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Abstract: To mimic the homeostatic functionality of biological neurons, a split-gate field-effect
transistor (S-G FET) with a charge trap layer is proposed within a neuron circuit. By adjusting the
number of charges trapped in the Si3N4 layer, the threshold voltage (Vth) of the S-G FET changes. To
prevent degradation of the gate dielectric due to program/erase pulses, the gates for read operation
and Vth control were separated through the fin structure. A circuit that modulates the width and
amplitude of the pulse was constructed to generate a Program/Erase pulse for the S-G FET as the
output pulse of the neuron circuit. By adjusting the Vth of the neuron circuit, the firing rate can be
lowered by increasing the Vth of the neuron circuit with a high firing rate. To verify the performance of
the neural network based on S-G FET, a simulation of online unsupervised learning and classification
in a 2-layer SNN is performed. The results show that the recognition rate was improved by 8% by
increasing the threshold of the neuron circuit fired.

Keywords: neuron circuit; homeostasis functionality; nonvolatile memory; charge trap layer

1. Introduction

Recently, artificial neural networks (ANNs), inspired by the brain, have been actively
researched and developed [1]. Particular attention has been paid to spiking neural net-
works (SNNs) that utilize biological spike timing–dependent plasticity (STDP) rules to
function as event-driven systems for unsupervised learning [2–10]. Since such SNNs
pursue a more bio-plausible direction than other ANNs do, it is necessary to explore
the signal transmission mechanisms of biological neurons and synapses to gain a deeper
understanding of these SNNs. Figure 1a illustrates the neurons and synapses, and we
focus on explaining the membrane potential and neurotransmission of neurons. Neurons
maintain the membrane potential by consuming adenosine triphosphate, and the mem-
brane potential increases when cations are injected into the membrane due to stimuli
pro-vided as dendrites. At this point, if the membrane potential exceeds a specific threshold
value, the neuron will be depolarized. Then, the membrane potential reaches the action
potential, following which the neuron is repolarized and the membrane potential restored
to its initial value. The electrical spikes generated in this process are transmitted to the
axon of the neuron in an electrical form and to the post-synaptic neuron in the form of a
neurotransmitter through the synapse. However, according to rate-based learning rules
such as SRDP and BCM [11–14], synapses cannot simply transmit signals between two
neurons; rather, they can modulate the strength of the transmitted signal by increasing
the synaptic efficiency when receiving high-frequency stimulation and reducing it when
receiving low-frequency stimulation. These changes in synaptic strength can be explained
primarily by activity-dependent plasticity, such as long-term potentiation and long-term
depression, and are known to be closely related to the functions per-formed by the brain,
such as learning, memory, and cognition. When synaptic strength changes only due
to activity, the neural activity can be induced in the direction of runaway excitation or
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sequences. In response, neurons are known to perform homeostatic regulation to stabilize
natural activity and maintain their average firing rate within a narrow range. Figure 1b
shows the change of AMPA receptor’s number at the post-synaptic surface induced by
neural activity. AMPA receptor’s numbers at the postsynaptic surface are accordingly scaled
up- or downwardly in response to activity deprivation or overexcitation, respectively. In
this process, the firing rate of neurons is maintained in a narrow range [15–18].
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Figure 1. (a) Simple diagram of a biological neuron and synapse. The neuron is composed of a
nucleus, dendrite, axon, and axon terminals. Synapse is a connection between pre-synaptic neurons
and post-synaptic neurons. (b) A model of homeostatic regulation which stabilizes firing rate of
neurons by synapse scaling.

Recently, research has focused on integrating neuromorphic systems and hard-ware-
based neural networks with various emerging memory devices to enable energy-efficient
operation of artificial intelligence algorithms [9,10,19–43]. For instance, on-chip learning
can reduce power consumption and compensate for the degradation caused by device
variation [44–49]. Similar to biological neurons, STDP-based neural networks re-quire a
homeostasis functionality that controls the firing rate of the output neurons to achieve
more accurate pattern recognition. The homeostasis functionality in biological neurons
involves reducing the fire rate of dominant (high firing rate) neurons and increasing that
of weak (low firing rate) neurons. Various studies have attempted to implement the
homeostasis functionality in hardware and software neural systems [50–56]. To mimic the
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homeostasis function, each neuron needs peripheral circuits composed of conventional
complementary metal-oxide-semiconductors (CMOSs) and capacitors. However, if all
neuron circuits have at least one large capacitor, the hardware footprint of the neural
system can become excessive. In addition, when synaptic weights are updated in SNNs,
the value controlling the firing frequency of each neuron circuit is also updated and stored
in the peripheral circuits. Due to the volatile memory functionality in peripheral circuits,
maintaining the values for the homeostasis functionality in the system is impossible without
a supply voltage.

In this paper a split-gate field-effect transistor (S-G FET) with a charge-storage layer
is proposed to mimic the homeostasis functionality. The S-G FET is used to compare the
membrane potential (Vmem) with the threshold voltage (Vth) for the fire function in the
neuron circuit. By using the fin structure in the S-G FET with independent double gates, it
was possible to implement a stable operation of neuron circuit by distinguishing between
the gate for implementing homeostatic function through P/E and the gate for reading
synaptic signals. The Vth of each neuron circuit can be updated selectively using the S-G
FET, which has two independent gates. The homeostasis functionality can be achieved
by controlling the threshold of the neuron circuit using the program/erase operation
in the charge-trap layer. Employing a nonvolatile memory functionality for the charge
storage layer can maintain the optimized Vth of the neuron circuit. A two-layer SNN based
on biological STDP learning rules was simulated with the S-G FET to demonstrate the
improved pattern-recognition accuracy on MINST datasets.

2. Materials and Methods

The S-G FET was fabricated on a 6-inch Si wafer using conventional CMOS technology.
Figure 2a–h shows the fabrication steps for integrating the S-G FET, n-type FET, p-type
FET, and memory devices. First, a sacrificial SiO2 layer is deposited on the wafer and
patterned to obtain the single-gate FETs, and a nitride layer is then deposited. Subsequently,
a 250 nm poly-Si layer is deposited and patterned to enable the formation of the Si3N4
spacers. Next, a 35 nm (fin width = 35 nm) Si3N4 layer is deposited and etched again,
causing the Si3N4 spacers to be formed on the sidewalls of the patterned poly-Si layer
(Figure 2a). The poly-Si layer is selectively removed using a solution of HNO3 and HF
(Figure 2b), and the Si substrate is etched to a depth of 80 nm (fin height = 80 nm) with the
Si3N4 spacers as a hard mask (Figure 2c). Then, a thin SiO2 film is again deposited as a
barrier layer for SF6 dry etching, followed by the deposition of a poly-Si layer (Figure 2d).
The poly-Si spacers are selectively removed using a mask in the regions of bulk-fin FETs,
followed by anisotropic etching of SiO2 (Figure 2e). Thereafter, isotropic Si etching using
SF6 gas is performed by controlling the etching thickness (Figure 2f). Si fins without the
SiO2/poly-Si sidewalls are separated from the Si substrate, as shown on the left in Figure 2g.
Notably, both ends of the separated fins are connected to the substrate, as shown on the
right in Figure 2g. By wet-etching SiO2 in a buffered hydrogen fluoride solution, the Si3N4
spacers on the sacrificial SiO2 are removed. The gap between the Si fins is filled with SiO2
via a high-density plasma chemical vapor deposition process (Figure 2h). After the SiO2 is
etched up to a certain thickness (until the top of the Si fins), boron and phosphorus ions
are implanted for the field and channel doping of the n-type and p-type FETs, respectively.
Then, the SiO2/Si3N4/SiO2 (2/4.2/9 nm) gate dielectric layer, which is called the O/N/O
layer, is deposited for a memory function, and a SiO2 film (10 nm) is deposited as the gate
dielectric layer of the conventional MOSFET, respectively. (Figure 2i). Then, an n+-doped
poly-Si layer is deposited as a gate material. To form the independent split gates using
the Si3N4 spacers, the wafer is coated with a diluted photoresist (PR); a thin PR layer is
then formed only on the top of the Si3N4 spacers (Figure 2j). By etching the PR up to a
specific thickness, only the n+-doped poly-Si on the Si3N4 spacers is exposed (Figure 2k).
The exposed n+-doped poly-Si is then etched to form the independent split gates. The
remaining PR is removed, followed by the patterning of the n+-doped poly-Si for the gates.
Subsequently, the Si3N4 spacer is striped (Figure 2l). After boron and arsenic ions are
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implanted for the source/drain regions of the n-type and p-type FETs, respectively, rapid
thermal annealing is conducted at a temperature of 1050 ◦C (5 s) to activate the ions. Then,
an interlayer dielectric is deposited, and the contact holes and metal are patterned.
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Figure 2. (a–l) Steps for integration of the fabricated S-G FET, n-type FET, p-type FET, and memory
devices on the same wafer.

Figure 3a,b show a 3D schematic view and a cross-sectional transmission electron
microscopy (TEM) image, respectively, of the fabricated S-G FET with a floating fin body.
The split gates (G1 and G2) are n+ doped poly-Si, and the thickness of the gate oxide (SiO2)
is 9 nm for the conventional CMOSFET. The thicknesses of the tunneling layer, charge-
trap layer, and blocking layer are 2 nm, 4.2 nm, and 9 nm, respectively, consisting of the
SiO2/Si3N4/SiO2 stack to provide the nonvolatile memory for the homeostatic function.
The width (Wfin) and height (Hfin) of the floating fin body are 35 nm and 80 nm, respectively.
The split gates on both sides of the floating fin body can be used to modulate the threshold
voltage (Vth) of the S-G FET, thereby enabling neuron circuits to be controlled using the
S-G FET. The doping concentrations of the n-type channel, p-type channel, source region,
and drain region are 1 × 1018 cm−3, 1 × 1018 cm−3, 2 × 1020 cm−3, and 2 × 1020 cm−3,
respectively.
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3. Results and Discussion
3.1. Basic Device Characteristics

Figure 4 shows the ID-VG characteristics of CMOSs and S-G FET, respectively. The
entire measurement process was conducted using the Keysight B1500A parameter analyzer
with 10ms intervals. Figure 4a shows the measured ID–VG curves of the n-type and p-type
FETs fabricated on the same wafer. The gate width (W) and length (L) of the conventional
CMOSs are 35 nm and 1 µm, respectively. The subthreshold swings (SS) of of conventional
n-type MOSFET and p-type MOSFET are 70 mV/decade and 160 mV/decade at VD = 0.1 V,
respectively. The conventional CMOSs are used for the neuron circuits, self-controller
(including a pulse generator for the program/erase operation of synaptic devices and the
S-G FET), and connecting parts (current mirror and switch circuits) between the synaptic
array and neuron circuit. Figure 4b shows the measured ID–VG1 curves of the S-G FET for
VG2 values between −2 V and 2 V. The solid and hollow symbols represent the transfer
curves at VD values of 0.1 V and 1 V, respectively. For both sets of curves, the ID values
are almost identical at the same VG1 due to the low drain-induced barrier lowering of the
fabricated S-G FET. As the gate voltage applied to G2 decreases from positive to negative,
the potential in the channel region increases, and the electron energy barrier from the source
region to the channel region increases as well. This results in an increase in the Vth of the S-
G FET. Since the channel region between the split gates is fully depleted as 35 nm, the △Vth
of the S-G FET is almost linearly related to △VG2 [20]. In previous studies, neuron circuits
were designed as homeostatic circuits consisting of current mirrors and a single capacitor,
to mimic the biological homeostatic function. However, since this involves storing the
homeostatic data of neurons in capacitors to control the Vth of each neuron, a risk of data
loss exists due to the volatile memory characteristics of the capacitors. Additionally, the
large size of such capacitors (with a 1 pF capacitor occupying 100 µm² at a SiO2 thickness
of 10 nm) causes the neuron circuit array to occupy a significant area. As described below,
however, utilizing the nonvolatile memory characteristics of the charge-trap layer allows
for implementing the homeostatic function of biological neurons at a high density as well
as permanent storage of homeostatic data.
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Figure 4. (a) The measured ID-VG curves of the n-type FET and p-type FET, fabricated on the same
wafer with the S-G FET. (b) The measured ID-VG1 curves of the S-G FET as a parameter of different
VG2 from −2 V to 2 V, respectively. The solid and open symbols represent transfer curves at VD of
0.1 V and 1 V, respectively.

When the S-G FET with the two independent gates (G1 and G2) is used in a neuron
circuit, one gate (G1) reads input signals from a synaptic array, while the other gate
(G2) modulates the Vth of the S-G FET through the amount of charge in the charge-trap
layer via program/erase operations. The program/erase operations are executed in the
tunneling layer through the Fowler–Nordheim (FN) tunneling mechanism when high
positive/negative voltages are biased across the gate dielectric layers. Figure 5a shows the
measured ID–VG1 curves of the S-G FET with the number of program pulses applied to
G2. When a positive pulse (VPGM of 7 V, tPGM of 100 µs) is applied to G2 for the program
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operation, electrons accumulate in the charge-trap layer adjacent to G2; this has the same
effect as applying a negative voltage to G2, resulting in an increase in the Vth of the S-G FET.
By contrast, when a negative pulse (VERS of −7.5 V, tERS of 100 µs) is applied to G2 for the
erase operation, the accumulated electrons are de-trapped, resulting in a decrease in the Vth
of the S-G FET. Figure 5b shows the measured Vth changes in ID–VG1 curves of the S-G FET
with the number of program/erase pulses applied to G2; Vth is measured at an ID of 10 nA.
As the number of program pulses applied to G2 increases, Vth increases from 0.6 V to 0.83 V
at 50 pulses. Conversely, when the erase pulses are applied to G2, Vth gradually decreases
and returns to its initial value of 0.6 V when more than 50 pulses are applied. Vths in
program and erase states were measured at room temperature with the terminals open. As
a result, The Vths of the S-G FET in both states are maintained well over 104 s (< Vth changes
of 10%), as shown in Figure 5c. The Vth values of the S-G FET in both the program and erase
states are maintained for well over 104 s (Vth variation < 10%), as shown in Figure 5c; the
nonvolatile memory function enables the optimized Vth of the S-G FET to be maintained. If
the S-G FET is used to determine the threshold of one neuron circuit during the learning
process of an SNN, the threshold of all other neuron circuits can be optimized through
the PGM/ERS operation. Moreover, G1 and G2 being independent gates allows for the
thresholds of all neuron circuits to be updated selectively. No change in the SS is observed
until 104 program/erase cycles have been executed. However, beyond 105 cycles, the
tunneling layer on G2 becomes degraded, resulting in an increase in the SS corresponding
to the VG2 of the S-G FET. Notably, since the program/erase pulses are applied to G2, the
gate dielectric of G1 does not degrade, even after more than 105 program/erase cycles,
as seen in Figure 5d. In addition, |7 V| program/erase pulses are applied to G2 of the
S-G FET to modulate the threshold value of the neuron circuit only during the learning
process. After learning, only small signal (synaptic signals, membrane potential) are
applied to G1 of the S-G FET for the classification and pattern recognition. Therefore, when
implementing biological homeostasis functions using nonvolatile memory characteristics,
signals transmitted from the synaptic array can be reliably read.
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3.2. A Neuron Circuit Using the S-G FET

Figure 6a shows a schematic of an integrate-and-fire (IF) neuron circuit integrated
with the S-G FET. The S-G FET is designed using a Sentaurus TCAD simulation, and the
modulation of the Vth in the charge trap layer (Si3N4) of the S-G FET was performed through
the program and erased operations via the Fowler-Nordheim (FN) tunneling model. When
determining carrier mobility, the velocity saturation model, doping dependence model,
and Lombardi surface mobility model were used. The old Slotboom model was used to
calculate bandgap narrowing due to doping. The simulation of the neuron circuit with
the S-G FET was conducted using the mixed mode provided in the Sentaurus TCAD
simulation. The parameters of the CMOS and capacitors are as follows: L = 0.5 µm,
W = 0.1 µm, Cmem = 0.5 pF, Creset = 0.05 pF. The supply voltage (VDD) is 1.0 V. Cmem is used
for the integrate function, while the S-G FET compares the membrane potential (Vmem)
with Vth. When Vmem exceeds the Vth of the S-G FET due to the charge stored in Cmem,
the S-G FET triggers the fire function, and the state of Node 1 (N1) changes from high to
low. Then, the output node (Vout) of INV1 changes from a low to a high state, and the
charges accumulated on Cmem are drained through Mreset. Finally, the neuron circuit resets
to the initial state via a feedback signal. At this point, M1 and M2 temporarily enhance the
pull-down operation, whereby the S-G FET is activated and lowers the voltage at N1. M4
is intended to prevent the drain current from flowing through the S-G FET when VPGM
(positive voltage) is applied to G2 for the program operation. Figure 6b demonstrates the IF
operation of the neuron circuit using the S-G FET during the learning process. Through this
operation, the output signal is transmitted to the expended pulse generator and voltage
shifter, where it can be modulated to the desired pulses for the program operation. When a
program pulse (VPGM of 7 V, tPGM of 100 µs) is applied to G2, 0 V is simultaneously applied
to the M4 gate to perform the program operation through FN tunneling. The neuron circuit
performs the IF operation at a higher Vmem from 0.56 V, as shown in Figure 6b. Through
the program operation of the S-G FET, Vths of the neuron circuit are increased. Each of the
Vths of the neuron circuit after the program operation was 0.558 V, 0.60 V, 0.618 V, 0.637 V,
0.66 V, 0.675 V, and 0.71 V. Consequently, the firing rate of the neuron circuit also linearly
decreases as 1902 Hz, 1754 Hz, 1694 Hz, 1639 Hz, 1587 Hz, 1538 Hz, and 1449 Hz. Raising
the threshold of frequently firing neuron circuits allows other neurons a greater chance
of firing.

An output spike of 1 V and 2 µs generated by the neuron circuit is insufficient for
the program/erase operations required to inject charge into the charge-trap layer for
implementing homeostatic functions. Hence, to generate the required program/erase
pulses, an extended pulse generator and a voltage level shifter are designed (Figure 7a) [57].
The extended pulse generator consists of a NOR gate and buffer invertors to extend the
width of the pulse, while the voltage level shifter comprises an inverter and differential
amplifier to raise the output signal of the neuron to the VPGM level. In Figure 7a, the
parameters of the CMOS, excluding M5, M6, and M7, are as follows: L = 0.5 µm, W = 0.1 µm,
C1 = 1 pF, VDD1 = 1 V, and VDD2 = 7 V. M5 is designed with L = 2 µm and W = 0.1 µm to
slowly pull up the V2 node; the width of the extended pulse is determined by M5 and the
capacitor C1. Standard CMOS devices are unsuitable for handling high supply voltage
about 7 V, in the case of M6 to M9 for high voltage, the simulation was conducted by
setting it as a device with lightly doped drain (LDD) which is doping concentration of
1 × 1019 cm− 3 [58,59]. M6 and M7 are designed with L = 5 um and W = 0.1 um to ensure
an output voltage of 0 V in the off state, even when the applied VDD2 has a high value of
7 V or more. A high supply voltage is applied to the gates of M6 and M9, generating 7 V,
which can cause damage or degradation to the gate oxide. To ensure the stable operation of
the circuit, it is necessary to improve the quality and increase the thickness of the CMOS
gate oxide through fabrication.
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Figure 6. (a) Schematic of IF neuron circuit integrated with S-G FET. (b) Simulated operational
characteristics demonstrating the increase in the neuron circuit threshold during the learning process.

When the output spike is transmitted to the Vn.out node, the NOR gate lowers V1 from
1 V to 0 V. Since V2 is coupled to V1 by C1, V2 is also set to the low state. Consequently,
Vextended is raised to the high state by the inverter. Even though Vn.out changes from 1 V to
0 V after 2 µs (tspike = 2 µs), V1 remains 0 V because Vextended, another input voltage to the
NOR gate, is 1 V. However, when V2 is 0 V, M5 is activated, which causes V2 to increase
gradually from 0 V to 1 V. As shown in Figure 7b, when V2 is close to 1 V after 50 µs,
Vextended decreases from 1 V to 0 V. Since all the input voltages and the output voltage
of the NOR gate become 0 V, both V1 and V2 return to the initial value of 1 V. Thus, the
extended pulse generator allows for extending the output spike of the neuron circuit to the
time required for the program operation, and the extension duration is determined by the
capacitance of C1 and the current at M5. Next, the process of modulating the amplitude
of the extended pulse from 1 V to 7 V is described. The output voltage of the extended
pulse generator is transmitted to the input node of the voltage level shifter and the gate of
M8. When Vextended is raised, M8 is activated, and the inverter deactivates M9. Thus, M7 is
activated, and a VDD2 of 7 V is applied as the output voltage of the voltage level shifter,
which is used as the VPGM for the program operation of the synaptic devices and the S-G
FET. Conversely, lowering Vextended deactivates M8, causes the inverter to activate M9, and
returns all nodes to their initial condition, as shown in Figure 7b.
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Figure 7. (a) Basic configuration circuit including extended pulse generation and voltage level shifter
for program/erase operations. (b) Simulated V–t plots for modulation of VPGM pulse from the output
pulse of the neuron circuit using the basic configuration circuit.

3.3. Pattern Recognition in SNN with Homeostasis Function

To verify the performance of a neural network based on the S-G FET, online unsu-
pervised learning and classification were performed on in SNNs using MNIST data set
with a Python simulator as shown in Figure 8a. The MNIST dataset is represented by
28 × 28 pixels, and 60,000 training and 10,000 test images of MNIST dataset are used for
training and verification. The simulated SNN consists of a 784-input neuron layer and a
50–500 output neuron layer. To analyze the change in recognition rate according to the
number of output neurons, the output neurons were set from 50 to 500. The synapse array
for training the SNN used TFT (Thin Film Transistor) type NOR flash memory, and the
memory characteristics for training used a simplified STDP, as shown in Figure 8b [60].
When Vpre and Vpost are applied to the gate and source of each TFT synaptic device,
respectively, program (LTD) and erase operations (LTP) in the charge storage layer are
performed due to the potential difference (Vpre–Vpost) between the gate and source [60].
Figure 8c shows a block diagram of the proposed system, consisting of a synapse array,
neuron circuits, and a common controller (including switch circuits, the extended pulse
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generator, and the voltage level shifter). To ensure that other neurons have the opportunity
to fire, the thresholds of frequently fired neurons were increased by applying VPGM_SGFET
whenever a neuron fired and transmitted an output signal. To accelerate the learning,
the thresholds of all neuron circuits were reduced by periodically applying VERS_SGFET to
all the neuron circuits. As described earlier, this operation can imitate the homeostasis
functionality for controlling the firing rate of neuron circuits. The initial voltage threshold
of each neuron in the proposed neural network is 0.7 V, and Figure 8d,e show the optimized
Vth of the output neurons and the recognition rate of the proposed system, respectively, for
a given MNIST dataset. The recognition rate is an average of 10 runs. The type of MNIST
digits can be distinguished better by increasing the number of output neurons in a neural
computing system, which leads to highly accurate pattern recognition [20]. The maximum
accuracy of the SNN based on the proposed homeostasis functionality reached 91.84% with
200 output neurons. The proposed SNN achieved about an 8% higher recognition rate
than an SNN without the homeostasis function. In addition, although the conductance
fluctuation of synaptic devices is large (σ/µ > 0.5), as shown in Figure 8f, the degradation
of the recognition rate was observed to be low (~3%) in the proposed system due to the
homeostasis function. However, the recognition rate without the homeostasis functionality
was severely compromised as the fluctuation of the synaptic devices increased.
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diagram of the neuromorphic system consisting of a synapse array, neurons, and a common controller.
(d) The optimized threshold voltages of output neurons with the input patterns. (e) Comparison of
the pattern recognition accuracy in STDP based SNN system with/without homeostasis functionality.
(f) The degradation of the recognition rate with increasing conductance variation (σ/µ) of the
synaptic devices.

4. Conclusions

A S-G FET was designed and fabricated in this study to control the threshold of
neuron circuits for spiking neural networks. The Vth variation of the S-G FET was verified
experimentally by applying a VPGM of 7 V and VERS of −7.5 V to the G2 gate. Even after
more than 105 program/erase cycles, the gate dielectrics of G1 did not degrade; thus, no
change in the SS of G1 was observed. In neuron circuits with the homeostatic function,
the recognition rate was improved by 8% by increasing the firing threshold of the circuits.
Furthermore, the nonvolatile memory functionality of the charge storage layer in the S-G
FET could maintain the thresholds (for over 104 s) of the neuron circuits optimized during
the SNN’s learning process. The proposed homeostatic neuron functionality yielded a high
classification accuracy for the MNIST dataset, despite large fluctuations in the synaptic
devices in the two-layer SNN.
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