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Abstract: The evolution of super-resolution (SR) technology has seen significant advancements
through the adoption of deep learning methods. However, the deployment of such models by
resource-constrained devices necessitates models that not only perform efficiently, but also conserve
computational resources. Binary neural networks (BNNs) offer a promising solution by minimizing
the data precision to binary levels, thus reducing the computational complexity and memory require-
ments. However, for BNNs, an effective architecture is essential due to their inherent limitations in
representing information. Designing such architectures traditionally requires extensive computa-
tional resources and time. With the advancement in neural architecture search (NAS), differentiable
NAS has emerged as an attractive solution for efficiently crafting network structures. In this paper,
we introduce a novel and efficient binary network search method tailored for image super-resolution
tasks. We adapt the search space specifically for super resolution to ensure it is optimally suited for
the requirements of such tasks. Furthermore, we incorporate Libra Parameter Binarization (Libra-PB)
to maximize information retention during forward propagation. Our experimental results demon-
strate that the network structures generated by our method require only a third of the parameters,
compared to conventional methods, and yet deliver comparable performance.

Keywords: deep learning; neural architecture search; binary neural network; image super resolution

1. Introduction

Super resolution (SR) is an essential task in computer vision, aimed at designing
effective models to reconstruct high-resolution (HR) images from low-resolution (LR) ones.
It plays a vital role across various domains, such as medical imaging [1,2], biometric
information identification [3–5], and astronomical images [6].

Traditional SR interpolation methods [7] offer rapid processing, but fall short in terms
of accuracy. The field has thus evolved from these methods to adopting deep learning tech-
niques, such as [8–12], which provide enhanced performance. Nevertheless, the growing
complexity and escalated computational demands of deep neural networks make it difficult
to deploy these models on devices with limited resources. As network architecture search
has advanced, the introduction of DARTS [13] has significantly lowered the barrier to
entry for this technology. This development makes differentiable NAS an attractive option
for achieving lightweight super resolution (SR), particularly because manually designing
lightweight methods often involves considerable time spent on trial and error. DARTS
can relieve designers from the cumbersome process of manual design. This method has
enabled efficient searches for neural network architectures within a continuous search
space. DARTS models neural architecture search (NAS) as a bi-level optimization problem,
employing alternate optimization through gradient descent to derive the optimal network
architecture. DARTS is also categorized under one-shot NAS methods, which involve
constructing a super net and then extracting the best sub-network from it. This approach
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addresses the traditional black box nature of network structure searches, making them
more transparent and detailed. The key lies in its use of soft functions to mix candidate
operations. The gradient optimization approach pioneered by DARTS demonstrates re-
markable results, evident from the minimal GPU days required to see outcomes [14]. This
method stands out from other early NAS techniques [15–17], particularly those based on
reinforcement learning or evolutionary algorithms, because it is not constrained by the
intrinsic discrete optimization nature of these methods. Fundamentally, it addresses the
issue that previous NAS methods required extensive computational resources.

For lightweight models, an optimal network structure is just one part of the equation.
Introducing specific data types can also make networks more efficient and lightweight.
Binary neural networks (BNNs), which map full-precision data to binary values {−1, 1} [18],
are particularly hardware friendly. This attribute not only speeds up processing, but
also decreases memory pressure, significantly easing the load on hardware resources
during model computation. However, at present, most research on binary networks
focuses on adaptations of established full-precision architectures, including ResNet [19]
and DenseNet [20]. Notable examples include Bi-Real net [21], binary DenseNet [22], and
the Binarized Ghost Module (BGM) [23]. Although Bethge et al. [22] proposed architectural
design principles through extensive experimentation and demonstrated their effectiveness
in creating efficient new architectures, manually designing an appropriate architecture
remains a task that rapidly depletes both resources and time. To address the complexities
of designing the architecture of BNNs, researchers have begun to explore the application of
NAS in BNNs. Nevertheless, nowadays, most of the existing work on NAS only focuses on
real-valued architecture design. Using real-valued NAS strategies in binary domains often
results in inadequate convergence. Prior research has validated this issue, highlighting the
following principal reasons behind it:

1. An unsuitable search space for BNNs;
2. Conducting architecture searches with binary weights and activations can result

in topological degeneration or the training merely converging to an extremely low
accuracy;

3. Mismatches between the search process and evaluation;
4. The imbalanced selection of operations.

Although they each proposed solutions designed to enhance model performance in
image classification, these methods might not be equally effective for super-resolution tasks
and could potentially degrade the performance. Therefore, we have revised the original
solutions to better suit the search for optimal binary network structures specifically for
super-resolution tasks.

In summary, our main contributions include the following:

1. We define a friendly search space for BNNs for the task of super resolution;
2. We further stabilize the search process by applying L1 and L2 regularization, making

the selection of operations more equitable during the search process. Additionally, we
explore the effects of different combinations of L1 and L2 regularization;

3. We modify the basic architecture of the model to preserve image information through
a hierarchical basic architecture, as much as possible;

4. Given the unique demands of super-resolution (SR) tasks, which differ from image
classification in that SR models need to preserve information to the greatest extent
possible, we introduce Libra Parameter Binarization (Libra-PB) [24] to maximize the
retention of information during forward propagation. For backward propagation, the
introduction of the Error Decay Estimator (EDE) helps the model effectively manage
the loss of information caused by the reduced parameter update capability outside the
truncation range and the approximate errors within it. These measures are designed
to minimize the mismatch between the search and evaluation;

5. Our approach is capable of generating superior BNN architectures for super-resolution
tasks, with relatively low computational expenditure.
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The paper is structured as follows. The earlier sections provide background informa-
tion on the domain areas of the research. Section 2 presents the discussions on image super
resolution, Section 3 presents the discussions on binary neural networks, and Section 4
presents the discussions on neural architecture search. Section 5 discusses the methodology
used in the paper to develop a deep learning and neural architecture search that is tar-
geted towards optimizing binary neural network image super-resolution tasks. Section 6
discusses the experimental results to validate the proposed approaches. This section
also provides comparisons with other approaches to image super resolution (SR). Some
concluding remarks are given in Section 7.

2. Image Super Resolution

The SRCNN [8] marks the pioneering work of deep learning in super-resolution recon-
struction. The network structure of SRCNN is very simple, utilizing just three convolutional
layers. The network architecture is illustrated in the figure below. SRCNN first enlarges
the low-resolution image to the target size using bicubic interpolation, then it applies
a three-layer convolutional network to approximate the nonlinear mapping, and finally
outputs the high-resolution image result. In this paper, the author interprets the three-layer
convolutional structure as three steps: the extraction and feature representation of the
image blocks, the nonlinear mapping of the features, and the final reconstruction.

The FSRCNN [25] and SRCNN are works by Dong Chao, Xiaoou Tang, and others
from the Chinese University of Hong Kong. FSRCNN is an improvement on the previous
SRCNN in regard to three main aspects. First, it uses a deconvolution layer at the end
to scale up the size, allowing the original low-resolution image to be directly input into
the network, rather than requiring enlargement through the bicubic method as in SRCNN.
Second, it modifies the feature dimensions, uses smaller convolutional kernels, and employs
more mapping layers. Third, it allows for the sharing of mapping layers; models trained
for different upsampling rates can simply fine tune the final deconvolution layer.

Methods like SRCNN require low-resolution images to be upscaled via interpolation,
to match the size of high-resolution images before being input into the model. This
necessitates performing convolution operations at a higher resolution, thereby increasing
the computational complexity. Shi et al. [26] proposed an efficient method that extracts
features directly at the low-resolution image size and computes the high-resolution image.
The core concept of ESPCN is the sub-pixel convolutional layer. The input into the model is
the original low-resolution image, which, after passing through three convolutional layers,
produces a feature map with the same size as the input image but with a channel count
of r2. These features are then rearranged via the sub-pixel convolutional layer to form a
high-resolution image.

The DRCN [9] was the first to apply an existing recursive neural network structure
to super-resolution processing. It also utilized the concept of residual learning to deepen
the network, which enlarged the layers’ receptive field and improved the performance.
The authors of the DRRN [10] utilized a deeper network structure to achieve performance
enhancements. In the DRRN, each residual unit shares the same input, which is the output
from the first convolutional layer in the recursive block. Each residual unit contains two
convolutional layers. Within a recursive block, the convolutional layers at corresponding
positions in each residual unit share parameters (represented by the light green or light red
blocks in the diagram).

The model proposed by Tong is called SRDenseNet [27], which utilizes dense blocks as
the basic structure and employs skip connections to combine low-level feature information
with high-level feature information. Subsequently, image reconstruction is carried out
through a deconvolution network, facilitating the transformation from low resolution to
high resolution. Furthermore, it is also highlighted that the information contained in the
features across different depth layers is complementary.

Xin et al. [28] designed a Bit Accumulation Mechanism (BAM), using a value ac-
cumulation scheme to approximate full-precision convolution, refining the quantization
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precision progressively along the direction of the model inference. They also proposed an
efficient model architecture based on BAM, named the Binary Super-Resolution Network
(BSRN), to reduce the computational complexity and parameters. In experiments, they
implemented BAM into VDSR and SRResNet to demonstrate the effectiveness of their
method and compared it with the BSRN.

3. Binary Neural Networks

Binary neural networks (BNNs) refer to neural networks that use only two values,
{+1, −1}, to represent weights and activations. Compared to full-precision neural networks,
BNNs can replace the 32-bit float multiplication and accumulation, typically used in convo-
lution operations with a much simpler combination of XNOR and popcount operations.
Significantly, this substitution saves memory and computational resources, facilitating
the deployment of models by resource-constrained devices. However, due to the limited
amount of information that binary values can represent, BNNs have historically exhibited
much lower accuracy than full-precision models. Nevertheless, recent studies such as those
on MeliusNet [29], IRNet [24], and ReActNet [30], have made substantial efforts to improve
BNNs, achieving over 70% top-1 accuracy on the ImageNet dataset.

The concept of binary neural networks (BNNs) originated from BinaryConnect [18],
and was proposed by Courbariaux et al. To address the issue of gradient propagation in
binarized weights, the authors propose maintaining a set of real-valued weights during
training and then using the sign function to obtain the binarized weights. The binarization
can be given by:

Bw = Sign(Rw) (1)

where Bw and Rw denote the binarized and real-valued weights, respectively.
To overcome the issue where the sign function is non-differentiable at zero and has

a derivative of zero elsewhere, which hinders effective gradient propagation, the authors
designed the Straight-Through Estimator (STE).

XNOR-Net [31] builds upon the original BNN framework by accounting for quanti-
zation errors and introduces the use of scaling factors. Each output channel direction of
the real-valued weights is associated with a scaling factor to restore the information lost in
binarized weights. Similarly, each pixel in the height and width direction of the activation is
associated with a scaling factor to recover the information lost in the binarized activations.
These scaling factors do not require learning; they can be directly determined by calculating
the corresponding L-1 norm. This method does not compromise the efficiency of binary
convolution operations. Experimental results show significant improvements over the
original BNN and, for the first time, demonstrate the performance of BNNs on a large
dataset like ImageNet. In convolution operations, XNOR-Net achieves a speed-up of up to
58 times and saves 32 times the memory compared to traditional methods.

Liu et al. [30] initially adopted the concept from Bi-Real Net [21], which involves
incorporating shortcut layers into the original network, to modify MobileNetV1. Through
extensive experimentation, they found that the performance of BNNs is particularly sensi-
tive to changes in the distribution of activations, specifically noting that shifts in and the
scaling of activations have a significant impact on BNN performance. Consequently, the
authors considered that each layer’s activations might have an optimal offset and scaling
value that would maximize the model’s overall performance. This led to the proposal to
modify the sign and PReLU functions to include learnable parameter variables, allowing
the model to automatically learn the best offset and scaling values for each layer. These were
named the ReAct-Sign (abbreviated as RSign) and ReAct-PReLU (abbreviated as RPReLU).

4. Neural Architecture Search

The architecture of a neural network, a critical component of deep learning models,
plays a pivotal role in determining model performance. For instance, ResNet [19] (residual
network) has greatly advanced image processing technology by addressing the issue of
degradation during deep network training through the introduction of residual connections.
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However, as models become increasingly complicated, the performance enhancement also
demands precise adjustments of the hyperparameters. Minor variations in the hyperparam-
eters can significantly impact model performance, making experimental results difficult to
replicate. This not only adds to the burden of researchers, but also raises the barrier to entry
into the field. So, just as steam engines were gradually replaced by electric motors, the
design of neural network architecture is transitioning from manual to automated design
by machines. A landmark event in this process occurred in 2016, when Zoph and Le [15]
utilized reinforcement learning for neural architecture search (NAS) and achieved superior
performance on image classification and language modelling tasks compared to previous
manually designed networks. This development highlights a significant shift towards
automating the design process in the field of neural networks, promising enhancements
in the efficiency and effectiveness of model architectures. With the development of NAS,
automatic design using the NAS method for specific tasks has begun to outperform the
finest architectures designed by humans in several domains, such as object detection [32,33],
semantic segmentation [34,35], protein folding [36,37], and weather prediction.

As previously mentioned, network architectures can relieve designers of the cum-
bersome process of manual design. Particularly, the recently introduced gradient-based
methods, such as DARTS [13], have enabled efficient searches for neural network architec-
tures within a continuous search space. DARTS models neural architecture search (NAS)
as a bi-level optimization problem, employing alternate optimization through gradient
descent to derive the optimal network architecture.

DARTS is also categorized under one-shot NAS methods, which involve constructing
a super net and then extracting the best sub-network from it. This approach addresses the
traditional black box nature of network structure searches, making them more transparent
and detailed. The key lies in its use of soft functions to mix candidate operations. The
gradient optimization approach pioneered by DARTS demonstrates remarkable results,
evident from the minimal GPU days required to see outcomes [14]. This method stands
out from other early NAS techniques [15–17], particularly those based on reinforcement
learning or evolutionary algorithms, because it is not constrained by the intrinsic discrete
optimization nature of these methods. Fundamentally, it addresses the issue that previous
NAS methods required extensive computational resources. Figure 1 presents the flow
of DARTS.
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Since the introduction of DARTS, numerous researchers have proposed improvements,
aiming to achieve better network architectures. In P-DARTS [38], researchers proposed
a progressive approach to alleviate the depth gap in DARTS, and they also improved
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the stability of the architectures derived from the search by implementing skip-connect
regularization. PC-DARTS [39] aims to significantly reduce the computational requirements
and memory usage, allowing for faster searches with larger batch sizes. The authors
designed a channel-based sampling mechanism, where only a small fraction of 1/K of
the channels in a node are used for the operation search, reducing the memory usage
by (K − 1)/K, thereby enabling an increase in the batch size by a factor of K. To address
the instability caused by channel sampling, they introduced edge normalization, which
reduces uncertainty during the search by learning the edge-level hyperparameters of the
super net. Xue and Qin introduced a method called ADARTS [40], a differentiable neural
architecture search based on channel attention, which utilizes partial channel connections.
By using an attention mechanism, it selects channels with higher importance to be sent
to the operation space, whereas the rest of the channels are directly connected with the
processed channels. This approach has been shown to greatly improve search efficiency
and memory usage, and to reduce instability in network structures that typically arises
from random channel selection.

Courbariaux proposed a method using binary values to represent weights and acti-
vations in neural networks, which was later defined as the first binary neural network.
In Courbariaux’s approach, through (1), full-precision weights and activation values are
converted to binary values {−1, 1}, significantly reducing the hardware burden. Subse-
quently, multiplication operations within the model can be replaced with XNOR-popcount
operations, which are described as follows:

X ∗ W ≈ sign(X) ⊙ sign(W) = Bx ⊙ Bw (2)

where X and W denote inputs and weights of the convolutional layer, respectively. And ∗
represents the convolution operation. The XNOR-popcount operation is denoted by ⊙.

A crucial consideration is that while binary neural networks (BNNs) offer advan-
tages in terms of storage and computation speed, it must be acknowledged that model
performance inevitably declines due to insufficient information representation of binary
values. This issue can be mitigated through well-designed network architectures. How-
ever, to ascertain whether a structure can enhance neural network performance, extensive
experimentation is required. Hence, the relevance of binary network architecture search
techniques. The BNAS model [41] introduced a new binary search space and cell template,
rediscovered the utility of the Zeroise layer, and implemented diversity regularizers to
search for binary structures with improved performance. In BATS [42], in addition to de-
signing a new binary-oriented search space, it also introduced a softmax with a temperature
coefficient to foster more discriminative NAS.

5. Method

In the overall network framework and the basic structure of cells, we have made
specific adjustments for super-resolution tasks to ensure the model’s suitability for such
applications. A basic architecture is shown in Figure 2.

The fundamental concept of DARTS is to learn the model structure within a differen-
tiable search space, seeking the best combination of operations by optimizing a parame-
terized search space. Within DARTS, operation selection is accomplished via the softmax
function, which converts operation weights into a probability distribution. The operation
selection can be expressed as:

Po =
exp(αo

i,j)

∑o′∈O exp(αo′
i,j)

(3)

where αo
i,j is the architecture parameter associated with the weight operation o. Po denotes

the probability of operation o, which is based on the operation weights αo
i,j calculated by

the softmax function.
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In DARTS, the architectural parameters associated with different operations exhibit
minimal changes, and even slight fluctuations can induce alterations in the cells. Therefore,
in our framework, we introduce L1 and L2 regularization to enhance the robustness of the
entire search framework. The regularization term can be expressed as:

RO
i,j(α) = −

(
µ ∑

o∈O
|po|+ ρ ∑

o∈O
(po)2

)
= −

µ ∑
o∈O

∣∣∣∣∣ exp(αo
i,j)

∑o′∈O exp(αo′
i,j)

∣∣∣∣∣+ρ ∑
o∈O

(
exp(αo

i,j)

∑o′∈O exp(αo′
i,j)

)2
 (4)
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For L1 regularization in operation selection, it can be used to encourage the search
framework to produce sparse operation selections, thereby achieving more efficient and
stable operation selection. By adding the L1 regularization term to the loss function, the
weights of some unimportant operations tend toward zero, thereby reducing the model
complexity and improving the generalization ability. But applying only L1 regularization
may result in the weight of some operations becoming very close to zero, which means
that these operations are ignored during the search process, eventually leading to skip
connect for most operations. Hence, we also introduce L2 regularization with balancing
factor ρ to avoid the negative effect of L1 regularization. By controlling the strength
of L2 regularization, one can effectively manage the complexity of the model and help
it generalize better to unseen data. This method can help stabilize the search process,
preventing search instabilities and, thus, better enabling the search for suitable model
structures. The search object with regularization is given by:

L(θ, α) = L𝓁1(θ, α) + λ Linear(R(α)) (5)

where L𝓁1 is the search object for the super-resolution task, which is an L1 loss. L1 loss
is popular for SR tasks [43,44]. Where λ is a balancing factor. The introduction of linear
interpolation is to avoid adding strong regularization in the early stages of the architecture
search, which would cause the normalized weights of dominant operations to be further
enlarged, making it difficult for other operations to stand out, even if they have better
performance, in the later search stage. Hence, it is necessary to gradually increase the
impact of regularization through linear interpolation, with the formula being:

Linear =
e
E

(6)

where e is the current epoch and E presents the expected epoch that has the maximum
effect on the regularization. To further enhance the stability of the architecture search
process, we also introduce edge normalization to balance the importance of each edge. This
normalization method adopts the variance-based edge regularization in EBNAS [45]. The
regularization is given by:

R(β) = ∑
j

(
Ra

j (β) + Rb
j (β)

)
= ∑

j

(
−∑

i<j
(si,j −

1
j ∑

i′<j
Si′ ,j)

2
+γ(∑

i<j
Si′ ,j − 2)2

) (7)

Finally, the object with two instances of regularization can be expressed as:

L(θ, α) = L↕1(θ, α) + λ Linear(R(α)) + µ Linear(R(β)) (8)

Regarding search spaces, maxpool and avgpool operations contribute to learning
positional invariance in image classification tasks, effectively recognizing features even if
they shift or distort slightly in the image. This effectiveness is due to pooling operations
that select certain values to reduce the spatial dimensions, thus deriving more robust
representations of the features. However, in super-resolution tasks, using maxpool and
avgpool is generally not recommended, as these pooling techniques can lead to some
information loss during processing. The essence of super-resolution tasks lies in extracting
high-resolution details from low-resolution images, which requires preserving as much
information as possible, rather than reducing it. Hence, removing all of the pooling
operations is necessary to avoid the model suffering from a large amount of information
loss. Additionally, larger convolutional kernels can cover a broader area, capturing more
extensive contextual information. In super-resolution tasks, a larger receptive field helps the
network understand the relationships between pixels over a greater area, which is crucial
for reconstructing high-quality, high-resolution images. This is the reason we maintained



Biomimetics 2024, 9, 369 9 of 18

the dilated group convolution operation and introduced a 7 × 7 binary group convolution.
Table 1 presents our search space.

Table 1. Search space for BNNs in regard to SR.

3 × 3 binary dilated group convolution
3 × 3 binary group convolution

5 × 5 binary dilated group convolution
5 × 5 binary group convolution
7 × 7 binary group convolution

skip connection

In the search space, we made detailed structural modifications to each operation to
adapt them for super-resolution tasks. For image super resolution, the model’s output
image should match the input in terms of color, contrast, and brightness. The changes are
primarily made in regard to the resolution and some details. Batch normalization (batch
norm) acts as a contrast stretcher for images. When an image undergoes batch norm, its
color distribution is normalized, which causes a loss of the original contrast information
of the image. Therefore, batch norm actually impacts the quality of the model’s output.
Figure 3 shows the basic structure of this operation in the search space.
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The performance degradation in binary neural networks is primarily due to their
limited representational capacity and the discrete nature of binarization, which leads to
significant information loss during both forward and backward propagation. In forward
propagation, when activations and weights are restricted to just two values, the diversity
of the model sharply decreases. During backward propagation, accurate gradients are
essential for providing correct optimization directions; however, binary networks often
produce inaccurate gradients and incorrect optimization directions during training due
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to their discrete binary values. To address this problem, we introduce the quantization
method from IR-Net [24].

During forward propagation, quantization operations lead to information loss. In
many binarized convolutional neural networks, minimizing the quantization error is
adopted as the objective function for optimization. The quantization can be formulated as

Qx(x) = Bx (9)

where Bx is the binarized activation or inputs according to the sign function. The objective
function is given by:

min J(Qx(x)) = ∥x − Qx(x)∥2 (10)

The information entropy is performed for the binarized result Qx(x), which is in fact
the information entropy of Bx, which follows a Bernoulli distribution. Thus, the formula
can be expressed as:

f (Bx) =

{
p, i f Bx = +1
1 − p, i f Bx = −1

(11)

H(Qx(x)) = H(Bx) = −p ln(p)− (1 − p) ln(1 − p) (12)

Moreover, the information entropy reaches its maximum when p = 0.5, indicating
that the quantized values are uniformly distributed. The objective function of Libra-PB is
defined as follows:

min J(Qx(x))− λH(Qx(x)) (13)

Additionally, to ensure more stable training and mitigate adverse effects caused by
weights and gradients, further normalization was applied to balance the weights as follows:

Ŵstd =
Ŵ

σ(Ŵ)
, Ŵ = W − W (14)

where W is the mean of the weight and σ(•) denotes the standard deviation. Through
Equation (6), we gain the maximum information entropy of the weights, which makes the
full-precision weight involved in binarization more spread out.

Moreover, in order to bypass expensive floating-point operations, while boosting the
representational capability of binary weights, this approach incorporates integer scaling
factors instead of floating-point ones. This adjustment allows binary calculations involving
scaling factors to be simplified to:

Qw(Ŵstd) = BW <<>> s = sign(Ŵstd) <<>> S
S∗ = round(log2(||Wstd||1/n))

(15)

where <<>> denotes the left or right bit-shift operation. Finally, the binary convolution
operation can be expressed as follow:

Z = (Bw ⊙ Ba) <<>> S (16)

Due to the discontinuous nature of binarization, gradient approximation is an in-
evitable aspect of backward propagation. This makes it challenging to accurately model the
effects of quantization, leading to significant information loss. To preserve the information
derived from the loss function during backward propagation, we introduced a progressive
two-stage approximation gradient method using EDE. In the first stage, we maintain the
updating capability of the backward propagation algorithm by keeping the derivative
values of the gradient estimation function close to 1, then gradually reducing the truncation
value from a large number to 1. This rule allows our approximation function to evolve from
an identity function to a clip function, ensuring early training updates. In the second stage,
we keep the truncation value at 1 and gradually evolve the derivative curve to the shape of
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a step function. Using this rule, our approximation function transitions from a clip function
to a sign function, thus ensuring consistency between forward and backward propagation.

Of course, in addition to the improvements above, the basic architecture of DARTS is
also unsuitable for SR tasks. Therefore, for the application of a binary neural network in
SR, we propose a hierarchical basic architecture, as shown at the top of Figure 2. Through
two full-precision shortcuts, we attempt to pass image information from different stages
as much as possible without adding a large amount of computation, in order to further
compensate for the information loss caused by binary neural networks.

6. Experiments

In terms of model training, to ensure the fairness of ablation studies, all models are
trained on the publicly available Timofte dataset [46], which comprises 91 images designed
for training purposes. For testing, the Set5 [47] and Set14 [48] datasets are used, containing
5 and 14 images, respectively. Additionally, the Berkeley Segmentation Dataset, consisting
of 100 images (BSD100), is utilized for model evaluation. The training and testing were
performed on the RTX4080 GPU. In the experiments, we configured each search to have
100 epochs, with a search framework learning rate of 0.0006. Upon completion of the search,
model training was conducted using a learning rate of 0.001.

To simplify the comparison, we adopted the parameters from EBNAS for the balancing
factors λ and γ, which are 1.5 and 0.8, respectively. The experiments primarily focused on
the impact of the balancing factors in the alpha regularization term. We conducted three
sets of experiments in which the balancing factors µ and ρ are 0.2 and 0.8, 0.5 and 0.5, and
0.8 and 0.2, respectively.

We trained a lightweight network comprised of three cells and a larger network
consisting of eight cells, with scaling factors equal to 3 and 4. For the three-cell lightweight
network, each layer has 64 channels, and all parameters are optimized using Adam with a
channel sampling factor of k = 8. This model was trained over 100 epochs, with a batch
size of 256. Figures 5 and 6 show the cell structure after the search process.
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For the evaluation, the peak signal-to-noise ratio (PSNR) is a widely used metric in
super-resolution tasks, used to evaluate the quality of high-resolution images obtained
through models compared to ground truth images. It measures the similarity between two
images, while considering the pixel values and image size.

The structural similarity (SSIM) metric is a metric used to measure the degree of
similarity between two images and is commonly used in image quality evaluation.

Table 2 presents the performance comparison using the manual method on the three
datasets, where our SRBNAS represents our 3-cell model searched by super net. When com-
pared with manually designed models, the models derived from our network architecture
search method show performance that rivals those based on the three evaluation datasets.
The table shows that the SRBNAS results have very good performance. The results are
shown for scaling factors 3 and 4.
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Table 2. The mean PSNR/SSIM of different methods evaluated using different datasets.

Dataset Scale Bicubic ESPCN
(Full Precision)

ResBinESPCN-A2
[49]

SRResNet
(BNN)

VDSR
(BNN)

Ours:
SRBNAS

Set5
×3

30.46/0.87 32.29/- 29.82/- 31.18/0.88 31.01/0.87 31.80/0.90
Set14 27.59/0.78 28.90/- 27.33/- 28.29/0.80 28.15/0.79 28.57/0.81

BSDS100 27.26/0.75 28.16/- 27.03/- 27.73/0.77 27.57/0.76 27.95/0.78

Set5
×4

28.48/0.82 28.80/- 28.11/- 29.33/0.82 29.02/0.82 29.34/0.84
Set14 25.92/0.72 26.16/- 25.78/- 26.72/0.72 26.55/0.72 26.47/0.74

BSDS100 26.02/0.67 26.21/- 25.87/- 26.45/0.69 26.29/0.69 26.45/0.70

Additionally, as depicted in Table 3, it becomes apparent that the model structures
used are particularly efficient. Our SRBNAS model requires only about 156 K number of
parameters to achieve an image reconstruction performance comparable to other methods.
These results clearly demonstrate the high efficiency of our method. Compared to manual
design approaches, NAS can save a significant amount of trial-and-error design time.

Table 3. Number of parameters for each model with a scale factor of 3.

Model Parameters

VDSR_BAM 668 K
SRResNet BAM 1547 K

BSRN 1216 K
ResBinESPCN-A2 349 K

Ours: SRBNAS 192 K

First, in Table 4, µ represents the balancing factor of L1 regularization, while ρ repre-
sents the balancing factor of L2 regularization. From the results of the PSNR, there is no
significant difference in the performance of the model structures obtained from the search.
However, as the regularization weight tends toward the L1 regularization term, the model
size begins to drop sharply. Yet, in terms of model performance, the decrease in model size
makes the model more efficient and lightweight. Specifically, L1 regularization tends to
produce sparse weights, i.e., to make some weights tend toward zero, thus reducing the
complexity of the model, while L2 regularization makes the weight distribution smoother
and avoids the weights being too large or too small. Therefore, combining these two types
of regularization and adjusting the weights of the L1 regularization appropriately can
achieve the effect of simplifying the model and reducing the amount of computation.

Table 4. A comparison of different balancing factors with a scaling factor of 3.

Factor Parameters PSNR

µ = 0.2, ρ = 0.8 366 K 32.17
µ = 0.5, ρ = 0.5 350 K 32.02
µ = 0.8, ρ = 0.2 192 K 31.84

Figure 7 shows the cell structure results according to the different combinations of
balancing factors. From the figure, as ρ increases, high-computation operations in the
model also increase accordingly, such as 5 × 5 and 7 × 7 convolutions and a lack of skip
connections. The number of parameters increases significantly, but there is not much
improvement in terms of the performance. However, as µ increases, the operations in
the cell structure are more of a lower computational complexity, such as 3 × 3 and 5 × 5
dilation convolutions, or 3 × 3 convolutions.
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After a comparison with the manual method, for a fair comparison Table 5 presents the
computational comparison with other gradient-based architecture search method for super
resolution. The table shows the reduced computational requirements for our SRBNAS
method compared with two other methods (DLSR [48] and DNAS-EASR [49]).

Table 5. Computational comparison with other gradient-based architecture search methods for SR.

Method Scale Param Set5 Set14 BSDS100 Search Cost

DLSR [50]
×4

338 K 32.33 27.85 27.61 2 GPU days (RTX3080)
DNAS-EASR [51] 555 K 32.18 28.64 27.61 21 GPU hours (RTX3090)

Ours SRBNAS 156 K 29.34 26.47 26.45 1.2121 GPU hours (RTX4080)
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To visualize the model performance, Figures 8 and 9 display three different HR images.
We also zoomed in on the images to facilitate the observation of changes in the image details.
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7. Conclusions

Based on binary neural networks (BNNs), this paper proposes a network architec-
ture search method called SRBNAS, specifically for super-resolution tasks. The method
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utilizes several techniques to achieve performance and computational improvements. By
integrating Libra Parameter Binarization (Libra-PB), the method aims to preserve as much
information as possible during forward propagation. The inclusion of an Error Decay Esti-
mator (EDE) during backward propagation assists in effectively handling the reduction in
the parameter update capabilities outside the truncation range and mitigating information
loss due to approximate errors within that range. These strategies effectively lessen the
discrepancies between the search phase and the evaluation phase. The experimental results
demonstrate that the network structures identified by this search method have a good
level of performance and are computationally efficient compared to other approaches and
manually designed alternatives.

8. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.
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Y.S., L.-m.A. and J.S.; writing—review and editing, K.P.S., Y.S. and L.-m.A. All authors have read and
agreed to the published version of the manuscript.
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Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author/s.
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