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Abstract: Submerged aquatic vegetation plays a fundamental role as a habitat for the biodiversity
of marine species. To carry out the research and monitoring of submerged aquatic vegetation
more efficiently and accurately, it is important to use advanced technologies such as underwater
robots. However, when conducting underwater missions to capture photographs and videos near
submerged aquatic vegetation meadows, algae can become entangled in the propellers and cause
vehicle failure. In this context, a neurobiologically inspired control architecture is proposed for
the control of unmanned underwater vehicles with redundant thrusters. The proposed control
architecture learns to control the underwater robot in a non-stationary environment and combines
the associative learning method and vector associative map learning to generate transformations
between the spatial and velocity coordinates in the robot actuator. The experimental results obtained
show that the proposed control architecture exhibits notable resilience capabilities while maintaining
its operation in the face of thruster failures. In the discussion of the results obtained, the importance
of the proposed control architecture is highlighted in the context of the monitoring and conservation
of underwater vegetation meadows. Its resilience, robustness, and adaptability capabilities make it
an effective tool to face challenges and meet mission objectives in such critical environments.

Keywords: UUV; underwater robots; bioinspired control; artificial neural networks; self-organizing
networks trajectory tracking; fault-tolerant control; submerged aquatic vegetation

1. Introduction

Submerged aquatic vegetation (SAV) is vital for maintaining marine biodiversity,
preventing erosion, and regulating water quality. SAV habitats serve as nurseries, feeding
grounds, and refuges for various marine species, contributing to the overall health of
marine ecosystems [1]. However, SAV is facing significant threats from human activities,
such as pollution, climate change, and habitat alteration, leading to its rapid decline.

The Mar Menor, a large saline coastal lagoon in Spain, is currently experiencing issues
related to water quality and the loss of submerged aquatic vegetation, despite its unique
biodiversity and importance as a habitat for numerous marine species [2]. The proliferation
of the invasive algae Caulerpa Prolifera, which now covers a significant portion of the
Mar Menor’s seabed, is a major concern due to its potential environmental impacts. The
continuous monitoring of Caulerpa Prolifera’s distribution, density, and expansion is
crucial for assessing its effects on local biodiversity, water quality, and aquatic ecosystems,
as well as identifying areas where its growth is most aggressive, allowing for the timely
implementation of preventive or corrective measures [3]. Advanced technologies, such as
remote sensing systems, sonars, echo sounders, underwater sensors, and underwater robots,
are essential for the accurate and detailed monitoring of underwater aquatic vegetation in
aquatic ecosystems [4,5]. Underwater robots, including remotely operated vehicles (ROVs),
autonomous underwater vehicles (AUVs), and unmanned underwater vehicles (UUVs),
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are particularly effective tools for monitoring submerged aquatic vegetation, as they can
collect precise data on its distribution, density, and condition [6–8]. These robots generate
high-resolution images and geospatial data, enabling the creation of three-dimensional
maps of underwater ecosystems, which provide valuable information on the distribution,
structure, and relationship of aquatic vegetation with other habitat elements, as well as
aiding in assessing ecosystem health and monitoring invasive species.

However, when operating underwater robots at close range to the seabed to capture
images and videos, there is a risk of algae and other aquatic plants becoming entangled in
the propellers, which can cause damage and affect the operation of the vehicle. This situa-
tion highlights the need for fault-tolerant control (FTC) strategies to ensure the resilience
and reliability of underwater robots in challenging environments.

Fault-tolerant control is a critical aspect of underwater robotics, as it enables the
system to maintain its stability and performance in the presence of faults or failures, such
as propeller entanglement. FTC techniques aim to detect, isolate, and accommodate faults
in real time, ensuring that the robot can continue its mission despite the occurrence of
unexpected events [9]. By incorporating fault-tolerant control strategies, underwater robots
can adapt to adverse situations and maintain optimal control and stability.

Bioinspired systems emerge as promising approaches for the development of resilient
and adaptive control algorithms, including fault-tolerant control strategies. Biomimicry
is based on the idea that nature has evolved over millions of years to find the optimal
solutions to various challenges, and that we can learn from these designs and strategies to
apply them in the fields of engineering and technology. Bioinspired systems, on the other
hand, are those that are inspired by the principles, structures, and functions of biological
systems to create innovative and efficient solutions [10].

Bioinspired control algorithms [11] are a powerful tool that exemplifies resilience and
the ability to reconfigure in situations of a sudden loss of capabilities, such as in the case
of a locked propeller. These algorithms are inspired by biological systems and behaviors
observed in nature to adapt and respond effectively to adverse situations. These bioin-
spired algorithms mimic the principles of self-organization, adaptability, and cooperation
present in living organisms. They can adjust control parameters, redistribute tasks among
functional components, and adapt motion strategies to compensate for the defective part.
For example, in the case of a blocked propeller, a bioinspired algorithm could detect the
failure and automatically reconfigure the distribution of power between the remaining
propellers, ensuring that the robot can continue moving and fulfill its mission despite
the failure.

Bioinspired algorithms and artificial neural networks, such as self-organizing neural
maps, also known as Kohonen maps or SOMs (self-organizing maps) [12,13], are powerful
tools used in route planning for autonomous underwater robots. These maps are based on
the structure and functioning of the human brain and are used to organize and represent
complex information in two-dimensional or three-dimensional space.

In the specific case of learning to cope with a stuck propeller situation, self-organizing
neural maps can play a crucial role in the fault-tolerant trajectory planning of autonomous
robots. These maps allow the robot to learn and adapt to the presence of a blocked propeller
and find alternative solutions to maintain its operation and meet its objectives. The neural
map training process involves presenting input data that describe the environment and
movement constraints of the robot when it encounters a locked propeller. The neural map
learns to recognize patterns associated with a locked propeller and maps them to a specific
region of the map. As the robot interacts with different locked propeller scenarios, the
neural map updates and refines its representation to adapt to new situations. This allows
the robot to learn incrementally and improve its ability to plan optimal trajectories in the
presence of locked propellers. The application of self-organizing neural maps in the case of
a blocked propeller provides the robot with an efficient mechanism to learn and adapt to
faulty or malfunctioning situations. By recognizing and mapping specific patterns in the
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environment, the robot can make informed decisions and find alternative solutions that
allow it to continue operating effectively and fulfill its assigned tasks.

This work presents an application case of a bioinspired control architecture applied
to a UUV with propulsion redundancy, which allows for reconfiguring the propulsion
patterns to overcome the problem of propeller loss and continue with the mission objectives.
This bioinspired control architecture combines the principles of biomimicry and bioinspired
systems with advanced artificial intelligence and machine learning techniques, such as
self-organizing neural maps, to achieve resilient and adaptive control in failure situations,
including fault-tolerant control strategies.

The results obtained in this work demonstrate the effectiveness of bioinspired and
biomimetic approaches in the development of robust and resilient control systems for
UUVs, with a particular focus on fault-tolerant control. The ability of these systems to
learn, adapt, and reconfigure in real time in the face of failures and disturbances makes
them valuable tools for the monitoring and conservation of marine ecosystems, especially
in challenging environments such as submerged aquatic vegetation habitats.

The integration of bioinspired and biomimetic concepts and techniques, along with
fault-tolerant control strategies, in the design of control algorithms for underwater robots
opens up new possibilities for the development of more robust, adaptable, and efficient
systems. These approaches allow us to learn from nature’s wisdom and apply its principles
to address current technological challenges, such as monitoring and protecting vulnerable
marine ecosystems.

The rest of this document is organized as follows. Section 2 reviews the work on
bioinspired control techniques and fault-tolerant control strategies upon which this work is
based. Section 3 presents the proposed materials and methods, describing the UUV, the
bioinspired algorithms implemented for control, and the operating procedures. Section 4
shows the results obtained in the test and validation experiments. Section 5 discusses the
results obtained, and Section 6 presents the conclusions of this work.

2. Related Works

Robotic resilience is a rapidly growing area of research that seeks to develop robotic
systems capable of adapting and recovering from failures, disturbances, and changes in
the environment. In this context, bioinspired and biomimetic algorithms have emerged as
promising approaches to endow robots with resilience capabilities similar to those observed
in biological systems [14]. These algorithms are based on the emulation of the principles
and mechanisms of adaptation, learning, and robustness present in nature, with the aim of
creating more resilient and autonomous robotic systems [15]. Fault-tolerant control (FTC)
is a critical aspect of robotic resilience, as it enables the system to maintain its stability and
performance in the presence of faults or failures [16]. FTC techniques aim to detect, isolate,
and accommodate faults in real time, ensuring that the robot can continue its mission
despite the occurrence of unexpected events [17].

Biological organisms have evolved over millions of years to develop resilience strate-
gies that allow them to cope with dynamic, uncertain, and challenging environments. These
capabilities are based on mechanisms such as redundancy, modularity, self-organization,
and learning, which allow organisms to maintain their functionality and performance even
under adverse conditions [18]. Bioinspired and biomimetic approaches to fault-tolerant
control draw inspiration from these biological mechanisms, seeking to develop robotic
systems that can adapt and recover from faults in a manner similar to living organisms [19].

Another bioinspired approach to robotic resilience is based on reinforcement learning,
inspired by the learning and adaptation mechanisms observed in animals [20]. In this
approach, robots learn through interaction with the environment, receiving rewards or
punishments based on the consequences of their actions. This learning process allows
robots to develop robust and adaptive behavioral strategies capable of coping with changes
and perturbations in the environment [21]. Reinforcement learning has been applied to
fault-tolerant control, enabling robots to learn optimal control policies in the presence of
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faults or failures [22]. By exploring the space of possible actions and receiving feedback on
their performance, robots can learn to adapt their behavior to compensate for faults and
maintain a stable operation.

In addition to the mentioned approaches, there are other bioinspired and biomimetic
algorithms that have been applied to improve robotic resilience. Algorithms based on
synaptic plasticity and Hebbian learning, inspired by the learning mechanisms of the
brain, have been used to provide robots with adaptation and recovery capabilities in the
face of changes in the environment or their own dynamics [23]. These approaches have
been extended to fault-tolerant control, enabling robots to adapt their control strategies in
response to faults or failures [24]. By adjusting the weights of neural connections based on
the correlation between input and output signals, these algorithms can learn to compensate
for faults and maintain a stable performance.

The neural models that inspire this work are based on the way in which neurons
in the primary motor areas (MI) of the central nervous systems (CNSs) of animals are
activated when they carry out a specific task. These models simulate learning based on how
biological organisms respond to various stimuli and adapt to their environment, analogous
to how this occurs in nature [25,26]. Recently, various models of adaptive control systems
that mimic the function of the cerebellum have been developed [27,28]. These models are
used to create movement trajectories using unsupervised Hebbian learning, an approach
that is inspired by the synaptic plasticity mechanisms observed in the brain [29,30]. These
mechanisms allow for the connections between neurons to be strengthened or weakened
depending on neuronal activity, enabling learning and adaptation. In the context of fault-
tolerant control, cerebellar-inspired models have been proposed to enable robots to adapt
their motor commands in response to changes in their dynamics or the environment [31].
By learning to predict the sensory consequences of their actions and comparing them with
the actual sensory feedback, these models can detect and compensate for discrepancies
caused by faults or failures.

Various neural control architectures have incorporated self-organizing maps (SOMs), a
mathematical mechanism that enables the learning of the sensorimotor mapping necessary
to model both direct and inverse models in the field of robotic control [24,32]. These
architectures, inspired by biological systems, are based on the principles of unsupervised
learning and self-organization observed in the brain, which gives them the ability to adapt
and generalize their performance in the face of novel situations. SOMs have been applied to
fault-tolerant control, enabling robots to learn and adapt their control strategies in response
to faults or failures [33]. By organizing the sensory and motor spaces into topologically
preserved maps, SOMs can detect and isolate faults, and reconfigure the control system to
maintain a stable performance.

In [34], a self-organized neuronal model called Direction-to-Rotation Effector Con-
trol Transform (DIRECT) was proposed, designed to achieve motor equivalence. This
biomimetic model performs a coordinate transformation, converting spatial directions into
actuator velocities. Learning in this model is based on a vector associative map (VAM),
which gains the ability to transform multiple combinations of visual or spatial positions
into a single invariant target position in three-dimensional space [35]. Likewise, a real-time
neural network model known as the vector integration to endpoint (VITE) model was
developed. This model was used to simulate quantitative neural and behavioral data
related to planned and passive arm movements [36]. Both the DIRECT and VITE models
are inspired by biological systems and manage to capture the fundamental characteristics
of motor control observed in nature. These bioinspired principles are then applied to the
control of robotic systems, allowing for the development of more efficient and adaptive
algorithms and control strategies which emulate the capabilities of biological systems to
generate smooth, coordinated, and precise movements. In the context of fault-tolerant
control, the DIRECT and VITE models have been extended to enable robots to adapt their
motor commands in response to changes in their dynamics or the environment caused
by faults or failures [37]. By learning to transform spatial goals into appropriate motor
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commands, these models can provide robotic systems with the ability to maintain stable
and precise movements even in the presence of faults.

The control algorithms for UUVs proposed in this paper are based on the aforemen-
tioned bioinspired neural control models. These algorithms were initially developed in
the field of mobile robotics and have since been successfully adapted and applied to au-
tonomous marine robotics. Several significant works have demonstrated the effectiveness
of these bioinspired approaches in the context of mobile robotics and the control and
navigation of autonomous marine vehicles.

In mobile robotics, reinforcement learning has been widely explored as an approach to
develop adaptive and autonomous behaviors. A particular form of reinforcement learning,
known as operant conditioning, has been investigated in the context of applying biological
learning theories to avoidance and approach behaviors in mobile robots. Operant condi-
tioning is based on the idea that behaviors followed by positive consequences (rewards)
tend to be strengthened and repeated, while those followed by negative consequences
(punishments) tend to be weakened and avoided. In [38], a neural network for obstacle
avoidance based on a model of classical and operant conditioning was presented. This
network uses reinforcement signals to adjust synaptic weights and adaptively shape the
robot’s behavior. This research was built on previous work exploring the application of
unsupervised neural networks for the low-level control of wheeled mobile robots [39,40].
In these studies, neural networks were developed to generate adaptive behaviors in non-
stationary environments, demonstrating both noise resistance and stability in hardware
implementations.

Furthering this line of research, in [41], a neural network that learned to control
approach and avoidance behaviors in a mobile robot using operant conditioning was
presented. Learning, which required no supervision, took place as the robot moved around
an environment cluttered with obstacles and light sources. The neural network required no
knowledge of the geometry of the robot or of the quality, number, or configuration of the
robot’s sensors. In this work, a detailed presentation of the model and the results with the
Khepera and Pioneer 2 mobile robots was provided.

Due to their fault-tolerant navigation and reconfiguration capabilities, these neuro-
controllers have been employed in vehicles designed for long-term applications. In [42], an
autonomous vehicle for long-term observation and monitoring was proposed, integrating
photovoltaic panels and a methanol fuel cell for energy autonomy, along with a neurobio-
logically inspired control architecture for intelligent navigation. This architecture, originally
designed for nonholonomic mobile robots, included a kinematic adaptive neuro-controller
for trajectory tracking and an adaptive neuro-controller for obstacle avoidance, enabling
autonomous navigation and adaptation to environmental changes. The bioinspired control
algorithms enhanced resilience and adaptability, showcasing the potential for sustainable
and intelligent robotics in real-world scenarios.

Subsequently, in [43], these bioinspired control algorithms were applied in the field of
marine robotics. They were used in a marine robotic system consisting of an autonomous
surface vessel and UUVs designed for the long-term monitoring of oil spills. Resilient capa-
bilities and fault tolerance were required due to the harsh operating conditions encountered
in oil spill environments. The system’s resilience was provided by bioinspired algorithms
implemented in a modular software architecture and controlled by redundant devices. This
ensured the necessary robustness for operation under the challenging conditions typically
found in long-term oil spill operations.

In summary, fault-tolerant control is a critical aspect of robotic resilience, enabling
robotic systems to maintain their stability and performance in the presence of faults or
failures. Bioinspired and biomimetic approaches to fault-tolerant control draw inspiration
from the principles and mechanisms of adaptation, learning, and robustness present in
biological systems, seeking to develop robotic systems that can adapt and recover from
faults in a manner similar to living organisms. Reinforcement learning, synaptic plasticity,
and Hebbian learning are some of the bioinspired approaches that have been applied to
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fault-tolerant control, providing robotic systems with the ability to learn and adapt their
control strategies in response to faults or failures. Neural control architectures, such as
self-organizing maps and hierarchical controllers, have also been applied to fault-tolerant
control, enabling robots to detect and compensate for faults at different levels of the control
system. The DIRECT and VITE models, inspired by biological motor control, have been
extended to enable robots to adapt their motor commands in response to changes in their
dynamics or the environment caused by faults or failures. Additionally, the application of
operant conditioning and unsupervised neural networks for the low-level control of mobile
robots has been explored, demonstrating their effectiveness in generating adaptive and ro-
bust behaviors in non-stationary environments. These bioinspired control algorithms have
been further applied to autonomous vehicles for long-term observation and monitoring
tasks, such as solar-powered robots and marine robotic systems for oil spill monitoring,
showcasing their potential for enhancing robotic resilience in real-world scenarios.

As robotic systems become increasingly complex and are deployed in more challenging
environments, the development of effective fault-tolerant control strategies becomes crucial.
Bioinspired and biomimetic approaches offer a promising direction for designing robotic
systems that can adapt and recover from faults, drawing inspiration from the remarkable
resilience and adaptability of biological systems.

3. Materials and Methods
3.1. Experimental Vehicle

The prototype UUV system is composed of an underwater vehicle and a buoy. The
buoy is towed by the underwater vehicle and is connected via an umbilical cable, as
depicted in Figure 1. The entire system operates autonomously from the control base, with
communications being facilitated through wireless technology.
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Figure 1. The prototype UUV.

The underwater vehicle represents a modification of an existing commercial model
and is composed of two hulls. One hull accommodates five motors for propulsion and
maneuvering, along with a battery pack and electronics. The second hull, spherical in
shape, constitutes the vehicle’s “head” and houses the sensors. This vehicle is designed to
operate at a depth of up to 300 m.

Regarding velocity, the UUV is capable of reaching a maximum horizontal speed of
4 knots and can maintain its position against horizontal currents of up to 3 knots. The
vehicle’s agility across all axes is facilitated by a combination of thrusters: two horizontal
thrusters enable forward and backward movements, two vertical thrusters allow for as-
cending and descending, and a transversal stern thruster, referred to as the rudder thruster,
provides the capability for right and left turns.

In terms of its physical specifications, the UUV has a weight of 163.4 kg in air and
displaces 163.8 cubic decimeters of water. The vehicle is designed with a positive buoyancy
of approximately 300 g, ensuring that it will slowly rise to the surface if the controls
are disengaged.
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For missions aimed at monitoring underwater vegetation, the vehicle is equipped
with a suite of essential equipment. This includes cameras accompanied by spotlights for
visual documentation, side-scan sonar for comprehensive sonar imaging, and advanced
navigation systems, such as Doppler Velocity Log (DVL) estimation and GPS. Additionally,
it is equipped with depth sensors for accurate measurements of underwater depths, acoustic
positioning systems for precise location tracking, and enhanced navigation capabilities
facilitated by imaging sonar technology.

The UUV is specially equipped with advanced instruments designed for the explo-
ration of underwater vegetation. These instruments comprise:

• Tritech Seaking Side-Scan Sonar: This sonar operates at a frequency of 325 kHz,
featuring a vertical beamwidth of 30 degrees and a horizontal beamwidth of 1 degree.
Its maximum operational range is 200 m, with a pulse length of 400 microseconds.

• Tritech Micron Echosounder DST Acoustic Altimeter: This device functions at a
frequency of 500 kHz, with a conical beamwidth of 6 degrees. It provides a maximum
detection range of 50 m and a minimum range of 0.5 m, featuring a digital resolution
of 1 mm.

• NavQuest 600 Micro Doppler (Doppler Velocity Log, DVL) from Linquest Inc.: This
compact and integrated DVL acts as a critical navigation and positioning tool for the
underwater vehicle. It operates at a frequency of 600 kHz and is capable of functioning
at depths of up to 800 m, ensuring a reliable and accurate performance.

• Tritech Micron DST Imaging Sonar: This sonar employs CHIRP technology centered
at 700 kHz. It features a vertical beamwidth of 35 degrees and a horizontal beamwidth
of 3 degrees. The sonar has a maximum detection range of 75 m and a minimum range
of 0.3 m. It is capable of scanning a variable sector of up to 360 degrees.

• Optical Vision Cameras: The UUV is equipped with two high-quality optical vision
cameras designed for real-time vision and photography. These cameras provide SVGA
resolution and are capable of both day and night vision functionality. Utilizing a
1/4” progressive scan RGB CMOS image sensor, they feature a varifocal lens with a
focal range of 3–8 mm, enabling a broad field of view. The cameras exhibit low light
sensitivity, with 0.3 lux in color mode and 0.05 lux in black and white mode.

• Tritech MicronNav System: For the accurate determination of the UUV’s position, it
utilizes an acoustic transponder from the Tritech MicronNav System. This transponder
receives signals from an Ultra Short Baseline (USBL) type transducer stationed at
the surface control station. Operating within a frequency band of 20–28 kHz, the
transponder has a horizontal range of 500 m and a vertical range of 150 m, delivering
a precise bearing accuracy to within ±0.2 m.

The control hardware possesses the computing capabilities required for the system to
execute its control functions and to implement the bioinspired control architecture. This
neuro-inspired control architecture operates solely on the system’s CPU, housed within the
underwater vehicle. The neuro-controllers endow the system with the ability to withstand
failures in the UUV’s propulsion and control system, enhancing its operational resilience.

The system features an Ethernet network that links the submarine and towed buoy’s
equipment, including the real-time controllers and sensors (cameras and sonar) of both
vehicles. The subsea vehicle employs a distributed CANopen fieldbus-based control
system within the UUV. In addition to the vehicle’s computer, an sbRIO-9606 Programmable
Automation Controller is integrated to facilitate the bridging of Ethernet and CAN networks.
This controller serves as an information server for the system’s CPU, ensuring its reliable
and deterministic operation.

The UUV’s CANopen network comprises four nodes: two located in the propul-
sion hull and two within the spherical front hull section of the vehicle. This network
is responsible for controlling the actuator thrusters, head movement, and focus control,
and for reading data from pressure, flood, humidity, Doppler Velocity Log (DVL), and
other sensors.
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3.2. Navigation System Based on Biologically Inspired Neural Algorithms

The primary objective of the proposed active navigation system is to perform tar-
get positioning, as well as trajectory tracking, and to adapt to adverse situations while
maintaining a stable and effective performance (for example, continuing a mission with
the minimum number of required actuators). The UUV is equipped with an advanced
intelligent control architecture, inspired by neurobiological principles, designed specif-
ically for trajectory tracking. This architecture is based on a Self-Organizing Direction
Mapping Network (SODMN). The structure and functioning of this network are illustrated
in Figure 2.
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The inputs of the SODMN are the vehicle’s position, and the outputs are commands
to the UUV’s thrusters/actuators (five commands to thrusters). The spatial coordinates
of the UUV are η = [x y z φ θ ψ]T , where the orientation angles are given by ϕ = [φ θ ψ]T .
The rotational movements around three axes (longitudinal/X-axis, transverse/Y-axis, and
vertical/Z-axis) are known as roll (φ), pitch (θ), and yaw (ψ), respectively.

For dynamic positioning in path tracking, a filter is incorporated into the control
system architecture which smothers the error signal in reaching objectives. The tracking
spatial error (e) is computed and filtered by a PID to obtain the desired spatial direction
vector (xd) and is given as

xd(t) = Kpe(t) + Ki

∫
edt + Kd

de
dt

, (1)

where t is the time, Kp is the proportional gain, Ki is the integral gain, and Kd is the
derivative gain. The gain parameters are adjusted based on simple knowledge of the spatial
behavior of the UUV.

The SODMN receives the filtered direction error (xd), as well as the vector of thruster
velocities (Vp), generating spatial coordinate transformations at underwater vehicle thruster
velocity commands (Vd

p ). In a situation where the UUV receives a desired target without
a defined trajectory, the SODMN will generate its own trajectory based on the spatial
position error (e). The overload levels (O) in the thrusters determine the UUV’s adaptation
to propeller jamming situations.

This network is based on neurobiological principles and combines associative learning
and vector associative map learning techniques to generate transformations between the
spatial coordinates of the UUV and the velocity coordinates of its thrusters [44]. The design
of the SODMN is based on the idea that the nervous systems of animals are capable of
generating adaptive behaviors and motor control through self-organization and unsu-
pervised learning [12]. This bioinspired approach has been explored in several similar
control algorithms, such as the Vector Integration To Endpoint (VITE) neural network
model [45], which uses a vector integration mechanism to generate smooth and controlled
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trajectories in the motor control of robots. The control architecture of the SODMN also
bears similarities to cerebellar-based adaptive motor control models [29,46]. These models
use neural networks to learn and adapt the sensorimotor transformations necessary for the
precise control of movements, similar to how the SODMN learns to map spatial directions
to thruster speed commands.

Furthermore, the ability of the SODMN to adapt to thruster failures and maintain the
stable control of the UUV is comparable to neural-network-based fault-tolerant control
approaches [19,47]. These approaches use the learning and adaptation capacity of neural
networks to compensate for failures in actuators or sensors and maintain an acceptable
performance of the control system.

3.3. SODMN Description

The Self-Organizing Direction Mapping Network (SODMN) is a complex neural
network architecture that consists of several interconnected components, as shown in
Figure 3. These components work together to enable the system to learn and adapt to
various navigational contexts and situations.
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At the heart of the SODMN lies the context map, which is responsible for selecting
the appropriate elements of the direction mapping network based on the current angular
velocities of the UUV’s thrusters. This map contains a set of cells that can be activated or
deactivated depending on the specific range of thruster speeds. By doing so, the context
map allows the SODMN to adapt its neural connections and weights to suit the current
navigational context.

The spatial direction vector (DVs) is another crucial component of the SODMN. It
represents the desired direction of movement for the UUV in three-dimensional space. The
DVs consists of a set of cells, each corresponding to a specific spatial direction. The activity
levels of these cells (S1, S2, · · · , Sm) indicate the importance or priority of each direction in
the overall desired motion of the vehicle.
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The DVs cell activities, S ∈ Rm, are driven by the desired spatial direction, xd ∈ Rm,
computed from the difference between the desired spatial position and the current spatial
position of the robot. The DVs cell activities are given as

d
dt

Sj = δ
[

xdj − Sj

]
, (2)

where δ represents a gain factor that regulates the rate of integration speed.
The direction mapping network is a collection of neural networks associated with

the context map. These networks are responsible for transforming the spatial directions
encoded in the DVs into appropriate motor commands for the UUV’s thrusters. Each
direction mapping cell Vnk receives inputs from all the cells in the DVs, but only connects
to a single Rn cell in the motor direction vector (DVm). During the learning process, the
weights of these connections are adjusted based on the difference between the desired
spatial directions and the actual velocities of the thrusters. Direction mapping cells with
activity Vnk compute the difference between the weighted DVs input and the DVm activity.
The activities of the Vnk cells are defined as

d
dt

Vik = α

[
−Vik + ck

(
∑

j
zjikSj − Ri

)]
, (3)

where α is a time constant, the coefficients ck (k = 1, · · · , K) represent inhibition from the
context field, and zjik represents the element of the inverse mapping, which multiplies
the jth spatial components to contribute to the ith velocity component. Here, the spatial
representation contains m-components and n is the number of independent actuators.

The motor direction vector (DVm) represents the desired speeds for each of the UUV’s
thrusters. Its dimensionality is equal to the number of independent thrusters on the vehicle.
The activities of the cells in the DVm are used to generate the actual speed commands sent
to the thrusters, allowing the UUV to move in the desired direction.

The motor direction cell activities, R ∈ Rn, are driven by the Vnk during performance
and by actuator velocities Vp during learning, and are given as

d
dt

Ri = δR

[
(1 − e)

(
∑

j
Vik − Ri

)
+ e
(
Vpi − Ri

)]
, (4)

where δR is a gain that controls the integration speed rate and e is the activation of an
endogenous random generator (ERG). In the learning phase, the ERG circuit is activated,
e = 1, and the Ri cells are driven to sense velocities on the actuators, Vpi. During the
performance, the ERG circuit is inactive, e = 0, and the input is the sum of the Vnk, only one
of which will actively process inputs.

The Motor Present Direction Vector (PDVm) cell activities (Vd
p ) are given by

d
dt

Vd
pi = αv

[
Ri·g + e·Vpi ERG

]
, (5)

where αv is a gain that controls the integration speed rate. In the model, the velocities’
commands of the actuators are represented by Vpi ERG, and are given by ERG in the
learning phase.

Learning occurs by reducing weights in line with the product of the presynaptic and
postsynaptic activities. Hence, the learning rule is derived using the gradient descent
algorithm. Training is conducted through the generation of random movements, and the
resultant angular velocities along with the observed spatial velocities of the biomimetic
robot are used as training vectors for the direction-mapping network. The network’s
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weights are determined using a version of the gradient descent algorithm adapted for
discrete implementation as

zjik(t + 1) = zjik(t) + β

(
Vpi − ∑

j
zjikxdj

)
xdj, (6)

where β is the learning rate and is a positive constant gain.
During the learning phase in a specific context, labeled as the kth, where e equals 1

(indicating the ERG circuit is activated), it is observed that:

Sj → xdj , Ri → Vpi , Vd
pi= Vpi → VpiERG , and Vik →

(
∑

j
zjikSj − Ri

)

In the SODMN model, operations are learned autonomously through repetitive action–
perception cycles that involve recoding proprioceptive information related to the underwa-
ter robot.

3.4. Resilience and Adaptability of SODMN to Thruster Failures

Unmanned underwater vehicles equipped with the Self-Organizing Direction Map-
ping Network (SODMN) neural network demonstrate a remarkable ability to adapt and
maintain stable and effective control, even in the face of propeller loss due to jamming. This
resilience is due to the SODMN’s ability to learn and modify its connections and synaptic
weights, allowing the UUV to continue navigating and performing its tasks, despite the
loss of a critical thruster.

The adaptation process begins with the detection of thruster loss, which is accom-
plished through continuous monitoring of the UUV’s sensors, such as current sensors or
encoders in the thrusters. When an anomaly is detected, such as excessive current or a lack
of rotation in a thruster, the UUV control system alerts the SODMN of the loss.

Once the thruster loss is detected, the SODMN selects an appropriate contextual map
to better adapt to the new situation. This new map assigns greater importance to cells that
represent velocity configurations that do not depend on the lost thruster. This allows the
SODMN to adapt its behavior and generate velocity commands for the remaining thrusters,
thus compensating for the loss of the damaged thruster.

The direction map cells, responsible for performing the transformation between the
UUV’s spatial coordinates and the velocity coordinates of the thrusters, also adjust their
synaptic weights to adapt to the new situation. The SODMN utilizes a learning mechanism
based on the modified gradient descent algorithm to adjust the weights of the connections
between the direction map cells and the motor direction vector (DVm) cells. During this
adaptation process, the direction map cells corresponding to the lost thruster gradually
reduce their influence on the DVm, while the cells associated with the remaining thrusters
increase their contribution to compensate for the loss.

Furthermore, the GO signal, which acts as a non-specific multiplicative gate and
controls the overall speed of the UUV’s movement, can also be adjusted in response to the
loss of a thruster. In situations where the UUV’s propulsion capability is compromised, the
GO signal can be modulated to reduce the overall speed of movement and ensure the safe
and stable control of the vehicle.

3.5. Navigation over Caulerpa Prolifera Meadows

The Mar Menor, a saline coastal lagoon located in the region of Murcia, southeastern
Spain, is characterized by its shallow waters and great biodiversity. However, the invasive
alga Caulerpa Prolifera, which entered the lagoon in the 1970s due to the widening of the
channel connecting the Mar Menor with the Mediterranean Sea, now covers a significant
portion of its seabed. For continuous observation plans and scientific analyses of the Mar
Menor, which aim to monitor and improve the knowledge about the environmental status
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of the lagoon and its watershed through continuous observation, scientific analyses, and
numerical models, it is important to document the Caulerpa Prolifera meadows through
photography, video, and sonar. The results of these studies guide decision making and
future actions for the conservation and recovery of this ecosystem.

To carry out a detailed exploration of the Caulerpa meadows, parallel transects are
designed with lengths and distances between them adapted for each mission. This method-
ology allows for a comprehensive study of the area, ensuring a systematic and complete
collection of data on the distribution and density of these algae. At the beginning of these
observation missions, the operational depth of the UUV and the optimal distance to the
algae are precisely determined to ensure the capture of high-quality images and videos.
Due to the turbidity of the water, it is necessary to maintain considerable proximity be-
tween the UUV and the algae, navigating just above them and at a low speed. However,
this proximity increases the risk of larger algae reaching and obstructing the submarine’s
propellers, particularly the steering propeller located at the bottom, which often leads to the
entanglement of algae in the propellers, especially in the rudder, causing them to become
blocked. In the Section 4, a clear example of this complication is illustrated, showing the
propeller jamming in a UUV, leaving the vehicle completely inoperative and requiring its
immediate recovery from the water for repair and restoration.

As the algae accumulate on the propellers, the load on the motors progressively in-
creases until reaching a point of total blockage, which carries a significant risk of mechanical
or electronic breakdown. To mitigate this risk, the control system measures the overload of
each of the thrusters through the current intensity. When the overload level exceeds a limit,
early warnings are issued, which are used to interrupt the mission, extract the submarine
from the water, and perform the necessary cleaning of the propellers. The proposed control
system tries to reduce these types of maneuvers, as they not only interrupt the continuity of
the mission, but also involve a considerable loss of resources and time to resume operations
from the point of interruption. Conventional control systems struggle to operate UUVs
with blocked thrusters. If there is a disconnection of any motor, the vehicle must stop and
be taken out of the water to restore the thrusters by cleaning them of entangled algae. How-
ever, with the new bioinspired control system, the detection of motor overloads triggers a
reconfiguration of the control system that allows for operation even with blocked thrusters.
This adaptive feature enables the UUV to continue its mission without interruption, opti-
mizing resource utilization and minimizing downtime. The bioinspired control system’s
ability to adapt and maintain functionality in the presence of motor failures represents a
significant advancement in the field of underwater robotics, enhancing the efficiency and
effectiveness of scientific exploration and monitoring missions in challenging environments
such as Caulerpa Prolifera meadows.

The mission execution process consists of several stages, including configuration,
planning, learning, and the exploration mission. During the configuration stage, the UUV,
comprising both the underwater vehicle and the surface buoy, is deployed in the marine
environment. Various parameters, such as the mission speed and settings for the vision
and sonar systems, are adjusted. One crucial configuration is determining the optimal
distance between the UUV and the seabed for the mission. This distance is experimentally
established by finding the ideal range at which the algae can be clearly observed by
video and photographic cameras, while also adjusting the lighting conditions using the
submarine’s spotlights. Factors such as water turbidity, natural lighting conditions at depth,
and artificial lighting from spotlights influence the determination of this distance. The
selected distance represents the separation that the underwater robot will maintain from
the algae throughout the entire exploration mission. If the distance to the algae is too
small, there is a risk of the algae becoming entangled in the propellers, particularly the
bottom-mounted rudder propeller.

The planning stage involves generating routes and transects for the mission. Transects
are conducted over areas with consistent depth levels to ensure lighting conditions similar
to those established during the configuration stage. Mission planning software, along with
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data from previous bathymetric surveys or underwater mapping, is utilized to create the
plan. Key parameters such as the starting point, ending point, length of the lanes, and
separation between them are defined during this stage.

The learning phase involves generating context fields and precisely adjusting the
neural weights in the neural networks. The learning algorithms generate random move-
ment commands for the thrusters, and the resulting speeds along the X, Y, and Z axes
are measured. These results are used to perform input–output correlation by adjusting
the weights of the neurons. The learning process with blocked thrusters is conducted by
disconnecting either the rudder motor or one of the propulsion thrusters, as the vehicle
is capable of maintaining its operation without these motors. This one-minus thruster
learning allows for the motion and propulsion correlations for these specific thruster failure
scenarios to be learned.

The learning mission represents the initial attempt to complete the entire mission,
although it is still subject to ongoing learning processes. During this stage, currents in the
electric motors, particularly the rudder motor, are monitored. If an increase in power is
detected due to the entanglement of algae in the propeller, the robot halts its movement
and initiates a learning process to acquire new correlations and generate new context fields
specific to the situation of propellers with entangled algae.

Once the underwater robot has successfully completed the preceding stages, it is
prepared to undertake exploration missions. At this point, the neural algorithms are fully
trained and the UUV can execute the mission under normal operating conditions.

4. Results

Experiments were conducted to validate the bioinspired control architecture in the Mar
Menor. The main objective of these experiments was to demonstrate that the UUV exhibits
resilient behavior to propeller failures caused by the entanglement of algae in the propellers
and can increase the distance traveled by the UUV over the Caulerpa Prolifera meadows
while reducing interruptions caused by the entanglement of algae in the propellers. This
challenge is particularly relevant in environments with dense underwater vegetation, where
the risk of propeller obstruction is high and can compromise the continuity of the mission
and the integrity of the vehicle.

By validating the ability of the bioinspired control architecture to adapt and maintain
the stable control of the UUV in the presence of propeller failures, these experiments seek
to demonstrate the effectiveness of this innovative approach to improve the robustness and
reliability of exploration and monitoring missions in challenging underwater environments.

4.1. Learning Phase

The learning phase aims to adjust the weights of the neurons in the context fields Vnk.
These context fields are determined for different situations of overload and blockage in
the thrusters, caused by the entanglement of algae in the propellers. During this phase,
sequences of random movements are generated on the motor direction vector (DVm), which
are applied to the UUV’s thrusters. Next, the results of the vehicle’s spatial movement are
measured in the spatial direction vector (DVs). The weights of the neurons are adjusted
using Equation (6).

In the first stage of learning, the system adjusts the neural weights of the operating
contexts defined in Table 1. This table includes all possible cases in which the UUV can
develop its full mobility, albeit with different combinations of blocked thrusters. In this
table, the thrusters can be active or blocked, and in the case of being active, they do not
present any overload. To simulate the blockage of the thrusters due to algae entanglement,
a safety blocking command is activated on the corresponding thruster. This command
renders the thruster inactive, preventing it from responding to the movement commands
applied to it. In this way, a scenario in which the motor is blocked by an obstruction caused
by algae is effectively reproduced. This approach allows the system to learn and adapt to
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different thruster configurations, improving its ability to maintain the mobility and control
of the UUV in the presence of thruster failures.

Table 1. Learning contexts for situations with blocked thrusters.

Context Horizontal Right Horizontal Left Vertical Right Vertical Left Rudder

1 Active Active Active Active Active

2 Blocked Active Active Active Active

3 Active Blocked Active Active Active

4 Active Active Blocked Active Active

5 Active Active Active Blocked Active

6 Active Active Active Active Blocked

7 Blocked Active Blocked Active Active

8 Blocked Active Active Blocked Active

9 Active Blocked Blocked Active Active

10 Active Blocked Active Blocked Active

11 Active Active Blocked Active Blocked

12 Active Active Active Blocked Blocked

Figure 4 shows the variables DVm and DVs in the learning processes for some context
fields. Figure 4a depicts the DVm values applied to the thrusters in the learning process of
context 1 (blue for horizontal left, green for horizontal right, magenta for rudder, red for
vertical left, and cyan for vertical right). Each of these values was applied for one second
and the process lasted 20 min, during which, 1200 different movements were randomly
generated. This graph (a) shows the random and normalized DVm values corresponding
to the first 30 s of the learning process. Graph (b) shows the values of the DVs vector in the
learning process of context 1, which represents the normalized linear and angular velocity
values in XYZ. The values DVs1, DVs3, and DVs6 (blue for frontal direction, green for
altitude, and red for yaw rotation) are the most sensitive to the learning process. In contrast,
the values DVs2 (transverse velocity in Y, magenta) and DVs4 (rotation velocities in X)
are negligible, as the UUV has no mobility in those directions. Graph (b) shows the first
100 s of the DVs variables. For these tests, the vehicle was positioned at a depth of 5 m in
calm sea conditions without currents. Graph (c) shows the DVs values in the learning of
context 2, with the right horizontal thruster blocked, and graph (d) shows the DVs values
in context 7, with both the right horizontal and right vertical thrusters blocked.

In the second phase of learning, the UUV is operated in the algae meadows, and
learning is carried out in new contexts with various levels of overload caused by different
degrees of algae entanglement in the thrusters. A 100% overload level causes complete
motor blockage. The criterion followed for the generation of new contexts was that, when an
increase of approximately 20% in the percentage of propeller overload is reached compared
to the previous values, the mission is stopped, and the UUV performs a learning process
under those conditions, following the same procedure as that in the previous phase. This
operation was performed repeatedly as the propellers became obstructed with algae, which
was conducted at four different points along the UUV’s route. At each of these new points,
new context fields were created to adapt to the specific overload conditions. Table 2 shows
the new contexts generated for the indicated overload levels, allowing the system to learn
and adapt to situations of progressive algae entanglement in the thrusters during the UUV’s
operation in the marine meadows.
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Table 2. Learning contexts for thruster overload situations.

Context Horizontal Right Horizontal Left Vertical Right Vertical Lelf Rudder

13 0% 0% 0% 0% 21.3%

14 11.3% 10.4% 0% 0% 42.5%

15 14.6% 13.5% 0% 0% 62.1%

16 17.2% 16.7% 0% 0% 81.7%

4.2. Thruster Failure Experiment

After completing the learning phase, the control system was tested by inducing a
failure in the rudder propeller to evaluate its responsiveness to anomalies. The left graph
of Figure 5 illustrates the route followed by the UUV when experiencing this failure while
heading towards the target destination. The starting point, called TestUUV1, is located at
coordinates (20, 10, 2) m, while the destination point, TestUUV2, is situated at coordinates
(750, 225, 2) m. To ensure accuracy in distance measurement, an acoustic positioning system
was employed.
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Initially, a navigation route was established for the UUV using its five thrusters,
operating in context field 1. Subsequently, during the vehicle’s movement, a failure in
the rudder propeller was provoked by issuing a blocking command to this motor. This
simulated incident was activated when the UUV had advanced to the position of (180, 53,
2) m from its starting point. Faced with this eventuality, the bioinspired control algorithm
demonstrated its adaptive effectiveness by automatically switching from context 1 to
context 6, allowing the UUV to continue its movement towards the target using only four
propellers. The route undertaken in this induced failure condition is detailed in the right
graph of Figure 5.

Figure 6 shows the deviation error with respect to the generated trajectory when using
five thrusters (5T configuration) and when a failure in the rudder thruster is provoked.
In the 5T configuration, the generated trajectory is represented by a solid line, indicating
that the UUV follows the planned route precisely when all thrusters are functioning
correctly. However, when the rudder thruster is blocked, the trajectory deviates from
the planned route, which is represented by a dashed line. The maximum deviation error
observed in the configuration with four thrusters (4T) is approximately 2 m compared to
the originally planned trajectory with five thrusters. This relatively small error highlights
the effectiveness of the bioinspired control algorithm in compensating for the thruster
failure and maintaining the stable control of the UUV. Despite the deviation caused by
the rudder thruster failure, the UUV is capable of continuing its navigation towards the
destination point TestUUV2 using the remaining four thrusters. This demonstrates the
ability of the bioinspired control system to adapt and maintain the vehicle’s course, even in
the presence of thruster failures.
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4.3. Comparison of Results with Conventional Control

To carry out a detailed exploration of the Caulerpa meadows, transects with a length
of 1000 m were designed, maintaining a distance of 5 m between each of them, as illustrated
in Figure 7. This methodology allows for a comprehensive study of the area, ensuring a
systematic and complete collection of data on the distribution and density of these algae.

An experiment was conducted with conventional control to complete the route shown
in Figure 7. In this case, the orientation is controlled by the rudder thruster, while forward
and backward movement is controlled by the horizontal thrusters and immersion is con-
trolled by the vertical thrusters. The vehicle was programmed to follow the submerged
fields of Caulerpa Prolifera, maintaining a distance of 0.5 m from the seabed. The mission
had to be stopped at 4.8 km due to the jamming of the rudder propeller, as the vehicle lost
its ability to control its orientation. The left graph in Figure 8 shows the evolution of the
normalized overload signal in the rudder, which reaches the overload limit level at minute
148. The photograph included in Figure 8 shows how the rudder propeller was completely
jammed and inoperative.
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Figure 8. Mission cancellation with conventional control due to rudder propeller jamming.

Subsequently, the same route was performed using the bioinspired control system.
Figure 9 shows the switching of context fields until the mission is completed. Initially, the
UUV operates with context field 1. At 77 min, the controller detects an overload above 0.2
(20%) in the rudder thruster and switches to context field 13. When the overload exceeds 0.4
(40%) at 110 min, it switches to context field 14. With an overload of 0.6 (60%) at 135 min, it
switches to context field 15. With an overload of 0.8 (80%) at 156 min, it switches to context
field 16. Finally, when the overload exceeds 0.95 (95%) at 171 min, the motor is blocked,
and context field 6 is activated, corresponding to the case of a blocked motor.
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Ultimately, the UUV managed to complete the mission. Figure 10 shows an image of
the state of the thrusters. The rudder thruster was completely blocked due to entanglement



Biomimetics 2024, 9, 329 18 of 24

with algae, however, the horizontal thrusters were not blocked and were able to complete
the mission.
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The implemented algorithm plays a crucial role in finding an alternative strategy that
allows the UUV to continue operating by adjusting the propulsion propellers. The selected
context fields lead to a situation in which the orientation control produced directly by
the rudder thruster in conventional control is replaced by the power differential between
the port and starboard thrusters, an ingenious solution that compensates for the loss of
directional control provided by the rudder propeller. Since these propulsion propellers
are located further away from algae concentrations, they experience less entanglement,
ensuring continuous and resilient operability until the end of the mission. Figure 10
illustrates the state of the thrusters after completing the exploration, highlighting their
ability to remain operational without the need for interruptions and mission cancellation
due to algae cleaning from the propellers or breakdowns.

4.4. Results of the Exploration of Caulerpa Prolifera Fields

The mission was successfully completed, achieving a comprehensive documentation
of 4 km through transects of 1 km in length and separated by 5 m from each other, following
the route shown in Figure 7. The UUV demonstrated a remarkable capacity for adaptation to
unforeseen events, adjusting its operation in response to specific complications, such as the
progressive obstruction of the rudder propeller until its final blockage. This demonstrates
the operational flexibility of the vehicle, which, even with the rudder propeller immobilized,
continues to operate effectively.

During the exploration mission, videos, photographs, and sonar records of the seabed
were captured for further analysis. Figure 11 presents a detailed image of the Caulerpa
Prolifera meadows captured along the exploration transects, providing a clear view of the
underwater ecosystem under study.

Figure 12 shows an image obtained by side-scan sonar of the area in question, re-
vealing a predominantly flat terrain with the presence of small rocky objects. This sonar
visualization provides a detailed perspective of the underwater topography, highlighting
the physical characteristics of the seafloor.



Biomimetics 2024, 9, 329 19 of 24

Biomimetics 2024, 9, x FOR PEER REVIEW  19  of  24 
 

 

demonstrates the operational flexibility of the vehicle, which, even with the rudder pro-

peller immobilized, continues to operate effectively. 

During the exploration mission, videos, photographs, and sonar records of the sea-

bed  were  captured  for  further  analysis.  Figure  11  presents  a  detailed  image  of  the 

Caulerpa Prolifera meadows captured along the exploration transects, providing a clear 

view of the underwater ecosystem under study. 

 

Figure 11. Photographs taken by UUV. 

Figure 12 shows an image obtained by side-scan sonar of the area in question, reveal-

ing a predominantly flat terrain with the presence of small rocky objects. This sonar visu-

alization provides a detailed perspective of the underwater topography, highlighting the 

physical characteristics of the seafloor. 

 

Figure 12. UUV side-scan sonar images. 

5. Discussion 

The results obtained  in this study demonstrate the effectiveness of the bioinspired 

control architecture based on the Self-Organizing Direction Mapping Network (SODMN) 

neural network in providing a UUV with adaptation and resilience capabilities in the face 

of  thruster  failures  during  exploration  and  monitoring  missions  of  the  submerged 

Caulerpa Prolifera meadows in the Mar Menor. 

Figure 11. Photographs taken by UUV.

Biomimetics 2024, 9, x FOR PEER REVIEW  19  of  24 
 

 

demonstrates the operational flexibility of the vehicle, which, even with the rudder pro-

peller immobilized, continues to operate effectively. 

During the exploration mission, videos, photographs, and sonar records of the sea-

bed  were  captured  for  further  analysis.  Figure  11  presents  a  detailed  image  of  the 

Caulerpa Prolifera meadows captured along the exploration transects, providing a clear 

view of the underwater ecosystem under study. 

 

Figure 11. Photographs taken by UUV. 

Figure 12 shows an image obtained by side-scan sonar of the area in question, reveal-

ing a predominantly flat terrain with the presence of small rocky objects. This sonar visu-

alization provides a detailed perspective of the underwater topography, highlighting the 

physical characteristics of the seafloor. 

 

Figure 12. UUV side-scan sonar images. 

5. Discussion 

The results obtained  in this study demonstrate the effectiveness of the bioinspired 

control architecture based on the Self-Organizing Direction Mapping Network (SODMN) 

neural network in providing a UUV with adaptation and resilience capabilities in the face 

of  thruster  failures  during  exploration  and  monitoring  missions  of  the  submerged 

Caulerpa Prolifera meadows in the Mar Menor. 

Figure 12. UUV side-scan sonar images.

5. Discussion

The results obtained in this study demonstrate the effectiveness of the bioinspired
control architecture based on the Self-Organizing Direction Mapping Network (SODMN)
neural network in providing a UUV with adaptation and resilience capabilities in the face
of thruster failures during exploration and monitoring missions of the submerged Caulerpa
Prolifera meadows in the Mar Menor.

The ability of the UUV to continue operating effectively, even in situations of algae
entanglement in the propellers, thanks to the adaptability of the SODMN neural network,
represents a significant advance compared to conventional control systems. As illustrated
in Figure 8, UUVs using traditional control algorithms often require mission interruption
and vehicle recovery for repair when a thruster blockage occurs. In contrast, the bioin-
spired control architecture allows the UUV to adjust its neural weights and connections to
compensate for the loss of a thruster and generate appropriate velocity commands for the
remaining thrusters, thus maintaining stable and effective control (Figures 5 and 6).

The experimental design involves several crucial phases, including tuning, planning,
learning, learning mission, and the exploration mission. Each of these phases plays a funda-
mental role in evaluating and validating the performance of the bioinspired control system.
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During the tuning phase, critical adjustments were made to the UUV’s operational
parameters, such as the mission speed and configuration of the vision and sonar systems.
A key aspect of this phase was determining the optimal distance between the UUV and the
algae to ensure the capture of high-quality images and videos.

This distance was established experimentally, taking into account factors such as the
water turbidity, lighting conditions, and need to avoid algae entanglement in the propellers.
The proper determination of this distance is essential for mission success, as a balance
between the quality of the collected data and vehicle safety is critical.

In the planning phase, routes and transects were generated to exhaustively cover
the study area. The careful selection of start and end points, as well as the length and
separation of the transects, demonstrates a methodical approach to ensuring systematic and
comprehensive data collection. This detailed planning lays the foundation for an efficient
and effective exploration of the Caulerpa Prolifera meadows.

The learning phase is a crucial component of the experiments, as it allows the bioin-
spired control system to adapt and learn from interactions with the environment. During
this phase, the UUV generates random motion commands to the thrusters and measures the
resulting velocities along each axis. This process enables the control algorithm to establish
correlations between the inputs and outputs, adjusting the neuron weights accordingly.
What distinguishes this approach is the inclusion of simulated failure scenarios, such as
disconnecting a motor or obstructing the propellers with algae. By exposing the system to
these adverse situations during learning, its ability to adapt and maintain control under
real failure or performance degradation conditions is enhanced.

The learning mission represents the first attempt to fulfill the objectives of the complete
mission while subjecting the system to a learning and adaptation process under the condi-
tions of partial thruster overload. During this phase, the currents in the electric motors are
closely monitored to detect possible power increases due to the entanglement of algae in
the propellers. If such a situation is detected, the UUV halts its movement and initiates a
learning process to adapt to the new condition. This approach demonstrates the system’s
ability to respond in real time to encountered challenges and adjust its behavior accordingly.

The exploration mission puts the performance of the UUV and its bioinspired control
system to the test in real operating conditions. During this phase, the vehicle navigates
through the planned transects, capturing videos, photographs, and sonar records of the
Caulerpa Prolifera meadows. The ability of the UUV to successfully complete the mis-
sion, despite the challenges encountered, such as algae entanglement in the propellers,
demonstrates the robustness and adaptability of the control system.

A notable aspect of the experiments is the simulation of propeller failures to evaluate
the responsiveness of the bioinspired control algorithm. The scenario in which a discon-
nection failure is provoked in the rudder thruster during navigation provides a critical
test of the system’s resilience. The results show that the UUV is capable of continuing
its displacement towards the objective using only four propellers, thanks to the adaptive
reconfiguration of the control system.

This finding supports the hypothesis that the bioinspired control architecture can
provide the UUV with enhanced resilience against failures and maintain an acceptable
performance under adverse conditions.

Furthermore, the control algorithm’s ability to find alternative propulsion strategies,
such as generating a power differential between the port and starboard propellers to
compensate for the loss of directional control, demonstrates its flexibility and problem-
solving capability. This adaptability is especially relevant in challenging environments like
the Caulerpa Prolifera meadows, where algae entanglement in the rudder propeller is a
constant risk.

The experimental results also highlight the importance of redundancy in UUV propul-
sion systems. The five-thruster configuration of the vehicle used in this study allows
for greater fault tolerance and three-dimensional maneuverability, even when two of the
thrusters are inoperative.
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This redundancy, combined with the bioinspired control system, significantly im-
proves the resilience and reliability of the UUV in submerged aquatic vegetation monitor-
ing missions.

These findings are consistent with previous studies that have explored the application
of bioinspired and biomimetic algorithms in the field of robotic resilience [48–51]. These
approaches are based on emulating the principles and mechanisms of adaptation, learning,
and robustness present in biological systems, with the aim of creating more resilient and
autonomous robotic systems [49]. The SODMN neural network’s ability to adapt to thruster
failures and maintain the stable control of the UUV is comparable to neural-network-based
fault-tolerant control approaches [25,52], which leverage the learning and adaptation
capabilities of neural networks to compensate for actuator or sensor failures and maintain
an acceptable control system performance.

In summary, the experiments conducted in this study provide strong validation of the
effectiveness and adaptability of the proposed bioinspired control architecture for UUVs
in submerged aquatic vegetation meadow monitoring missions. The experimental design
encompasses multiple phases, from tuning and planning to learning and exploration, allow-
ing for a comprehensive evaluation of the system’s performance under real and simulated
operating conditions. The obtained results support the hypothesis that bioinspired ap-
proaches can significantly enhance the robustness, adaptability, and resilience of control
systems in autonomous vehicles, especially in challenging and dynamic environments
such as the Caulerpa Prolifera meadows in the Mar Menor. These findings have important
implications for the future development of UUVs and bioinspired control systems and lay
the foundation for further research in this field.

6. Conclusions

In this study, a bioinspired control architecture for the autonomous, adaptive, and
resilient navigation of a UUV on missions to monitor submerged aquatic vegetation mead-
ows has been presented. The proposed architecture is based on a self-organizing directional
mapping network (SODMN) that combines associative learning with vector associative
map learning to generate transformations between the UUV’s spatial coordinates and the
velocity coordinates of its thrusters.

The experimental results obtained demonstrate the effectiveness and adaptability of
the bioinspired control architecture in a real operating environment, specifically in the
Caulerpa Prolifera meadows in the Mar Menor. The UUV, equipped with the proposed
control system, successfully completed exploration missions, capturing valuable data on
the distribution and density of algae. It navigated challenging conditions, even with its
propellers entangled in algae.

One of the main strengths of the bioinspired control architecture is its ability to adapt
and reconfigure the UUV’s propulsion scheme in response to adverse situations, such as
algae entanglement in the propellers or the loss of functionality of a thruster.

The experiments conducted, including the simulation of failures in the rudder pro-
peller, demonstrated the robustness and resilience of the control system, allowing the UUV
to continue its mission using redundant thrusters and alternative propulsion strategies.

These results have significant implications for the future development of autonomous
vehicles and bioinspired control systems in a wide range of applications, from the ex-
ploration and monitoring of marine ecosystems to the inspection and maintenance of
underwater infrastructures. The ability of bioinspired approaches to endow robotic sys-
tems with adaptation and resilience skills similar to those observed in biological systems
opens up new possibilities for the design of more efficient and robust robots.

Another area of interest for future research is the optimization of learning algorithms
and the reduction in the time required for the control system to adapt to new situations. The
incorporation of advanced techniques, such as reinforcement learning and deep learning,
could accelerate the adaptation process and improve the efficiency of the control system.
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In conclusion, this study demonstrates the potential of the bioinspired control archi-
tecture to enhance the adaptability, resilience, and performance of UUVs in monitoring
missions of vulnerable marine ecosystems. The results obtained highlight the importance
of bioinspired approaches in the design of advanced robotic systems and provide new
perspectives for the development of more efficient and robust control algorithms. The
integration of biological principles and the emulation of adaptation strategies observed in
nature have the potential to revolutionize the field of autonomous robotics and significantly
contribute to the conservation and sustainable management of marine ecosystems.

As we move forward in this direction, it is essential to foster interdisciplinary collabo-
ration among experts in robotics, biology, ecology, and other relevant disciplines to address
the complex challenges facing our oceans and develop innovative and sustainable solu-
tions. The combination of bioinspired approaches and advanced technologies, such as in
UUVs, offers promising opportunities to enhance our understanding of marine ecosystems,
monitor the impacts of climate change and human activities, and support efforts towards
the conservation and sustainable management of these valuable natural resources.
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