SonoNERFs: Neural Radiance Fields Applied to Biological Echolocation Systems Allow 3D Scene Reconstruction through Perceptual Prediction
Abstract
:1. Introduction
2. Echo Formation in Echolocating Bats
3. SonoNERFs
3.1. Neural Acoustic Rendering
3.2. Training of a SonoNERF
4. Experimental Validation
4.1. Sononerf Model Implementation
4.2. From Spectrograms to 3D Scene Description
4.3. Typical Data Setup
4.4. SonoNERF Trained on a Simple Scene
4.5. SonoNERF Trained on a Complex Scene
4.6. SonoNERF Trained on a Biologically Relevant Scene
5. Data and Code Availability
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bell, G.P. Behavioral and Ecological Aspects of Gleaning by a Desert Insectivorous Bat Antrozous Pallidus (Chiroptera: Vespertilionidae). Behav. Ecol. Sociobiol. 1982, 10, 217–223. [Google Scholar] [CrossRef]
- Entwistle, A.C.; Racey, P.A.; Speakman, J.R. Habitat Exploitation by a Gleaning Bat, Plecotus Auritus. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1996, 351, 921–931. [Google Scholar]
- Geipel, I.; Jung, K.; Kalko, E.K. Perception of Silent and Motionless Prey on Vegetation by Echolocation in the Gleaning Bat Micronycteris Microtis. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122830. [Google Scholar]
- Razak, K.A. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study. Brain Behav. Evol. 2018, 91, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Stoffberg, S.; Jacobs, D.S. The Influence of Wing Morphology and Echolocation on the Gleaning Ability of the Insectivorous Bat Myotis Tricolor. Can. J. Zool. 2004, 82, 1854–1863. [Google Scholar] [CrossRef]
- Swift, S.; Racey, P. Gleaning as a Foraging Strategy in Natterer’s Bat Myotis Nattereri. Behav. Ecol. Sociobiol. 2002, 52, 408–416. [Google Scholar]
- Geipel, I.; Steckel, J.; Tschapka, M.; Vanderelst, D.; Schnitzler, H.U.; Kalko, E.K.; Peremans, H.; Simon, R. Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey. Curr. Biol. 2019, 29, 2731–2736. [Google Scholar] [CrossRef] [PubMed]
- Verreycken, E.; Simon, R.; Quirk-Royal, B.; Daems, W.; Barber, J.; Steckel, J. Bio-Acoustic Tracking and Localization Using Heterogeneous, Scalable Microphone Arrays. Commun. Biol. 2021, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Arlettaz, R.; Jones, G.; Racey, P.A. Effect of Acoustic Clutter on Prey Detection by Bats. Nature 2001, 414, 742–745. [Google Scholar] [CrossRef]
- Siemers, B.M.; Baur, E.; Schnitzler, H.U. Acoustic Mirror Effect Increases Prey Detection Distance in Trawling Bats. Naturwissenschaften 2005, 92, 272–276. [Google Scholar] [CrossRef]
- Zsebok, S.; Kroll, F.; Heinrich, M.; Genzel, D.; Siemers, B.M.; Wiegrebe, L. Trawling Bats Exploit an Echo-Acoustic Ground Effect. Front. Physiol. 2013, 4, 65. [Google Scholar] [CrossRef] [PubMed]
- Grafe, T.U.; Schöner, C.R.; Kerth, G.; Junaidi, A.; Schöner, M.G. A Novel Resource–Service Mutualism between Bats and Pitcher Plants. Biol. Lett. 2011, 7, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Schöner, M.G.; Schöner, C.R.; Simon, R.; Grafe, T.U.; Puechmaille, S.J.; Ji, L.L.; Kerth, G. Bats Are Acoustically Attracted to Mutualistic Carnivorous Plants. Curr. Biol. 2015, 25, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Bakunowski, K.; Reyes-Vasques, A.E.; Tschapka, M.; Knoernschild, M.; Steckel, J.; Stowell, D. Acoustic Traits of Bat-Pollinated Flowers Compared to Flowers of Other Pollination Syndromes and Their Echo-Based Classification Using Convolutional Neural Networks. PLoS Comput. Biol. 2021, 17, 20. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Matt, F.; Santillan, V.; Tschapka, M.; Tuttle, M.; Halfwerk, W. An Ultrasound-Absorbing Inflorescence Zone Enhances Echo-Acoustic Contrast of Bat-Pollinated Cactus Flowers. J. Exp. Biol. 2023, 226, jeb245263. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Rupitsch, S.; Baumann, M.; Wu, H.; Peremans, H.; Steckel, J. Bioinspired Sonar Reflectors as Guiding Beacons for Autonomous Navigation. Proc. Natl. Acad. Sci. USA 2020, 117, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- de Backer, M.; Jansen, W.; Laurijssen, D.; Simon, R.; Daems, W.; Steckel, J. Detecting and Classifying Bio-Inspired Artificial Landmarks Using in-Air 3D Sonar. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Denny, M. The Physics of Bat Echolocation: Signal Processing Techniques. Am. J. Phys. 2004, 72, 1465–1477. [Google Scholar] [CrossRef]
- Altes, R.A. Sonar for Generalized Target Description and Its Similarity to Animal Echolocation Systems. J. Acoust. Soc. Am. 1976, 59, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Saillant, P.A.; Simmons, J.A.; Dear, S.P.; McMullen, T.A. A Computational Model of Echo Processing and Acoustic Imaging in Frequency-modulated Echolocating Bats: The Spectrogram Correlation and Transformation Receiver. J. Acoust. Soc. Am. 1993, 94, 2691–2712. [Google Scholar] [CrossRef]
- Simmons, J.A.; Stein, R.A. Acoustic Imaging in Bat Sonar: Echolocation Signals and the Evolution of Echolocation. J. Comp. Physiol. 1980, 135, 61–84. [Google Scholar] [CrossRef]
- Simmons, J.A.; Moss, C.F.; Ferragamo, M. Convergence of Temporal and Spectral Information into Acoustic Images of Complex Sonar Targets Perceived by the Echolocating Bat, Eptesicus Fuscus. J. Comp. Physiol. A 1990, 166, 449–470. [Google Scholar] [CrossRef]
- Simmons, J.A. A View of the World through the Bat’s Ear: The Formation of Acoustic Images in Echolocation. Cognition 1989, 33, 155–199. [Google Scholar] [CrossRef] [PubMed]
- Balleri, A.; Griffiths, H.D.; Woodbridge, K.; Baker, C.J.; Holderied, M.W. Bat-Inspired Ultrasound Tomography in Air. In Proceedings of the 2010 IEEE Radar Conference, Arlington, VA, USA, 10–14 May 2010; pp. 44–47. [Google Scholar]
- Clare, E.L.; Holderied, M.W. Acoustic Shadows Help Gleaning Bats Find Prey, but May Be Defeated by Prey Acoustic Camouflage on Rough Surfaces. Elife 2015, 4, e07404. [Google Scholar] [CrossRef]
- Neil, T.R.; Shen, Z.; Robert, D.; Drinkwater, B.W.; Holderied, M.W. Moth Wings Are Acoustic Metamaterials. Proc. Natl. Acad. Sci. USA 2020, 117, 31134–31141. [Google Scholar] [CrossRef] [PubMed]
- Chitradurga Achutha, A.; Peremans, H.; Firzlaff, U.; Vanderelst, D. Efficient Encoding of Spectrotemporal Information for Bat Echolocation. PLoS Comput. Biol. 2021, 17, e1009052. [Google Scholar] [CrossRef]
- Kim, S.Y.; Allen, R.; Rowan, D. The Simulation of Bat-Oriented Auditory Processing Using the Experimental Data of Echolocating Signals. J. Acoust. Soc. Am. 2008, 123, 3621. [Google Scholar] [CrossRef]
- Kössl, M.; Vater, M. The Cochlear Frequency Map of the Mustache Bat, Pteronotus Parnellii. J. Comp. Physiol. A 1985, 157, 687–697. [Google Scholar] [CrossRef]
- Peremans, H.; Hallam, J. The Spectrogram Correlation and Transformation Receiver, Revisited. J. Acoust. Soc. Am. 1998, 104, 1101–1110. [Google Scholar] [CrossRef]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing Scenes as Neural Radiance Fields for View Synthesis. Commun. ACM 2021, 65, 99–106. [Google Scholar] [CrossRef]
- Zhang, K.; Riegler, G.; Snavely, N.; Koltun, V. Nerf++: Analyzing and Improving Neural Radiance Fields. arXiv 2020, arXiv:2010.07492. [Google Scholar]
- Gao, K.; Gao, Y.; He, H.; Lu, D.; Xu, L.; Li, J. Nerf: Neural Radiance Field in 3d Vision, a Comprehensive Review. arXiv 2022, arXiv:2210.00379. [Google Scholar]
- Zhu, F.; Guo, S.; Song, L.; Xu, K.; Hu, J. Deep Review and Analysis of Recent Nerfs. APSIPA Trans. Signal Inf. Process. 2023, 12, e6. [Google Scholar] [CrossRef]
- Iddrisu, K.; Malec, S.; Crimi, A. 3D Reconstructions of Brain from MRI Scans Using Neural Radiance Fields. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 18–22 June 2023; Springer: Cham, Switzerland, 2023; pp. 207–218. [Google Scholar]
- Jang, T.J.; Hyun, C.M. NeRF Solves Undersampled MRI Reconstruction. arXiv 2024, arXiv:2402.13226. [Google Scholar]
- Wysocki, M.; Azampour, M.F.; Eilers, C.; Busam, B.; Salehi, M.; Navab, N. Ultra-Nerf: Neural Radiance Fields for Ultrasound Imaging. In Proceedings of the Medical Imaging with Deep Learning, PMLR, Nashville, TN, USA, 25 January 2023; pp. 382–401. [Google Scholar]
- Zou, Y.; Lin, Y.; Zhu, Q. PA-NeRF, a Neural Radiance Field Model for 3D Photoacoustic Tomography Reconstruction from Limited Bscan Data. Biomed. Opt. Express 2024, 15, 1651–1667. [Google Scholar] [CrossRef]
- Chen, C.; Richard, A.; Shapovalov, R.; Ithapu, V.K.; Neverova, N.; Grauman, K.; Vedaldi, A. Novel-View Acoustic Synthesis. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 6409–6419. [Google Scholar]
- Chen, Z.; Gebru, I.D.; Richardt, C.; Kumar, A.; Laney, W.; Owens, A.; Richard, A. Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark. arXiv 2024, arXiv:2403.18821. [Google Scholar]
- Guo, Y.; Chen, K.; Liang, S.; Liu, Y.J.; Bao, H.; Zhang, J. Ad-Nerf: Audio Driven Neural Radiance Fields for Talking Head Synthesis. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 5784–5794. [Google Scholar]
- Luo, A.; Du, Y.; Tarr, M.; Tenenbaum, J.; Torralba, A.; Gan, C. Learning Neural Acoustic Fields. Adv. Neural Inf. Process. Syst. 2022, 35, 3165–3177. [Google Scholar]
- De Mey, F.; Reijniers, J.; Peremans, H.; Otani, M.; Firzlaff, U. Simulated Head Related Transfer Function of the Phyllostomid Bat Phyllostomus Discolor. J. Acoust. Soc. Am. 2008, 124, 2123–2132. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Holderied, M.W. Bat Echolocation Calls: Adaptation and Convergent Evolution. Proc. R. Soc. B Biol. Sci. 2007, 274, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Pierce, A.D. Acoustics: An Introduction to Its Physical Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wang, J.; Cai, D.; Wen, Y. Comparison of Matched Filter and Dechirp Processing Used in Linear Frequency Modulation. In Proceedings of the 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, Wuhan, China, 20–21 August 2011; Volume 2, pp. 70–73. [Google Scholar]
- Wiegrebe, L. An Autocorrelation Model of Bat Sonar. Biol. Cybern. 2008, 98, 587–595. [Google Scholar] [CrossRef]
- Steckel, J.; Vanderelst, D.; Peremans, H. BatSLAM: Combining Biomimetic Sonar with a Hippocampal Model. In Proceedings of the Robotica Conference, Guimaraes, Portugal, 11 April 2012. [Google Scholar]
- Matusik, W.; Pfister, H.; Brand, M.; McMillan, L. Efficient Isotropic BRDF Measurement. In Proceedings of the 14th Eurographics Workshop on Rendering, Leuven, Belgium, 25– 27June 2003. ACM International Conference Proceeding Series Volume 44. [Google Scholar]
- Vanderelst, D.; De Mey, F.; Peremans, H.; Geipel, I.; Kalko, E.; Firzlaff, U. What Noseleaves Do for FM Bats Depends on Their Degree of Sensorial Specialization. PLoS ONE 2010, 5, e11893. [Google Scholar] [CrossRef]
- Jansen, W.; Steckel, J. SonoTraceLab-A Raytracing-Based Acoustic Modelling System for Simulating Echolocation Behavior of Bats. arXiv 2024, arXiv:2403.06847. [Google Scholar]
- Tancik, M.; Srinivasan, P.; Mildenhall, B.; Fridovich-Keil, S.; Raghavan, N.; Singhal, U.; Ramamoorthi, R.; Barron, J.; Ng, R. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. Adv. Neural Inf. Process. Syst. 2020, 33, 7537–7547. [Google Scholar]
- Banerjee, C.; Mukherjee, T.; Pasiliao, E., Jr. An Empirical Study on Generalizations of the ReLU Activation Function. In Proceedings of the Proceedings of the 2019 ACM Southeast Conference, Kennesaw, GA, USA, 18–20 April 2019; pp. 164–167. [Google Scholar]
- Deep Learning Toolbox. Available online: https://nl.mathworks.com/products/deep-learning.html (accessed on 24 May 2024).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Napel, S.; Marks, M.P.; Rubin, G.D.; Dake, M.D.; McDonnell, C.H.; Song, S.M.; Enzmann, D.R.; Jeffrey, R.B., Jr. CT Angiography with Spiral CT and Maximum Intensity Projection. Radiology 1992, 185, 607–610. [Google Scholar] [CrossRef]
- Kaufman, A.E.; Mueller, K. Overview of Volume Rendering. Vis. Handb. 2005, 7, 127–174. [Google Scholar]
- Salles, A.; Diebold, C.A.; Moss, C.F. Echolocating Bats Accumulate Information from Acoustic Snapshots to Predict Auditory Object Motion. Proc. Natl. Acad. Sci. USA 2020, 117, 29229–29238. [Google Scholar] [CrossRef]
- Christensen, J.H.; Hornauer, S.; Stella, X.Y. Batvision: Learning to See 3d Spatial Layout with Two Ears. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 1581–1587. [Google Scholar]
- Zhang, C.; Yang, Z.; Xue, B.; Zhuo, H.; Liao, L.; Yang, X.; Zhu, Z. Perceiving like a Bat: Hierarchical 3D Geometric–Semantic Scene Understanding Inspired by a Biomimetic Mechanism. Biomimetics 2023, 8, 436. [Google Scholar] [CrossRef]
- Hendrycks, D.; Mazeika, M.; Kadavath, S.; Song, D. Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Liu, X.; Zhang, F.; Hou, Z.; Mian, L.; Wang, Z.; Zhang, J.; Tang, J. Self-Supervised Learning: Generative or Contrastive. IEEE Trans. Knowl. Data Eng. 2021, 35, 857–876. [Google Scholar] [CrossRef]
- Steckel, J.; Peremans, H. BatSLAM: Simultaneous Localization and Mapping Using Biomimetic Sonar. PLoS ONE 2013, 8, e54076. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jansen, W.; Steckel, J. SonoNERFs: Neural Radiance Fields Applied to Biological Echolocation Systems Allow 3D Scene Reconstruction through Perceptual Prediction. Biomimetics 2024, 9, 321. https://doi.org/10.3390/biomimetics9060321
Jansen W, Steckel J. SonoNERFs: Neural Radiance Fields Applied to Biological Echolocation Systems Allow 3D Scene Reconstruction through Perceptual Prediction. Biomimetics. 2024; 9(6):321. https://doi.org/10.3390/biomimetics9060321
Chicago/Turabian StyleJansen, Wouter, and Jan Steckel. 2024. "SonoNERFs: Neural Radiance Fields Applied to Biological Echolocation Systems Allow 3D Scene Reconstruction through Perceptual Prediction" Biomimetics 9, no. 6: 321. https://doi.org/10.3390/biomimetics9060321
APA StyleJansen, W., & Steckel, J. (2024). SonoNERFs: Neural Radiance Fields Applied to Biological Echolocation Systems Allow 3D Scene Reconstruction through Perceptual Prediction. Biomimetics, 9(6), 321. https://doi.org/10.3390/biomimetics9060321