr|r| = −2.77
Y.

r = 1.00 × 10−3 kg m Yr|r| = 0
Z .

q = −1.00 × 10−3 kg m Mw|w| = 0

2.2. Forces and Moments Due to Control Fins

Caudal fins were utilized to generate thrust, whereas pectoral and dorsal fins were
used to control the pitch and yaw motions of the fish robot. The caudal fin produced the
propulsion force necessary for propelling the fish forward. We set the tail beat angle to
50 degrees and estimated the average thrust produced by the tail when the flapping fre-
quency varied from 1 Hz to 7 Hz. The surge force (Xc) can be expressed using Equation (10).
The terms Tcd, Db, Dp f , and Dd f represent thrust by the caudal fin, body drag, pectoral fin
drag, and dorsal fin drag, respectively.

Xc = Tcd − Db − Dp f − Dd f . (10)

Figure 2 shows thrusts generated by the caudal fin. These thrusts were calculated
using the added mass method [12,34,35], first proposed by Lighthill [35] and then modified
for calculating the thrust generated by a forked-shaped caudal fin [12]. The fin used in [12]
was replaced by the current fin geometry. The driving frequency varied from 1 to 7 Hz for
the thrust calculation, as shown in Figure 2.
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To calculate the drag and lift forces exerted by the fins, we used the general drag force
(Fd) equation in [4], given by Equations (11)–(13):

Fd =
1
2

ρU2 ACd, (11)

where U is the forward velocity, A is the relevant reference area of the fin, and Cd is the
drag coefficient given in Equation (12). In Equation (12), CDo is the parasite drag, Ar is the
aspect ratio of a fin, e is the Oswald efficiency factor, which typically has a value of 0.85 to
0.9 for any airfoil section, and Cl is the coefficient of the lift.
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Cd = CDo +
C2

l
πAre

, (12)

To estimate the coefficient of the lift, we referred to Equation (13), where Clα is the
slope of the curve with the angle of attack α. We assumed that fin shapes were roughly
similar to the shape of the NACA0012 airfoil [36]. Clα is obtained by assuming that the
maximum α is 15 degrees.

Cl = Clα
Ar

Ar +
[

2(Ar+4)
(Ar+2)

]α, (13)

Based on Equations (11)–(13), we calculated the drag forces of the pectoral and dorsal
fins. For the body drag, we used Equation (11), assuming a drag coefficient Cd of 0.032,
which corresponded to the wetted surface area of a fish robot [37].

To control the pitch moment in fish robots, we drove pectoral fins so that the angle of
attack was between −15~+15 degrees. The heave force Zcp f and pitch moment Mcp f of the
pectoral fins are given by Equations (14) and (15):

Zc = Zcp f = −Lp f , (14)

Mcp f = Lp f
(
xp

)
− Dp f

(
zp
)
. (15)

In Equations (14) and (15), Lp f represents combined lift forces from both left and
right pectoral fins, as shown in Figure 3a. The position of the pectoral fin was denoted as
(xp, yp, zp). Dp f denotes the drag force exerted by the left and right pectoral fins. During
the pitching motion, heave velocity is induced by the lift force, as shown in Equation (14).
The lift force (Fl) of a fin is given by Equation (16):

Fl =
1
2

ρU2 ACl . (16)
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The lift and drag forces of the dorsal fin are shown in Figure 3b. Force and moments
by the dorsal fin are given by Equations (19) and (20):

Yc = Ycd f = Ld f , (17)

Kc = Kcd f = −Ld f (zd), (18)

Mcd f = −Dd f (zd), (19)

Nc = Ncd f = Ld f (xd). (20)

In Equation (17), the lift force exerted by the dorsal fin, Ld f , also works for the sway di-
rectional acceleration force Ycd f . Kcd f in Equation (18) represents the roll moment by the dor-
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sal fin. The position of the dorsal fin is represented by (xd, yd, zd). Mcd f in Equation (19) de-
notes the pitch moment resulting from the drag force of the dorsal fin. Ncd f in Equation (20)
represents the yaw moment by the dorsal fin. Combining Equations (15) and (19), we ob-
tained the pitch control moment for the pectoral and dorsal fins, as shown in Equation (21).

Mc = Mcp f + Mcd f = Lp f
(
xp

)
− Dp f

(
zp
)
+ Dd f (zd) (21)

3. Simulation and Controller Design Results

We initially conducted an open-loop simulation for our robotic fish, where control
inputs were applied by caudal, pectoral, and dorsal fins using Equations (10)–(21). Figure 4
shows a simplified simulation block for a fish robot. The outputs measured were surge,
sway, and heave velocities, as well as roll, pitch, and yaw rates, in addition to roll, pitch,
and yaw angles.
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As shown in Equation (22), two-DOF PID controllers were used for surge, pitch, and
yaw controllers.

G(s) = P(br − y) + I
1
s
(r − y) + D

N
1 + N 1

s
(cr − y), (22)

where P, I, D, and N are the proportional gain, integral gain, derivative gain, and deriva-
tive filter time, respectively. b and c are the set point weights on the proportional term and
derivative term. r is the reference input, and y is the output. G(s) is the controller transfer
function, and s is the complex frequency in the Laplace transform [38]. For practical use, the
control loop [39–42] was designed to satisfy the following preferred conditions: (1) the gain
margin should be higher than 10 dB to cover the model uncertainties [43]; and (2) the phase
margin should be larger than 45◦ to cover time delays and model uncertainties [44,45].

3.1. Surge Response and Velocity Controller Design

To obtain surge responses, the nominal velocity commands were given as 0.2 m/s
(Condition 1), 0.4 m/s (Condition 2), and 0.6 m/s (Condition 3). At 10 s, after a steady-
state surge velocity was reached, a pseudo-random binary signal (PRBS) control input
of ±0.05 m/s was added to the nominal input to check the plant response variations, as
shown in Figure 5a. In Figure 5a, the nominal velocities were subtracted to show the
velocity variations only. Input and output data were used to obtain transfer functions
between velocity command variations and output velocity variations. After obtaining
surge open-loop responses from the nonlinear model, we applied the system identification
tool in MATLAB to obtain a linearized transfer function. Figure 5b–d show verifications
of the identified linear model using different PRBS input signals. The output response
of the identified linear model and that of the original nonlinear model were compared.
The fits to estimations with nominal velocities of 0.2 m/s, 0.4 m/s, and 0.6 m/s were



Biomimetics 2024, 9, 317 8 of 16

61.9%, 91.3%, and 92.8%, respectively. Table 3 shows the linearly approximated transfer
functions obtained when the nominal surge velocities were 0.2 m/s, 0.4 m/s, and 0.6 m/s.
Figure 5e shows the frequency responses of linearly identified plants. The low-frequency
gains decreased as the nominal surge velocity decreased. As the nominal surge velocity
increased, the loop gains and bandwidths also increased. Thus, the responses to the control
inputs were faster.
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70 degrees, respectively. The gain margin was infinite. Figure 5g shows the step responses 
of a closed-loop linearized plant with the obtained PID controllers. The rise times were 
about 4, 2, and 2 s. Both the maximum overshoot and steady-state error were small enough 
to be ignored. Figure 5h shows the step responses of closed-loop nonlinear plant responses 
when linearly obtained PID controllers are applied. The results showed that PID control-
lers work well even when they are applied to nonlinear models.  
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Figure 5. Surge velocity responses: (a) open-loop responses to speed commands with different
nominal velocities; (b) responses of the identified linear model and nonlinear plant at a nominal
speed of 0.2 m/s; (c) responses of the identified linear model and nonlinear plant at a nominal speed
of 0.4 m/s; (d) responses of the identified linear model and nonlinear plant at a nominal speed of
0.6 m/s; (e) frequency response of identified linear models; (f) Bode plots of identified plants with
feedback controllers; (g) step responses of the closed-loop linearized models; (h) step responses of
the closed-loop nonlinear model.
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Table 3. Linearly obtained surge velocity transfer functions with different nominal surge velocities.

Nominal Caudal
Frequency (Hz)

Nominal Surge Velocity
Condition

Linearly Obtained Transfer
Function

2.00 Condition 1 (0.2 m/s) 3.98 × 10−1

s + 5.08 × 10−1

4.00 Condition 2 (0.4 m/s) 8.72 × 10−1 s + 8.29 × 10−1

s2 + 1.84 s + 1.09

6.00 Condition 3
(0.6 m/s)

1.73 s + 1.08 × 101

s2 + 1.02 × 101 s + 1.11 × 101

Two-DOF PID controllers, as shown in Equation (22), were designed for the model
transfer functions in Table 3. Table 4 shows the surge controller parameters obtained using
two-DOF PID tuning.

Table 4. Parameters of two-DOF PID surge controllers.

Model P I D N b c

Condition 1 1.70 × 101 1.73 × 101 −1.22 1.92 3.02 × 10−2 2.20 × 10−1

Condition 2 2.03 × 101 4.32 × 101 −2.80 2.75 1.38 × 10−2 3.60 × 10−1

Condition 3 1.22 × 101 3.22 −9.58 × 10−1 5.65 3.94 × 10−2 8.93 × 10−2

Figure 5f shows the frequency responses of plants and PID controllers to check system
stability margins. As shown in Table 5, the bandwidths of the three models were 0.90 rad/s,
2.32 rad/s, and 2.19 rad/s, and the phase margins were 69 degrees, 69 degrees, and
70 degrees, respectively. The gain margin was infinite. Figure 5g shows the step responses
of a closed-loop linearized plant with the obtained PID controllers. The rise times were
about 4, 2, and 2 s. Both the maximum overshoot and steady-state error were small enough
to be ignored. Figure 5h shows the step responses of closed-loop nonlinear plant responses
when linearly obtained PID controllers are applied. The results showed that PID controllers
work well even when they are applied to nonlinear models.

Table 5. Gain and phase margins for surge controllers.

Model Gain Margin
(Decibels)

Phase Margin
(Degrees)

Condition 1 Infinity 69 at 0.90 rad/s
Condition 2 Infinity 69 at 2.32 rad/s
Condition 3 Infinity 70 at 2.19 rad/s

Figure 6 shows the step responses of the closed-loop nonlinear plant when the linear
controller designed using a nominal velocity of 0.4 m/s is applied to nonlinear plants
with different nominal velocities. The results showed that the PID controller, originally
optimized for 0.4 m/s, performs effectively with different nominal velocities. This robust
performance is due to the fact that the controller has large gain and phase margins, which
ensure stability and responsiveness under varying conditions.
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3.2. Pitch Response and Pitch Controller Design

To obtain the pitch response, a PRBS signal of ±0.5 radians was used as the pitch
input. Surge velocities were set to 0.2 m/s, 0.4 m/s, and 0.6 m/s. Initially, an open-loop
simulation for the pitch was conducted, and input–output data were collected to identify
the plant model, as shown in Figure 7a. From the resulting input–output responses, we
derived the linearized transfer function using the MATLAB Simulink System Identification
Tool. As shown in Figure 7b–d, the nonlinear and linear model responses match well with
another PRBS input. The fits to estimations for 0.2 m/s, 0.4 m/s, and 0.6 m/s were 86.14%,
84.3%, and 86.14%, respectively.
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Figure 7. Pitch responses: (a) open-loop pitch responses at surge velocities of 0.2 m/s, 0.4 m/s,
and 0.6 m/s; (b) responses of the identified linear model and nonlinear plant at a nominal speed
of 0.2 m/s; (c) responses of the identified linear model and nonlinear plant at a nominal speed of
0.4 m/s; (d) responses of the identified linear model and nonlinear plant at a nominal speed of
0.6 m/s; (e) frequency response of the identified linear models; (f) Bode plots of identified plants with
feedback controllers; (g) step responses of closed-loop controllers with linearized models; (h) step
responses of closed-loop controllers with a nonlinear model.
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The linear transfer functions obtained are shown in Table 6. Figure 7e shows the
frequency responses of the obtained linear models.

Table 6. Linearly obtained pitch transfer functions.

Nominal Surge Condition Linearly Obtained Transfer Function

Condition 1 −3.00 × 10−3 s2 + 4.55 × 10−1 s − 9.56 × 10−1

s3 + 6.12 s2 + 6.24 × 101 s + 2.23 × 101

Condition 2 3.49 × 10−2 s2 + 5.84 × 10−1 s − 2.8
s3 + 8.40 s2 + 3.23 × 101 s + 2.65 × 101

Condition 3 4.27 × 10−2 s2 + 6.88 × 101 s − 5.09
s3 + 8.59 s2 + 2.50 × 101 s + 2.19 × 101

A two-DOF PID controller was designed using PID tuning for the linear transfer
function, as shown in Table 6. The parameters of the two-DOF PID controller obtained are
shown in Table 7.

Table 7. Parameters of two-DOF PID pitch controllers.

Model P I D N b c

Condition 1 −2.41 −1.89 0 1.00 × 102 1 1
Condition 2 0 −0.99 0 1.00 × 102 1 1
Condition 3 −3.07 −1.78 0 1.00 × 102 1 1

Figure 7f shows the frequency responses of the linear pitch plant models with feedback
controllers to check the system’s performances. Table 8 shows the gain and phase margins
and bandwidths of the closed-loop control systems. The gain margins are large enough,
even though they are not infinite, as in the surge control. The phase margins are larger than
76 degrees, which is more than enough. Figure 7g shows the step responses of closed-loop
pitch controllers for linear plant models with different nominal surge velocity conditions.
The maximum rise time was about 20 s. Both maximum overshoots and steady-state errors
were negligibly small. Figure 7h shows step responses when the PID controllers derived
from linear models are applied to the nonlinear model. From the start to 10 s, pitch reference
inputs remained at zero. Due to the surge velocities being changed from zero to nominal
velocities, there were some oscillations in the pitch angle. At 10 s, 0.01-rad pitch commands
were applied to the pitch controllers. It could be seen that all pitch-angle outputs were
following the commands. The rise time was about 5 s, demonstrating that the obtained PID
controller also performs well with the nonlinear plant.

Table 8. Gain and phase margins for pitch controllers.

Model Gain Margin
(Decibels)

Phase Margin
(Degrees)

Condition 1 32.1 at 3.53 rad/s 81 at 0.07 rad/s
Condition 2 26.3 at 2.88 rad/s 85 at 0.17 rad/s
Condition 3 22.2 at 1.88 rad/s 76 at 0.23 rad/s

Figure 8 shows the step response of a nonlinear plant when the linearly derived pitch
controller for the 0.4 m/s model is applied with different nominal surge velocities. When
the nominal surge velocities are 0.2 m/s, 0.4 m/s, and 0.6 m/s, the rise time is about 15 s,
2 s, and 1 s, respectively. When the surge velocity was low, it took more time to maneuver
the pitch because the pitching force is proportional to the square of the surge velocity.
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3.3. Yaw Response and Yaw Controller Design

In the yaw control loop simulation, the surge nominal velocities were given as 0.2 m/s,
0.4 m/s, and 0.6 m/s. The PRBS input with an amplitude of 0.5 rad was given as a yaw
control input after 10 s, as shown in Figure 9a. After applying the system identification tool
in MATLAB Simulink to the yaw command input and output data, we obtained a linear
transfer function describing characteristics between the yaw command input and output.
The obtained linear transfer functions are shown in Table 9. Figure 9b, Figure 9c, and
Figure 9d show the responses of the identified linear and nonlinear models. For the 0.2 m/s,
0.4 m/s, and 0.6 m/s models, the fits to estimations were 72.59%, 64.09%, and 64.37%,
respectively. Figure 9e shows the frequency responses of the obtained linear models.

Table 9. Linearly obtained yaw transfer functions.

Nominal Surge
Condition Linearly Obtained Transfer Function

Condition 1 −6.39 × 10−2 s2 + 1.17 × 10−1 s + 1.48 × 10−3

s3 + 6.38 × 10−1 s2 + 2.93 × 10−2 s + 1.87 × 10−2

Condition 2 2.97 × 10−2 + 3.07 × 10−1

s2 + 6.92 × 10−1 s + 2.88 × 10−10

Condition 3 1.66 × 10−1 s + 4.48 × 10−1

s2 + 6.96 × 10−1 s + 5.469 × 10−11

Two-DOF PID controllers were designed and tuned in Simulink using transfer func-
tions obtained from the system identification, as shown in Table 9. The parameters of these
two-DOF PID controllers are shown in Table 10.

Table 10. Parameters of two-DOF PID yaw controllers.

Model P I D N b c

Condition 1 2.20 0.35 3.40 4.93× 10−1 8.96 × 10−1 2.15 × 10−1

Condition 2 6.57 1.72 5.61 5.41 5.30 × 10−1 2.00
Condition 3 3.24 0.72 2.09 5.58 5.69 × 10−1 2.00

Figure 9f shows the frequency responses of the linearized yaw plant with feedback
controllers. Table 11 shows the gain and phase margins for the obtained controller. Figure 9g
shows the closed-loop responses of the linearized models with the obtained controller. The
results showed that for yaw control systems with surge velocities of 0.2 m/s, 0.4 m/s, and
0.6 m/s, the rise times were 2 s, 2.5 s, and 3 s, respectively. The maximum overshot and
steady-state error were small when the nominal surge velocities were 0.4 m/s and 0.6 m/s.
When the nominal surge velocity was 0.2 m/s, the output had some overshoot and slowly
reached a steady state. Figure 9h shows the step responses of a nonlinear plant with linearly
obtained PID controllers. At surge velocities of 0.2 m/s, 0.4 m/s, and 0.6 m/s, the rise
times were 2 s, 2.7 s, and 5 s, respectively.
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Table 11. Gain and phase margins for yaw controllers.

Model Gain Margin
(Decibels)

Phase Margin
(Degrees)

Condition 1 13.0 at 9.15 rad/s 57 at 0.43 rad/s
Condition 2 Infinity 69 at 2.00 rad/s
Condition 3 Infinity 85 at 1.52 rad/s
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Figure 10 shows the step responses of the linearly derived yaw controller with 0.4 m/s
nominal surge velocity applied to the nonlinear model with different nominal surge veloci-
ties. When the nominal surge velocities were 0.2 m/s, 0.4 m/s, and 0.6 m/s, the rise time
was about 4.5 s, 2.5 s, and 2.5 s, respectively. It shows that the applied controller worked
well even with different conditions.
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4. Conclusions

In this paper, a simulation block for a fish robot was constructed using MATLAB
Simulink. Linearly approximated transfer function models were obtained from surge, pitch,
and yaw open-loop responses. Using these linear models, we designed a simple two-DOF
PID controller for surge, pitch, and yaw control. A frequency analysis using Bode diagrams
for the surge, pitch, and yaw controllers showed that the gain margin and phase margin
were sufficiently large for the surge, yaw, and pitch controllers.

When surge, pitch, and yaw controllers were applied to the linear model, the maximum
overshoot and steady-state error were small. The bandwidths of the surge pitch and yaw
controllers were 2.3 rad/s, 0.17 rad/s, and 2 rad/s, respectively. When these controllers
were applied directly to a nonlinear plant, the response characteristics were similar to those
when the controllers were applied to a linear model. Therefore, it is expected that the
proposed controller can be applied to control real fish robots with nonlinear coupling terms
and uncertainties.

In simulations, we assumed a symmetric ellipsoidal body and obtained parameters
simplifying the structure. Thus, these parameters need to be updated using more accurate
methods and actual experimental data. In this research, we focused on single-input and
single-output responses. However, in future work, we will consider multi-input and multi-
output responses to see more complex system behaviors. Additionally, the current control
law does not fully address interactions between surges and other forces, which could lead
to instability.

In the future, we plan to fabricate an actual fish robot. With a real fish robot, we
will perform experiments to identify dynamic parameters and transfer characteristics and
implement controllers to verify their performances.
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