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Abstract: In this paper, we introduce SonoNERFs, a novel approach that adapts Neural Radiance
Fields (NeRFs) to model and understand the echolocation process in bats, focusing on the challenges
posed by acoustic data interpretation without phase information. Leveraging insights from the field
of optical NeRFs, our model, termed SonoNERF, represents the acoustic environment through Neural
Reflectivity Fields. This model allows us to reconstruct three-dimensional scenes from echolocation
data, obtained by simulating how bats perceive their surroundings through sound. By integrating
concepts from biological echolocation and modern computational models, we demonstrate the
SonoNERF’s ability to predict echo spectrograms for unseen echolocation poses and effectively
reconstruct a mesh-based and energy-based representation of complex scenes. Our work bridges
a gap in understanding biological echolocation and proposes a methodological framework that
provides a first-order model of how scene understanding might arise in echolocating animals. We
demonstrate the efficacy of the SonoNERF model on three scenes of increasing complexity, including
some biologically relevant prey–predator interactions.

Keywords: Neural Radiance Fields; Neural Reflectance Fields; echolocating bats; ultrasound sensing;
sonar; biosonar

1. Introduction

Echolocating bats exhibit a strong ability to localize and discriminate prey objects using
sound as the primary sensing modality. A subset of bats called gleaning bats are especially
adept at finding and identifying prey in dense clutter [1–6]. One of the main theories
that explains this behavior is that these animals make clever use of physical interactions
of their echolocation signals and the clutter in which their prey is perched upon [7–11].
Another class of bats called nectar-feeding bats locates the flowers from which they nourish
themselves using a special kind of leaf that is co-evolved by the pitcher plants that bear
these flowers [12–14]. Similar traits of co-evolution have also been observed in other
plant–bat relationships, such as bat-pollinated cacti [15]. In these plant–bat interactions,
physical interactions between the emitted sound signals and the objects of interest give
rise to emergent, stable spectral cues, which the bat can utilize to localize these leaves [14].
These insights have led to robotic applications, building a specific set of sonar reflectors
that can be localized reliably by manufactured sonar sensors [16,17].

Although there is a growing body of evidence of the prevalence of these robust
emergent cues, which bats utilize to solve their prey localization and identification task,
the hypothesis of more in-depth scene understanding and modeling in bats still lingers.
Indeed, when visiting bat research conferences, talks about 3D scene models in bats can
often be overheard, giving rise to intense discussions about the sense or nonsense of such
models existing. This is understandable, as humans like to reason in high-level 3D models
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of the environment, as this representation is natural to us. However, it is essential to
understand that there are significant differences between the sensory data originating
from a complex scene when sensed using optical sensors (with wavelengths in the range
of hundreds of nanometers) or with acoustic sensors (using wavelengths in the order of
several millimeters [18]).

This prevalence of the concept of an ’acoustic image’ or ’acoustic 3D model’ is not
unsurprising, given the vast amount of literature by the pioneering researchers of bat
echolocation [19–23]. Furthermore, some researchers have proposed systems that perform
tomographic reconstruction of complex scenes using echolocation-like signals and use these
generated images to explain certain phenomena observed in bat–prey interactions [24–26].
Many of these previous works consider the problem of image formation based on the
reception time-domain reception signal, which represents the acoustic wave field impinging
on the external ears of the bats. However, an important note here is that phase information is
lost as these pressure waves pass through the inner ear structures of the bat [27–29]. Indeed,
as the bat’s cochlea can be modeled as a set of band pass filters, followed by an envelope
detection step, it is apparent that the phase information is effectively lost from the reflected
signals. Therefore, the assumption can be made that the inputs into the bat’s auditory system
can be adequately modeled by the magnitude of the short-time Fourier transform of the
impinging sound pressure waves [30], ignoring the logarithmic spacing of the frequency
components in the bat’s auditory system.

In this paper, we aim to build upon this early research and try to lay the foundations
for a model for effective 3D scene reconstruction in bats using the required phase-less
information. To do this, we let ourselves be inspired by the seminal work achieved in
novel view synthesis using deep learning networks. In particular, Neural Radiance Fields
(NeRFs), which were first introduced in the seminal paper by Mildenhall et al. at the ECCV
conference in 2020 [31]. In that paper, a novel approach for view synthesis is proposed
based on building a differentiable visual rendering pipeline, which queries a radiance field
represented by a multilayer perceptron (MLP) neural network. The MLP is trained for a
specific scene based on images taken from multiple viewpoints, using the differentiable
rendering pipeline (DRPL). Novel viewpoints can be generated using the DRPL and the
learned radiance function. The original NeRF paper has inspired many researchers and
sparked a whole new research field into improving upon the method proposed in the
original paper [32–34]. Furthermore, the usage of NeRFs has been expanded to other
application domains such as magnetic resonance imaging [35,36], ultrasonic medical imag-
ing [37,38], multimodal acoustic/visual scene representation [39–41], and acoustic room
impulse response prediction [42], with many more other examples to be found.

Based on the success of the underlying concept of NeRFs, more specifically, the dif-
ferentiable rendering equation combined with a learnable radiance function, we try to
explain 3D scene representation by echolocating bats using a NeRF-inspired model. Our
model is called a SonoNERF, in which Sono represents ’sound’ or ’sonar’, and NERF stands
for Neural Reflectivity Field instead of Radiance field, as reflectivity is more appropriate
in the context of acoustic echolocation problems. In the remainder of this paper, we will
introduce the underlying model of the SonoNERFs and explain how the differentiable
rendering pipeline is tailored to the problem of echolocation in bats. Then, we will illustrate
the model’s performance on various scenes, and discuss the performance of the model
(Figure 1). Finally, we will draw some conclusions and highlight the shortcomings of our
model at this point.
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Figure 1. Illustration of the processing flow of the SonoNERF model. Panel (a) depicts the bat
positioned at a single pose, showcasing two hemispheres Ω used for reflectivity function querying.
The reflectivity function is sampled at 600 uniformly distributed points over Ω, which are then used to
generate the received spectrum through the rendering equation. This spectrum undergoes nonlinear
compression and is placed in the corresponding range slice within the predicted spectrogram panel (b).
Panel (c) displays the Echolocation-Related Transfer Function (ERTF) for a Micronycteris microtus bat
call, calculated following the methodology outlined in [43]. Panel (d) offers a schematic overview of
the Neural Reflectivity field FΘ, responsible for predicting the reflected spectrum Hp(ω) based on
input position and incidence vector, all represented in world coordinates. The symbols Ω1 and Ω2

are two hemispheres over which the acoustic rendering equation is calculated, corresponding to two
separate range bins in the spectrogram.

2. Echo Formation in Echolocating Bats

In this section, we will briefly explain the echo formation process in bat echolocation,
as this is a requirement to understand the reasoning behind the operating principle of our
proposed SonoNERFs. Without loss of generality, we assume that bats emit a broadband
signal se(t), which typically is some multi-harmonic chirp [44]. We are aware of the
existence of so-called constant-frequency bats. Still, these typically do not perform the
gleaning behavior that underlies the SonoNERF principle, so we assume a broadband
call. This call is filtered by the external facial features of the bat by a direction-dependent
transfer function he(ψ, t), in which ψ is a direction vector in 3D, typically represented by
the azimuth angle θ and elevation angle φ. The filtered emitted signal is then reflected by
the environment, which we assume to be a collection of point-like reflectors (which, in the
Huygens approximation of acoustics, is an acceptable assumption [45]). Each point-reflector
filters the impinging signal with a filter hp(η, t), characterized by the impinging angle η
(to allow non-isotropic reflection functions to exist in this model). Upon reflection and
subsequent reception, the then filtered and reflected signals are filtered by the outer ears
of the bats, with a filter hL(ψ, t) for the left ear and a filter hR(ψ, t) for the right ear. All
these filtered paths are delayed by the round trip range (i.e., from the emitter to the point
reflector and from the point reflector to the respective ear).

hLT(pi, t) = hL(ψi, t) ∗ hpi (ηi, t) ∗ he(ψi, t) ∗ δ(t − ∆ti) (1)

hRT(pi, t) = hR(ψi, t) ∗ hpi (ηi, t) ∗ he(ψi, t) ∗ δ(t − ∆ti) (2)

In this equation, the total filters for a specific point pi for the left ear is ht,L(pi, t) and
for the right ear is ht,R(pi, t), and consist of the convolution of a delayed dirac function
(δ(t − ∆ti)), the emission filter he(ψi, t), the point reflector function hpi (ηi, t), and the
receiver Head Related Transfer Function hL(ψi, t). The received signal for the left and the
right ear is the linear sum over all N point-like reflectors, as follows:

sL(t) =
N

∑
i=1

hLT(pi, t) ∗ se(t) (3)

sR(t) =
N

∑
i=1

hRT(pi, t) ∗ se(t) (4)
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This time-domain representation can be transformed into the Fourier domain, in which
the convolutions become multiplications, which facilitates discovering the underlying
structure of the physical echo formation process. For this, we first transform the total filters,
as follows:

HLT(pi, ω) = HL(ψi, ω) · Hpi (ηi, ω) · He(ψi, ω) · ejkri (5)

HRT(pi, ω) = HR(ψi, ω) · Hpi (ηi, ω) · He(ψi, ω) · ejkri (6)

We then plug these into the equations for the total signals in the left and right ear, as follows:

SL(ω) =
N

∑
i=1

HLT(pi, ω) · Se(ω) (7)

SR(ω) =
N

∑
i=1

HRT(pi, ω) · Se(ω) (8)

Often, it makes sense to combine the HRTFs of the ears (i.e., HL(ψi, ω) ) with the trans-
fer functions of the emitter filter (He(ψi, ω)) into an object called the ERTF (echolocation-
related transfer function, called E(ψi, ω), as follows:

EL(ψi, ω) = He(ψi, ω) · HL(ψi, ω) (9)

ER(ψi, ω) = He(ψi, ω) · HR(ψi, ω) (10)

Which in turn reduces the equation for the total signal filter for point pi to the following:

HLT(pi, ω) = EL(ψi, ω) · Hpi (ηi, ω) · ejkri (11)

HRT(pi, ω) = ER(ψi, ω) · Hpi (ηi, ω) · ejkri (12)

This subtle difference between the HRTF and the ERTF becomes important later in
this paper when we describe the differentiable rendering pipeline we implemented for
our SonoNERF model. The received signals sL(t) and sR(t) still contain the phases of the
signals. However, as we have argued before, phase information is not considered readily
available to bats due to the processing that happens in the bat’s cochlea. Therefore, we
approximate the effects of the cochlea by taking the magnitude of the short-term Fourier
transform of these received signals, as follows:

ΨL(t, ω) =

∣∣∣∣FSTFT(sL(t)
∣∣∣∣ (13)

ΨR(t, ω) =

∣∣∣∣FSTFT(sR(t)
∣∣∣∣ (14)

in which FSTFT represents the short-term Fourier transform using adequate windowing
and overlap values. Subsequently, we concatenate the left and right short-term spectrogram
magnitudes into a binaural spectrogram magnitude ΨB(t, ω), as follows:

ΨB(t, ω) =

[
ΨL(t, ω)
ΨR(t, ω)

]
(15)

This binaural spectrogram magnitude is then dechirped [46] to remove the time-
frequency dependence of the call, which is equivalent to a semi-coherent matched filter, as
follows (semi-coherent because phase information is not used) [47]:

Ψ(t, ω) = C
[

ΨB(t − ∆tω, ω)

]
(16)

In which the delays ∆tω are calculated based on the time-frequency distribution
of the emitted signal se(t) [46,48]. With this, we have arrived at the input data for our
SonoNERF: the binaural dechirped magnitude of the short-term Fourier transform ΨD(t, ω).
A nonlinear compression function C is applied to map the high dynamic ranges natural to
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echolocation signals adequately. In the SonoNERF model, a logarithmic compression with
linear rescaling was used as a compression function. The matrix Ψ(t, ω), together with the
pose information of the sensor in the scene, will be the input data for the computations
happening inside the SonoNERF model.

3. SonoNERFs
3.1. Neural Acoustic Rendering

The NeRF model proposed in [33] solves the task of novel view synthesis. In this
task, the model receives a set of observation images It and a set of corresponding sensor
poses ζt consisting of the Cartesian coordinates X, Y, and Z, and the three Euler angles α,
β, and γ. The challenge is synthesizing novel views Iu (or ‘observations’) for previously
unseen poses ζu. Similarly, the SonoNERF model tries to predict new and unseen dechirped
binaural spectrograms Ψu(t, ω) for previously unseen poses ζu based on a training ensem-
ble Et = [ζt Ψt]. This prediction step in NeRFs is solved by implementing a differentiable
rendering pipeline that uses an underlying radiance field FΘ to represent the scene. In many
practical applications, this field is represented by a deep multilayer perceptron neural net-
work. Similarly, we will develop a reflectance field FΘ for our SonoNERF model, which will,
in cooperation with the SonoNERF-DRPL, allow the prediction of novel observations Ψu.

In the previous section, we laid the foundation of the principles governing signal
formation in echolocating bats, which we will now adapt to build the SonoNERF-DRPL.
The observation Ψu is represented by a 2D matrix of size [2N f × Nt], where N f is the
number of frequency components taken from the STFT (times two because of the binaural
concatenation), and Nt is the number of time slices in the STFT, which is the result of the
choice of window length and overlap in the STFT computation. In order to calculate the
spectrum ψω at range r, we propose the following differentiable rendering equation:

ψ(ω, r) = C

[∣∣∣∣ ∫Ω
FΘ

(
TB,W

[
PΩ

]
, v⃗
)
· E(ψ, ω) · e

jωr
vs

∣∣∣∣
]

(17)

This rendering equation calculates the received spectrum ψω using an integration of
hemispheres Ωi. Figure 1, panel a shows two of these hemispheres for a certain pose of

the bat/sensor. Inside of the integral, the term E(ψ, ω) denotes the ERTF of the bat, e
jωr
vs is

the Fourier transform of the delay function with rΩ, the range for the current hemisphere
that is being integrated, and vs is the speed of sound in air. The term FΘ

(
TB,W

[
PΩ

]
, v⃗
)

is the neural reflectance field. This function takes as input the position of the voxel for
which the reflectivity is to be calculated (PΩ, converted to world coordinates by transform
TB→W), and a direction vector v⃗, which indicates the direction from which the voxel is
being ensonified (which allows non-isotropic reflection surfaces to be modeled with the
SonoNERF, similar to the concept of a BRDF in optical rendering [49]). The function C() is
a nonlinear compression function (as explained in Equation (16)).

The overall processing flow of this equation can be seen in Figure 1, panel a shows the
bat in a single pose, with two hemispheres Ω. The reflectivity function is queried over a
discretized version of this hemisphere (typically, 600 points, distributed uniformly over
Ω). The spectrum is calculated through the rendering equation, passed through the non-
linear compression function, and placed at the corresponding range slice in the predicted
spectrogram (panel b). Panel c shows the ERTF for a bat called Micronycteris microtus [50],
calculated using the method described in [43]. Figure 1, panel d shows a schematic repre-
sentation of the Neural Reflectivity field FΘ, which predicts the reflected spectrum Hp(ω)
from the input position and incidence vector, all represented in world coordinates.

3.2. Training of a SonoNERF

In the previous section, we developed the SonoNERF model, in which a rendering
equation was developed to calculate the binaural spectrum received from a scene for
a specific range, expressed as ψ(ω, r). In this rendering equation, a neural reflectivity
field represents the scene, called FΘ, parameterized by a parameter set Θ. In practice,
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this reflectivity function is implemented using a multi-layer perceptron (MLP), and the
parameters Θ are the set of weights and biases for this MLP. In this section, we will detail
how this MLP is trained.

Figure 2 shows the overall training process. Data, in the form of a binaural and
dechirped spectrogram, are recorded from a scene from different poses, as shown in panels
a, c, e, and g. The corresponding spectrograms are shown in panels b, d, and f. For a
certain pose of the bat and a certain range slice in the spectrogram, we can discretize a
hemisphere in front of the bat. This is shown by the blue and red hemispheres (panels
a, c, e), which are linked to the corresponding range slices in the spectrogram (panels b,
d, f). For each of these hemispheres, we calculate the coordinates of the points on that
hemisphere in the world coordinate system, which are then used to query the reflectivity
function. This reflectivity function yields a reflectivity value for each of these 3D points
and incidence angles, which then is passed through the rendering Equation (17) to yield
a spectrum ψ(ω) for a range slice r. This predicted spectrum yielded by the rendering
function is then compared to the measured spectrum in the spectrogram, from which a
loss is calculated (depicted by L in Figure 2). As both the rendering equation and the
reflectivity function are fully differentiable, back-propagation can be used to calculate a
gradient between the loss L and the parameters Θ of the reflectivity function, which allows
stochastic gradient descent with back-propagation to be used to optimize these parameters
Θ. This approach of training our reflectance function is entirely analogous to the training
process of the radiance function described in the original implementation of NeRFs in [31],
with the main difference being the type of rendering equation that is used. The versatility
of this approach shows the brilliance of the original idea of learnable radiance functions by
the authors of [31]. The following section will discuss details on the implementation of the
reflectivity function and the training setup.
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Figure 2. Overview of the SonoNERF Training Process. Data, comprising binaural and dechirped
spectrograms, are recorded from various poses within a scene, as depicted in panels (a,c,e,g). The cor-
responding spectrograms are displayed in panels (b,d,f). Each pose of the bat and range slice in the
spectrogram corresponds to a discretized hemisphere in front of the bat, depicted by the blue and red
hemispheres in panels (a,c,e), linked to their respective range slices in the spectrogram. Coordinates
of points on these hemispheres in the world coordinate system are calculated and used to query
the reflectivity function, generating reflectivity values for each 3D point and incidence angle. These
values are then processed through rendering Equation (17) to produce a spectrum ψ(ω) for a given
range slice r. The predicted spectrum is compared to the measured spectrum in the spectrogram,
yielding a loss L. This loss L is minimized using stochastic gradient descent by adapting the learnable
parameters in function FΘ. The two hemispheres in blue and red indicate two range slices of the
spectrograms for which the acoustic rendering equation is calculated.
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4. Experimental Validation

In this section, we will detail the implementation of the SonoNERF setup we devel-
oped and show some experimental validation. At this point, we rely purely on simulation
to validate the SonoNERF model, as simulation allows us to iterate over ensonification
setups rapidly and gives us access to reliable ground truth data. We use SonoTraceLab,
a raytracing simulator for simulating acoustic echolocation scenes [51]. The simulator has
been extensively validated with real-world experiments, yields reliable data of complex
scenes, and allows accurate simulation of biologically relevant acoustic cues. In the re-
mainder of this section, we will provide details on the effective implementation of our
SonoNERF model and show its efficacy in multiple experimental scenes. We acknowledge
that providing experiments using real-world measured data would be beneficial in illus-
trating the performance of the SonoNERF approach. However, the authors also believe
that frequent scientific communication of relevant bodies of work is crucial to advancing
science. Implementing real-world experiments for SonoNERFs is a non-trivial task we will
address in future work.

4.1. Sononerf Model Implementation

Inside the acoustic rendering Equation (17), the neural network FΘ represents the
neural reflectance field, which encodes the scene being modeled. Figure 3 shows the
architecture of this neural network. It consists of a directed acyclic graph and has six input
variables: the X, Y, and Z position of the voxel under investigation and the directional
vector from where the voxel is being ensonified. The output of the network has 94 values,
representing a complex reflectivity function discretized into 47 frequency bins. The first
47 elements of the output of F represent the real components of the reflectivity function,
and the last 47 elements represent the imaginary components of the reflectivity function.
We lift the six input variables inside the network through a Fourier Embedding layer into
a higher-dimensional space (6 × 30 = 180 variables), based on the reasoning provided
in [52]. Indeed, embedding low-frequency inputs into a high-frequency representation
allows neural networks to learn high-frequency representations better. It should be noted
that this step is equivalent to the approach taken in the original NeRF implementation [33].
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Figure 3. Overview of the SonoNERF reflectivity function FΘ, which encodes a scene’s acoustic
properties within a neural reflectance field framework. The network takes six input variables:
the X, Y, and Z coordinates of a voxel, along with a directional vector indicating the angle of
ensonification. These inputs undergo a Fourier Embedding process, expanding them into a higher-
dimensional space (180 variables) to capture high-frequency details more effectively. The network
architecture features multiple fully connected layers with Leaky ReLU activation functions and
incorporates skip connections for enhanced gradient flow during training. The network output
consists of 94 values, which describe a complex reflectivity function across 47 frequency bins, with the
first 47 values representing the real components and the last 47 the imaginary components of the
reflectivity function.

After the Fourier embedding step, the network consists of several fully connected
layers, combined with Leaky ReLu activation functions as non-linearity [53]. Skip connec-
tions are added to the network to allow for more efficient gradient flow, allowing faster
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learning during training. Skip connections are concatenated through depth concatenation,
increasing the size of the inputs of the subsequent layer following the depth concatenation.

We implemented the SonoNERF model, including the rendering equation and the
neural reflectance function, in Matlab using object-oriented programming methods and
used the Deep Learning toolbox [54] to perform automatic differentiation on the complete
rendering equation. This allows rapid iteration over multiple versions of the rendering
equation without manually calculating the gradients of the rendering equation. We opti-
mized the performance of the rendering equations by using the GPUArray objects in Matlab,
which allow rapid evaluation of matrix and vector operations on the GPU of the system.
This allows data to stay in GPU memory during the evaluation of the rendering equation,
which yields a significant speed-up compared to a naive CPU implementation (in our tests,
speedups of around 100× were achieved).

Training of the SonoNERF models was performed using Adam [55], with a batch
size of 512, a learning rate of 0.01, and a learning rate drop factor of 0.97. We trained the
networks for 100 epochs using a single NVidia RTX4090 (NVIDIA Corporate, Santa Clara,
CA, USA) which took around 7 h to complete. The network described in Figure 3 has
around 500,000 learnable parameters, which consists of the weights and biasses of the fully
connected layers in the reflectivity function.

4.2. From Spectrograms to 3D Scene Description

The SonoNERF model is a method to predict the magnitude of spectrograms that
would be observed for previously unseen poses using a model that is trained using mea-
sured magnitude spectrograms observed from a set of training poses. Once trained,
the SonoNERF model can predict a new spectrogram for an arbitrary pose and noth-
ing more. Indeed, from the point of view of the training algorithm, the concept of a 3D
scene description is not made explicit during the training process. However, it is possible
to query the trained reflectance function to obtain a 3D voxel description of the environ-
ment [33]. To achieve this reconstruction of the 3D scene geometry, we discretize the volume
of interest in a cubic voxel with a side of 0.5 mm and use 100 ensonification directions
distributed uniformly over the sphere for each voxel. We then query the trained reflectance
FΘ for each of these voxel and ensonification directions. The result is a matrix R with the
following dimensions:

[R(x, y, z, i)] = [nx × ny × nz × nv⃗] (18)

with nx, ny, and nz, the number of voxels in the X, Y, and Z dimensions, respectively, and nv⃗
being the number of sampled ensonification directions (100 in our examples). Next, we
integrate this reflectivity matrix over the following direction dimension:

Rs(x, y, z) =
nv⃗

∑
i=1

R(x, y, z, i) (19)

Next, using a fixed threshold, we calculate the isosurface over this function Rs(x, y, z).
This yields a surface Vr, which can then be visualized. It should be noted that various
other visualization methods could be used, such as maximum intensity projection [56] or
a plethora of other techniques [57]. However, for the scope of this paper, we opted for
applying the isosurface method.

4.3. Typical Data Setup

To train a SonoNERF, we generated 400 ensonifications distributed uniformly over
a sphere centered at the target with an appropriate radius depending on the scene size
(ranging from 0.3 m to 0.6 m). Each of the ensonifications was simulated using our Sono-
TraceLab simulator, and the resulting spectrograms were calculated. Each spectrogram
consists of around 500 time (i.e., range) samples. So, the total input for training the reflec-
tivity function is around 200,000 spectrum measurements. These data were fully used for
training the SonoNERF, as is standard practice in NERF rendering. Then, for evaluation, we
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sampled the reflectivity function using 100 points on a sphere as explained in the previous
section. In what follows, we will illustrate the performance of SonoNERF on four scenes.
During development, several other simpler scenes (consisting of one sphere) were used,
as the simulation of these scenes can be performed more rapidly.

4.4. SonoNERF Trained on a Simple Scene

In order to validate the proposed SonoNERF model, we experimented using a simple
scene. The model used in this experiment is shown in Figure 4, panel a.This panel shows
three spheres with a diameter of 3 cm, arranged in an L-shaped configuration. The figure
also shows three poses (which were not part of the training set), ensonifying the scene.
We used 100 observations spaced uniformly around the scene and calculated the received
spectrograms using our SonoTraceLab simulator [51]. This simulator uses a ray acoustics-
based approach and is ideally suited to simulate complex echolocation scenes, and has
been validated using real-world experiments. The simulated spectrograms can be seen in
the top row of panels b, d, and f. One can see various direct and multi-path reflections
occurring later in time, which is expected based on the scene geometry. SonoTraceLab
is capable of simulating complex multi-path reflections occurring in challenging scenes.
After training, the SonoNERF model is capable of reconstructing the spectrograms for
previously unseen poses, shown in panels b, d, and f, bottom row. Both the location as
well as spectral content of these reconstructed spectrograms correspond to the ground
truth that was simulated. Panel c shows a magnified view of the scene, and panel e shows
the isosurface Vr, reconstructed from the queried reflectance function FΘ accumulated
into R. Panel g shows a maximum intensity projection of the same reflectivity matrix R.
The main shape and location of the individual spheres are reconstructed, whereas the size
of the spheres appears to be inflated. This inflation most likely happens due to the absence
of phase information in the input data, which diminishes range resolution because only
semi-coherent matched filters can be used [30].
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Figure 4. Overview of the result of a trained SonoNERF model on a simple scene. Panel (a) shows
the scene, which consists of three spheres in an L-shaped configuration. Three poses (b,d,f) are
shown from which the scene is ensonified. The corresponding received spectrograms are shown in
panels (b,d,f), top panels (called ’simulation’). We trained the described SonoNERF model using
100 observations. The resulting predicted spectrograms for poses b, d, and f (not part of the training
set) are shown in the top row of panels (b,d,f). Panel (c) shows a more magnified scene plot,
and panel (e) shows the reconstructed isosurface Vr. Panel (g) shows a maximum intensity projection
of the same reconstruction. It should be noted that the chosen poses b, d, and f are arbitrarily chosen,
and are not specifically cherry-picked.
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4.5. SonoNERF Trained on a Complex Scene

After our initial validation of the SonoNERF model, we constructed a more compli-
cated scene. This scene can be seen in Figure 5. This scene consists of 19 spheres arranged
to form the letters ’UA’, corresponding to the name of our institute, University of Antwerp.
Similar to the previous subsection, we show the simulated and reconstructed spectrograms.
It becomes clear that the time separation between the individual reflections in the spec-
trograms is less clear, causing the echoes to overlap more. This is also reflected in the
reconstructed isosurface, shown in panel e. The individual spheres are no longer separated
but form a continuous surface. However, despite these shortcomings, the letters UA are
recognizable, with the important features of the letters being conserved (such as the gap
between the vertical parts of the U or the hole inside of the A).
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Figure 5. Overview of the result of a trained SonoNERF model on a more complex scene. Panel (a)
shows the scene, which consists of 19 spheres arranged to form the letters ’UA’, for the University
of Antwerp. Three poses (b,d,f) are shown from which the scene is ensonified. The corresponding
received spectrograms are shown in panels (b,d,f), top panels (called ’simulation’). We trained the
described SonoNERF model using 100 observations. The resulting predicted spectrograms for the
poses b, d, and f (not part of the training set) are shown in the top row of panels (b,d,f). Panel (c)
shows a more magnified scene plot, and panel (e) shows the reconstructed isosurface Vr. Panel (g)
shows a maximum intensity projection of the same reconstruction. It should be noted that the chosen
poses b, d, and f are arbitrarily chosen, and are not specifically cherry-picked.

4.6. SonoNERF Trained on a Biologically Relevant Scene

As a final demonstration of the capabilities of our SonoNERF model, we constructed
a scene consisting of a leaf on which we perched a dragonfly, which is a scenario that is
performed by hunting Micronycteris microtus bats in the neotropics [7]. We performed the
same simulation and SonoNERF training as in the two previous scenarios, and show the
results in Figure 6. The SonoNERF is capable of reconstructing the spectrogram represen-
tations (panels b, d, f), as well as the overall leaf geometry (panels e and g). To further
investigate this scenario, we modeled the leaf with and without a dragonfly present on the
leaf surface. The result of this reconstruction can be seen in Figure 7. Panel a shows the
leaf without a dragonfly, and panel c shows the leaf with a dragonfly. Panels b and d show
the isosurface reconstruction of these two scenarios. Here, a clear bulge can be seen in the
reconstruction of the leaf with a dragonfly (panel d), which is absent in the reconstruction of
the leaf without a dragonfly (panel b). Panel e shows the maximum intensity projection of
energy matrix Rs (Equation (19)) into the direction of the camera viewpoint, which has been
normalized to the maximum of both Rs for the two reconstructions. It becomes apparent
that the overall reflection strength of the leaf with a dragonfly is much larger compared to
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the leaf without a dragonfly. The top-view of this representation (panel f) further details
this. Finally, panel g shows the difference in energy between the reflected energy matrix
of the leaf with and without a dragonfly. Here, a strong energy peak can be seen in the
middle of the leaf surface. To further illustrate this energy difference, we plotted the energy
difference using maximum intensity projection on top of the STL model of the leaf with
a dragonfly. This can be seen in Figure 8, panel c. In this overlay, a strong peak can be
observed around the location of the dragonfly on the leaf.

These results illustrate a potential biological implication of our SonoNERF model.
As shown, the SonoNERF reconstruction allows for the reconstruction of biologically rele-
vant information from the scene: it allows the bat to localize the dragonfly on the leaf, and to
distinguish between a filled and an empty leaf, and whereas the model proposed in [7] for
leaf occupancy state discrimination has not lost its validity, the model therein proposed
does not explain how the bat might be able to localize the prey item on the leaf, and whereas
we make no claims on which model is implemented in the bat’s brain, we do think that with
our proposed SonoNERF model, we have shown that prey localization against background
clutter is enabled by such a data-aggregation task. More specifically, through learning
a prediction task of novel spectrograms from unseen poses, the surface reconstruction,
and therefore the prey localization, emerges as a byproduct of the computational graph
that is used to solve the prediction task.

Land 2024, 13, x. https://doi.org/10.3390/xxxxx  www.mdpi.com/journal/land 

Figure 6. Classification of types of Chinese industrial heritage. 

Figure 6. Overview of the result of a trained SonoNERF model on a biologically relevant scene
of an insect perched on a leaf. Panel (a) shows the scene, a leaf with a dragonfly, similar to the
approaches of Micronycteris microtus like in [7]. Three poses (b,d,f) are shown from which the scene is
ensonified. The corresponding received spectrograms are shown in panels (b,d,f), top panels (called
’simulation’). We trained the described SonoNERF model using 100 observations. The resulting
predicted spectrograms for the poses b, d, and f (not part of the training set) are shown in the top row
of panels (b,d,f). Panel (c) shows a more magnified scene plot, and panel (e) shows the reconstructed
isosurface Vr. Panel (g) shows a maximum intensity projection of the same reconstruction. Panel (e)
shows a thickening in the volume mesh on the location of the dragonfly, hinting for detailed scene
information to be present in the reconstructed mesh. It should be noted that the chosen poses b, d
and f are arbitrarily chosen, and are not specifically cherry-picked.
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Land 2024, 13, x. https://doi.org/10.3390/xxxxx  www.mdpi.com/journal/land 

Figure 6. Classification of types of Chinese industrial heritage. 

Figure 7. Overview of the SonoNERF volume reconstructions for a leaf without an insect (panels
(a,b)) and for a leaf with an insect (panels (c,d)). A significant bulge in the mesh surface can be
observed on the location of the dragonfly in panel (d). Panel (e) shows the reflectivity function
through maximum intensity projection (MIP) into the camera, normalized to the strongest reflection
across the two instances. Panel (f) shows the top view of the same MIP visualization. Finally, panel
(g) shows the difference in reflectivity function for a leaf with and without a dragonfly.

Land 2024, 13, x. https://doi.org/10.3390/xxxxx  www.mdpi.com/journal/land 

Figure 6. Classification of types of Chinese industrial heritage. 

Figure 8. Detail of the difference in reflectivity function between a leaf with a dragonfly and without
a dragonfly. The largest differences can be observed around the location of the dragonfly where the
difference function peaks strongly. This could be used as a cue for prey localization on the leaf.

5. Data and Code Availability

We provide the full source code for our SonoNERF approach, which can be used to
perform a full simulation, training, and reconstruction. The data and source code can be
found on our public Github page: https://github.com/Cosys-Lab/SonoNERF (accessed on
24 May 2024).

6. Discussion and Conclusions

In this paper, we proposed SonoNERFs, a novel model for 3D scene reconstruction
in a biologically plausible manner. We use the concept of Neural Radiance Fields to
solve the problem of predicting echo spectrograms that would be obtained from a scene
when ensonified from previously unseen poses, without access to the phase information
of the received echoes. As explained, phase coherence and phase reception are unlikely
to exist in echolocating bats because of how vocalization and reception (most notably
the cochlea) behave in real animals. After we provided a solution for the spectrogram
prediction problem, we detailed how the learned reflectivity model can be used to perform
3D scene reconstruction of complex shapes, which we demonstrated using three scenes of
varying complexity.

One could argue that the fact that 3D scene reconstruction becomes possible when
combining measurements from different poses is not that surprising. Indeed, computed
tomography techniques exist and are already applied to echolocation scenarios. However,
these systems utilize phase-coherent measurements and need the phase information of

https://github.com/Cosys-Lab/SonoNERF
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the echoes to work well. What, in the opinion of the authors, is not so trivial is the fact
that 3D scene reconstruction emerges when solving a completely different task, namely
predicting sensor data for a novel scene, and whereas it has been observed that bats
can predict aspects of the scene by accumulating sensor data [58], to the best of our
knowledge, no concrete model on how this prediction might operate has been proposed
in previous works. Other technical systems have been proposed to produce 3D scene
reconstruction and semantic interpretation [59,60], but these proposed techniques utilize
a teaching modality like LIDARs or cameras to perform a form of modality translation.
Our SonoNERF model relies solely on acoustic data without the need for an additional
supervision modality. Furthermore, reference [60] does not use an acoustic sensing modality,
causing the title to be somewhat misleading. Our approach follows the approach called ‘self-
supervised learning’, which has received much attention in recent years [61,62]. Through
self-supervision, computational graphs can learn how to predict their own inputs, and,
based on the structure of the implemented computational graph, can lead to emergent
insights into the underlying sensor data (such as demonstrated in our SonoNERF model).

In addition to the capability of SonoNERF to predict spectrograms and to perform
surface reconstruction, we also showed how the SonoNERF model could be used to solve a
relevant task for a biological echolocator, namely, finding motionless prey items against
strong clutter backgrounds, and whereas we postulated a model in [7] on how the bat
Micronycteris microtus might be able to distinguish between an empty or a full leaf, no
concrete postulate was made on how localization might take place. In the previous section,
we demonstrated how a SonoNERF model might be used to perform exactly this task,
through the examination of the reconstructed reflectivity function. It should be noted that
whereas our proposed SonoNERF model might be one solution to how scene reconstruction
takes place, we nowhere claim that this is the exact model that is implemented in the brain
of a bat. More specifically, what we do claim is that the SonoNERF model is a first-order
hypothesis to how bats might be able to solve this problem, similarly to how we proposed
our BatSLAM algorithm as a first-order model on how bats might perform large-scale
localization [63]. In-depth biological behavior experiments need to be performed using
testable hypotheses generated through our SonoNERF model to gain insight into the true
underlying behavioral mechanisms.

We acknowledge the lack of real-world measurements in this paper. However, as we
argued before, using our validated SonoTraceLab simulator is a strong alternative approach
to producing experimental data, as this simulator has been demonstrated to be able to
produce biologically relevant acoustic data from complex scenes without the arising com-
plexities of performing real-world data. We also acknowledge that real-world experiments
are relevant, which is why these experiments are part of our short-term future work. Using
SonoTraceLab to provide us with data allows us to rapidly iterate over experiments and al-
lows complex visualizations such as the one in Figure 8, where we overlay the reconstructed
reflectivity function over the base model, which then allows the discovery of important
features such as the difference in a leaf with and without an insect.

Next to performing real-world experimentation, several improvements can be pro-
posed to the proposed model. For example, at this point, our SonoNERF model is trained
from a randomly initialized reflectivity model each time. One could argue that, over time,
bats learn priors on how scenes might be encoded, which could then be reflected into prior
models or transfer-learned models later. Furthermore, the acoustic rendering Equation (17)
has no concept of multi-path signal propagation. One natural extension would be to expand
this rendering equation to encompass multi-path reflections. However, this augmented
rendering equation should still be fully differentiable; it is currently unknown to the authors
whether this will be the case. In addition to the proposed improvements, we will perform
more quantitative experiments on the accuracy of the reconstructed 3D scenes. From the
experiments shown in this paper, it is already indicative that the size of the reconstruction
is larger than the original scene (i.e., some kind of ’thickening’ effect). This can be explained
by the fact that phase information is lost, causing a delay in the peak of the reflections in the
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spectrograms. Possible solutions here can be developed to reduce these delays, which then
in turn would reduce the thickening effect. However, the core of the paper is introducing
the SonoNERF concept, relating that to bat echolocation, which is why we did not perform
extensive quantitative evaluations at this stage. We acknowledge that we simulated scenes
(albeit complex scenes) in empty space, i.e., no surrounding clutter was introduced, which
of course is not realistic in real-world echolocation scenes. In future work, we will assess
the performance of SonoNERF in more complex scenes with background clutter, as this is
perfectly simulatable by our SonoTraceLab simulator.
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