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Abstract: The recently introduced coati optimization algorithm suffers from drawbacks such as
slow search velocity and weak optimization precision. An enhanced coati optimization algorithm
called CMRLCCOA is proposed. Firstly, the Sine chaotic mapping function is used to initialize the
CMRLCCOA as a way to obtain better-quality coati populations and increase the diversity of the pop-
ulation. Secondly, the generated candidate solutions are updated again using the convex lens imaging
reverse learning strategy to expand the search range. Thirdly, the Lévy flight strategy increases the
search step size, expands the search range, and avoids the phenomenon of convergence too early.
Finally, utilizing the crossover strategy can effectively reduce the search blind spots, making the
search particles constantly close to the global optimum solution. The four strategies work together to
enhance the efficiency of COA and to boost the precision and steadiness. The performance of CMRL-
CCOA is evaluated on CEC2017 and CEC2019. The superiority of CMRLCCOA is comprehensively
demonstrated by comparing the output of CMRLCCOA with the previously submitted algorithms.
Besides the results of iterative convergence curves, boxplots and a nonparametric statistical analysis
illustrate that the CMRLCCOA is competitive, significantly improves the convergence accuracy, and
well avoids local optimal solutions. Finally, the performance and usefulness of CMRLCCOA are
proven through three engineering application problems. A mathematical model of the hypersonic
vehicle cruise trajectory optimization problem is developed. The result of CMRLCCOA is less than
other comparative algorithms and the shortest path length for this problem is obtained.

Keywords: coati optimization algorithm; chaos mapping strategy; Lévy flight strategy; lens imaging
reverse learning strategy; crossover strategy

1. Introduction

An optimization problem is to achieve the optimal value of the design objective
under certain constraints. Optimization problems exist widely in intelligent production,
engineering manufacturing, agricultural development, and many other fields [1]. But as
the rapidly evolving digital age, data are showing explosive growth, and there are more
and more multidimensional and multimodal problems, making many real-world problems
more complex and diverse [2]. For traditional mathematical optimization means, such as the
gradient descent method [3], conjugate gradient method [4], and quasi-Newton method [5],
they often have some limitations when handling both discrete and other questions [6].
They have a tendency to trap into local optimal solutions, slow convergence speed, or
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low computational accuracy. Therefore, it is very difficult to use traditional algorithms
for calculation and extracting meaningful information. Generally speaking, solving NP
hard problems involves finding a point in a multidimensional hyperspace, which is the
optimal solution. However, the identification process is very complex, time-consuming,
and computationally expensive. Therefore, it is important to find a biomimetic computing
method that is fast and effective [1].

Nowadays, metaheuristic algorithms have been proven to be competitive alternative
algorithms, often used to solve highly complicated nonlinear optimization issues, such
as multi-objective optimization problems [7], multimodal optimization problems [8], and
complex constraint optimization problems [9].

Metaheuristic algorithms can avoid local optima and have faster convergence speed,
better robustness, and higher stability than traditional algorithms [10]. This field has been
developed so far that quite a number of very classical algorithms have been proposed. This
mainly includes a genetic algorithm (GA) that emulates the evolutionary processes of living
species [11], differential evolution (DE) that optimizes a search through cooperation and
competition among individuals within a group [12], artificial immune systems (AIS) for
modeling the body immune response mechanism [13], an ant colony algorithm (ACO) using
ants’ way finding behavior as a model [14], particle swarm optimization (PSO) modeling
the actions of birds in search of food [15], a simulated annealing algorithm (SA) modeled
on the annealing procedure with solid materials [16], and a taboo search algorithm (TSA)
for modeling the human intellectual memory procedure [17]. They always emerge from
the imitation or exposition of specific natural occurrences and sequences, or the cognitive
actions of living collectives and have the characteristics of simplicity, universality, and ease
of parallel processing.

Based on sources of inspiration, metaheuristic algorithms mainly include evolution
algorithms, human behavior-based algorithms, physics and chemistry-based algorithms,
and swarm intelligence-based algorithms [18,19].

The evolutionary algorithm is based on concepts such as biology and genetics and is
built by modeling the laws of nature’s superiority and inferiority. They achieve population
progress according to the laws of natural selection, and thus finish the best solution.
Conventional evolutionary algorithms are primarily represented by GA and DE. Both
algorithms are modeled from the principle of reproduction in nature and then use strategies
such as crossover, selection, and mutation to update the population.

Human behavior-based algorithms are inspired by human performance, such as self-
learning actions and social activities [20]. The most commonly used algorithm is the
imperialist competition algorithm [21], social-based algorithms [22], league championship
algorithm [23], and poor and rich optimization algorithm [24].

The algorithms based on physics and chemistry mainly come from the physical laws
and chemical phenomena in the universe. Among them, SA mentioned above is a classical
algorithm. Furthermore, there are many algorithms developed from physical laws, such as
gravity search algorithms [25] based on the law of universal gravitation; chaos optimization
algorithms [26] based on the traversal, randomness, and regularity of chaotic phenomena;
optical optimization algorithms [27] based on the principle of optical reflection; and black
hole algorithms based on strong attractive forces [28].

Swarm intelligence-based algorithms simulate the behavior of natural populations
such as ants, birds, bees, whales, lions, wolves, etc. Each population is a population of
organisms. Groups search for the best location among themselves through behaviors such
as cooperation and hunting. The representative algorithms are PSO and ACO referred
to above. In addition, there are many algorithms of this type, such as beluga whale
optimization [29], grey wolf optimizer [30], marine predator algorithm [31], white shark
optimizer [32], emperor penguin optimizer [33], and so on.

For metaheuristic algorithms, the ability to explore and develop directly determines
the performance of the algorithms [34]. Their imbalance will directly cause a reduction in
the precision of problem-solving. Weak exploration ability will affect the population to
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explore more places, which will lead to getting trapped at local optima. And the lack of
exploitation ability will directly affect the population’s ability to find the optimal value.
This is likewise a prevalent issue with current optimization methodologies. At the same
time, this is exactly what is meant by improvements to the algorithm.

M. Dehghani et al. [35] presented the coati optimization algorithm (COA) in 2023.
Coatis are very active, agile in movement, and have strong adaptability. They forage during
the day and rest on trees at night. Iguanas are one of the favorite foods of long coatis,
and coatis often cooperate to prey on them. In addition, long coatis also face the risk
of being preyed upon. Thus, COA was inspired by the strategies used by long-haired
coatis when they are attacking iguanas, as well as the strategies they use when facing and
avoiding predators. Although COA shows a high level of competitiveness on some of
the problems, it still has room for improvement. According to the literature [36], COA
always exhibits a state of premature convergence and is highly susceptible to falling into a
local optimum. Meanwhile, during the experiments, the performance of COA relative to
some newly proposed superior metaheuristic algorithms is always at a disadvantage when
facing large-scale problems. And the disadvantage of low diversity in COA populations
cannot be ignored either. As a result, many researchers have enhanced COA to solve more
sophisticated engineering problems. F.A. Hashim et al. [37] proposed an efficient adaptive
mutation COA and applied it to feature selection and global optimization. P. Tamilarasu
and G. Singaravel [38] use an improved COA to achieve efficient scheduling in cloud
computing environments. K. Thirumoorthy and J.J.B. J [39] improved the COA and applied
it to breast cancer classification.

Nevertheless, the No Free Lunch derivation [40] has indicated that no single algorithm
is capable of addressing every optimization challenge flawlessly. Excellent performance on
one problem may not lead to a viable solution on another unrelated problem. As a result,
researchers need to constantly develop new algorithms or make targeted improvements to
certain algorithms to cope with increasingly complex real-world problems. Therefore, the
improvement in some existing algorithms is very necessary.

Consequently, in this paper, the chaotic mapping strategy, lens imaging reverse learn-
ing strategy, crossover strategy, and Lévy flight strategy are applied to improve the COA.
Firstly, the chaotic mapping strategy [1] is introduced in the population initialization stage
to use chaotic sequences for population initialization to obtain higher-quality populations.
Secondly, the use of the lens imaging reverse learning strategy [41] not only improves
population diversity but also enlarges the scope of the search. In the early stage, the Lévy
flight strategy [42] is applied. It allows the population to get rid of partial optima and
expand the search capability. In the end, the introduction of the crisscross optimization
algorithm [43] helps to amend the phenomenon of early convergence of the algorithm. The
amalgamation of these strategies augments the optimization capability of the COA. The
innovations as well as the main contributions of this paper are as follows.

(1) The enhanced COA consists of four strategies, namely the chaotic mapping strat-
egy, the lens imaging reverse learning strategy, the Lévy flight strategy, and the
crossover strategy.

(2) The effect of 10 common chaotic strategies to improve the COA is analyzed and the
optimal strategy is finally selected.

(3 The CMRLCCOA is compared with the primitive COA, six new algorithms proposed
in the last two years, four classic and well-recognized algorithms, and three im-
proved algorithms, which are tested with the functions included in the CEC2017 and
CEC2019 function sets. In addition, dim = 50 and 100 were also selected in the
CEC2017 test set.

(4) CMRLCCOA is used to solve three engineering optimization problems, including a
single-stage cylindrical gear reducer, a welded beam design problem, and a cantilever
beam design problem.

(5) This paper establishes a mathematical model of the cruise trajectory of a hypersonic
vehicle and solves the path planning problem with the newly proposed CMRLCCOA.
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Furthermore, the results of nine algorithms are compared. Thus, the reliability of
CMRLCCOA is verified.

The remainder of this paper is organized as follows: Section 2 briefly describes the
mathematical model of COA. Section 3 describes the detailed structure of the CMRLCCOA
algorithm. The performance of the CMRLCCOA is evaluated on the basis of numerical
experimental results in Section 4. Section 5 solves three real-world problems using CM-
RLCCOA. In Section 6, The cruise ballistic trajectory problem for hypersonic vehicles is
modeled and solved using CMRLCCOA. Finally, Section 7 summarizes this paper.

2. Introduction to Mathematical Modeling of Coati Optimization Algorithm

The coati optimization algorithm (COA) is a new metaheuristic algorithm proposed
in 2023 [35]. It is inspired by two natural behaviors of the coatis, including strategies
for cooperating in attacking iguanas and behavioral strategies for facing and escaping
predators. In p-dimensional space, each coati acts as a separate searching individual.
The hunting process and escape process of the coati from predators are both individual
updates. The position of the coati will be dynamically adjusted according to the position
of the iguana and the migrated locations, and finally the globally optimal location (the
best candidate solution) will be selected. Next, we will briefly introduce the mathematical
model of COA.

2.1. Initialization Process

Firstly, the COA initializes m random individuals, x1, ..., x;, ... x;, by Equation (1),
where the maximum boundary for individual values is Xmax = (¥7®, ..., x'®) and the

B . P
minimum boundary is Xmin = (X", ..., x;,m“). Then, evaluate the initialized random
individuals through the objective function.
Xpj = x}nin + rand - (x;“ax — x}“in), i=12...m j=12,...,p. (1)

2.2. Hunting and Attack Strategies (Exploration Phase)

Coatis attack iguanas in groups. In this strategy, the coatis are first divided into two
groups. One group climbs up a tree to approach and scare the iguana, while the other
group waits quietly on the ground. When the iguana drops, the raccoons quickly attack
and catch it. Figure 1 shows coatis attacking an iguana.

Xiis Xivs

1

Figure 1. Coatis attacking iguana.



Biomimetics 2024, 9, 399 5o0f 51

There are two assumptions in this strategy. First, the iguana is assumed to be in the
optimal position. Second, half of the species climbed trees and half waited on the ground.
Equation (2) is used to simulate the process of coatis climbing trees.

. m
x:l;w =xj+b- (Iguj -1 xl-,j), i=1,2,..., {EJ (2)

When the iguana is frightened to land, the position of the iguana is set randomly;
however, the other half of the coatis waiting on the ground move according to the random
placement of the iguana. This behavior is represented by Equations (3) and (4). A schematic
of the iguana’s updated position is shown in Figure 2.

Igu] = x;nin + b- (x}nax - x;nin)/ ] = 1/ 2/ Y 2 (3)
new _ x,-,]-—f—b- (Igu]-—I-xi,]-), Plgu < F L N N P
X { xXij+b- (xi; — Igu;j), Figy > F; & 2| Tl 7| Ty N =2, @)

where x;; represents the j-th dimension of the i-th coati, and b is a stochastic number
between [0, 1]. Igu is the randomly given location of the iguana. I is any stochastic value in
1and 2.

iguana
Xiss Xies

1
Figure 2. Iguana update location.

2.3. The Stage of Escaping Predators (Exploitation Stage)

During the development phase, the strategy adopted by the coati in facing and es-
caping predators is used to update its position. When a predator captures a coati, the
coati quickly runs away and enters a relatively safe position, approaching the optimal
position, as shown in Figure 3. This strategy demonstrates the capability of the COA
algorithm development.
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Figure 3. A schematic illustration of the behavior of a coati fleeing from a predator.

The strategy during the development phase is simulated using Equations (5) and (6).

xmin ymax
] ]
low]- =1 upj = T,t =12,..,T, (5)
xpi = xij+ (1=2b) - (low; + b- (up; — lowy)), i =1,2,...,m; j=1,2,..,p (6)
where low; and up; indicate the local lower and upper bound of the j-th dimension, a
stochastic number with a value of b between [0, 1].

If the updated adaptation value for the coati is preferable to the original adaptation
value, the value is accepted; otherwise, do not accept this value. Equation (7) represents
the update process.

Xpew, prew < F
J— i i
X { X;, else ' @

3. Multi-Strategy Enhanced COA

This part uses four strategies to strengthen COA. These strategies are the chaotic
mapping strategy, lens imaging reverse learning strategy, Lévy flight strategy, and crossover
strategy. The newly proposed CMRLCCOA solves the shortcomings of COA, which is
prone to local optimization and premature convergence. The improvement strategy of the
algorithm is presented next and the results are briefly analyzed.

3.1. Chaos Mapping Strategy

The traditional COA adopts the method of randomly setting the initial population,
which is difficult to spread throughout the population, resulting in a lack of diversity in the
original coati population and restricting the flexibility. Chaos mapping was first proposed
by Lorenz et al. in 1963 [44]. Chaos mapping has characteristics such as randomness,
traversal, and regularity [45]. This strategy can guarantee the diversity of the original
population. Therefore, many intelligent algorithms employ chaotic mapping strategies to
strengthen the optimization of algorithms. Zeng et al. use chaotic mapping to generate a
random and regular initialization particle swarm, improving global search capability [46].
Xin et al. applied the chaotic mapping method for reinforcing the sparrow optimization
algorithm [47].

Chaos theory mainly studies the behavior of dynamic systems that are sensitive to
initial states. The method of generating an initial population through chaotic mapping
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is to first use a one-dimensional chaotic map, specify a random initial value in it, and
iteratively generate a series of continuous points. Chaotic mapping strategies can boost
the competence of population diversity, success rate, and convergence. Table 1 describes
ten common chaotic mapping functions. To have a clearer perception of these functions,
Figure 4 visualizes some of the initialization functions. The image shows that these map-
pings allow random initial population positions to be evenly distributed in the search space.

For the selection of different initialization methods, please see Section 4.3.

Table 1. Introduction to ten common chaotic mapping functions.

NO. Function Name Function Definition Parameter
1 Sinusoidal [48] Zjy1 = bzg sin(7 z¢) b=23and zy =0.7.
2 Logistic [49] Zpa1 = bzi(1 — zg) 2k is the kth chaotic number, and zj € (0, 1).
%,z € (0,4
3 Tent [50] 1 = 1 2k 21 € (2, 1] i
0, Z = 0
4 Gauss/Mouse [51]  zxy1 = mod( Ly 1), otherwise Generates chaotic sequences in (0, 1).
5 Circle [52] Zy1 =2k +b— mod( sin(27zg),1) a=22and b=0.5.
6 Chebyshev [53] Zg41 = cos(kcos™ (zk)) -
7 Singer [54] 241 = p(7.86z —23.3122 + 28.75z7 — 13.30z}) 1 is set between 0.9 and 1.08.
1 1z_—k/\,zk €(0,1— 2]
8 Bernoulli [55 z = -
[ ] k+1 W,Zke(l—/\,l)
9 ICMIC [56] Zkp1 = sin a€(0, ).
zx/q,2 € 10,9)
zr—q)/(05—¢q),z, € g, 0.5
10 Piecewise [57] Xk41 = (2 — )/ 12 € 1g ) n € (0,0.5) and z; € [0, 1].

(1—n—2z)

(1—z)/n,zz €l —mn, 1)

/(0.5 —n),z, €05, 1—n)

Logistic

°
>

Chaos value

04p" -

02f

Frequency

Dimension

Chaos value

Tent

500
Dimension

Chebyshev

Lo

Frequency

Chaos value

Singer

Tent

Chaos value
° °

100

Frequency
2

1
0 500
Dimension

Circle

1000 0
Chaos value

Circle

0.2 0.4 0. 0.8 1

Chaos value

Frequency

0 500
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1000 0 02 0.4 0.6 0.8
Chaos value
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500
Dimension
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wise

1000
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Piecewise

°
=

500
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Figure 4. The schematics of chaotic mapping functions.
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3.2. Reverse Learning Strategy for Lens Imaging

Many intelligent optimization algorithms have low population diversity in the later
stages of the iteration and do not easily search for optimal solutions. It is difficult to jump
out when a coati searching for an individual falls into a local optimum. Consequently,
a specular reflection learning strategy is introduced in this paper. This strategy is an
optimization mechanism [58], which extends the algorithm’s search area by computing the
inverse solution at the current position. Therefore, it increases the likelihood of discovering
the ideal solution. However, reverse learning strategies need to be combined with the
principle of lens imaging to achieve better results [59].

Imaging by a convex lens is an optical law. A convection lens has an object and a solid
image on each side of the lens. The diagram is depicted in Figure 5.

convex lens

light source(P)

Figure 5. A schematic diagram of the principle of convex lens imaging.

The lens imaging formula can be derived from Figure 5 as follows:
== ®)

where u is the object distance, v is the distance imaged, and f is the focal length.
For the reverse learning strategy of convex lens imaging, an individual P is imaged in
a convex lens as in one-dimensional space. This is shown in Figure 6. The principle of lens
imaging is expressed as Equation (9).
ptq , p+

r_Ptq q_X
X' = > T ok = )

Equation (10) is the solution formula for reverse learning of lens imaging, which is
extended to D-dimensional optimization problems. The reverse learning formula based on

lens imaging is obtained as follows:

x, = Pt pitd X

4 2 2k k- (10)

Among them, p; is the minimum in the j-th dimension, and g; is the maximum in the
j-th dimension. X;" and X; are the inverse solutions of the lens.
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30

Yl

S

"

Figure 6. Schematic diagram of reverse learning strategy for convex lens imaging.

3.3. Lévy Flight Strategy

In the COA, the position update is highly influenced by the iguana. However, the

position update range of iguanas is small, so the search space and solution space of this
algorithm are limited. The Lévy flight strategy is a stochastic behavior strategy proposed
by Paul Lévy in 1937 [60], used to simulate the step size and direction during random
walking or search processes. In this paper, the Lévy flight strategy is incorporated into the
search phase of the COA to enlarge the search scope. Figure 7 depicts the Lévy distribution
along with their trajectories in two- and three-dimensional spaces. This random wandering
behavior can be effective in increasing the diversity of populations, which in turn allows
individuals to explore a wider range of space. Then, the Lévy flight process can be described
as a random walk process, as shown in Equation (11).

20

Step Length

-10

-20

0 200 400 600
Step Length

800

(a). Lévy distribution

1000

Levy(A) ~u = 1A o< A <2,

Step Length

Step Length

-10 -8 -6 -4 -2 0 2
Step Length

-10
Step g, 20
KA

-10

S ey

(11)

(b). Two-dimensional Lévy trajectory (). Three-dimensional Lévy trajectory

Figure 7. The Lévy flight trajectory.

S =

r

o]t

The A can be calculated using the Mantegna method, as shown in Equation (12).

(12)
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where A is set to be 1.5, and y and v follow a normal distribution.
OU - ]-/ (13)
1
T(14+A)-sin(mA/2 B
I = ( ) ( /\—1) /2| 7 (14)
A-T[(1+A)/2] - 2041
where I is the gamma function.
Therefore, Equation (15) is utilized to change the position of the coati.
T = T 4 o - sign(rand — 1/2) @ Levy(A), (15)

where sign(rand — ) can take three values, namely —1, 0, or 1. a represents the control
quantity of step length, which can be expressed using Equation (16).

&= g F{‘md — EJ , (16)

where a is set to be 0.01.

Then, Equation (15) can be represented as
y;and H . (f’{and _ ft)~ (17)
o]

+ g - sign(rand — 0.5) -

Xt41 =

3.4. Cross Optimization Algorithm

Meng et al. proposed the crisscross optimization algorithm (CSO) [43]. The algorithm
utilizes horizontal and vertical crossing to update information, which can effectively solve
the local optimization problem.

3.4.1. Horizontal Crossover

Before performing the crossover operation, two individuals are paired. Subsequently,
the crossover is performed on the variables in the corresponding dimensions to generate
new offspring. Assuming the m-th and n-th individuals are paired, the crossover operation
is performed as follows:

thm,j =77 Xm,j =+ (1 — 1’1) . Xn,j “+cq- (Xm,j — Xn,j)/ (18)

MhCn,]' =71y Xn,j + (1 — 1’2) . Xm,j + - (Xn,j — Xm,j)/ (19)

where Mhcy, j and Mhc,, ; are descendants of X, ; and X;, ;, respectively. And X}, ; and X, ;
are two random individuals in the population. 7y and r, are randomly distributed evenly
between 0 and 1. ¢; and ¢, are randomly distributed evenly between —1 and 1.

The first term in Equations (18) and (19) represents the particle’s current optimum, and
the second term represents the mutual influence between two different particles, and these
two terms are well combined through the weight factor r1. The third term can increase the
search interval. The final solutions Mhc,, ; and Mhc,, ; must be compared with the fitness of
the parent particles X, ; and X, ;, and the solution with better fitness should be retained for
the next iteration.

3.4.2. Vertical Crossover

Vertical crossover is executed across distinct dimensions of the variable. Due to the
different ranges of values for different dimensions, they need to be normalized before
crossing. Each vertical crossover only generates one offspring, and only updates one
dimension of it.

Mocy, g, =1 Xpyg, + (1 =7) - Xy a,, (20)

where r is randomly distributed evenly between 0 and 1.
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Vertical crossing can cause the dimension that has already fallen into a local optimum
to escape from local optimality without damaging the information of the other dimension.
Thus, in general, this strategy is effective in keeping population sizes from dropping into
local minima, and the probability of a vertical crossover is lower than the probability of a
horizontal crossover.

3.4.3. Competitive Operator

There is a competitive relationship between the offspring population and the parent
population. Only if the adaptation value of the offspring population is preferred to that
of the parent population will it be retained and proceed to the next iteration. Otherwise,
the parent population will continue to be retained. As a result of this simple competitive
mechanism, individuals will move rapidly toward the search space with good fitness, close
to the optimal solution. For example, in terms of horizontal crossing, the competition
operator is defined as

of fspring _ | Xm, f(Xm) < f(Mhecp)
X o { Mhcy,, else ' 1)

3.5. The Framework of CMRLCCOA

Inspired by the above strategies (chaotic mapping, lens imaging reverse learning,
Lévy flight, and crossover strategy), we propose a new hybrid metaheuristic algorithm,
CMRLCCOA. These strategies greatly strengthen the stability and optimization capability
of the algorithm. The specific steps for solving the D-dimensional minimum problem using
CMRLCCOA are as follows:

Step 1: Initialize some parameters of CMRLCCOA—the number of search agents N, di-
mension of the solution D, boundaries of variables ub and [b, and number of iterations M.

Step 2: Initializing N populations of coatis using chaotic mapping.

Step 3: The fitness values for each candidate solution are computed. Afterwards,
record the best fitness value fj.s; and the optimal position Xp,s;.

Step 4: Using a convex lens imaging reverse learning strategy to update N initial
solutions by Equation (11), then calculating fitness values while retaining good fitness
values and optimal solutions.

Step 5: While Cj,r < M.y, update the location of the iguana.

Step 6: For the first half of the individual coatis, using Equation (2) to change location
of the i-th coati, and using Equation (7) again to update the position of the i-th coati.

Step 7: For the latter half of the individual coati, first set the iguana’s random location
using Equation (3), then use Equation (4) to compute the new position of the i-th coati, and
finally use Equation (7) to update the position of the i-th coati.

Step 8: Utilizing the Lévy flight strategy, the coati’s position is updated by Equation (18)
and candidate solutions are calculated, while retaining the optimal solution and corre-
sponding position.

Step 9: In the second stage of exploitation, first calculate the local boundaries of
variables by Equation (5). The location of the i-th coati is changed using Equation (6).
Equation (7) is used to update the optimal solution.

Step 10: Using the cross optimization strategy, horizontal and vertical crosses are per-
formed on individuals of the coati by Equations (19)—(21) and offspring populations are ob-
tained, and then the better preserved ones are selected from the parent and
offspring populations.

Step 11: Set Cjyor = Citer + 1; if Citor < Miter, return to Step 5. Otherwise, the optimal
location and fitness values obtained from solving the problem will be output.

To show the structure of the CMRLCCOA more clearly, the flowchart of CMRLCCOA
is illustrated in Figure 8. Additionally, the pseudo-code of CMRLCCOA is shown in
Algorithm 1.
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Algorithm 1: The proposed CMRLCCOA

Input: Number of coatis (N), Number of variables (D), and maximum iterations (M;,,).
Output: Optimal fitness value fy.5; and Xpess.

1: Construct the initial value for the agents through chaotic maps.

2: Computing fitness values for coati populations.

3: Using convex lens imaging reverse learning strategy to change the coatis’ position by Equation (11).
4: Compare fitness values and retain the optimal fitness values and corresponding positions.
5: While t < My,

6: Fori=1toN/2

7: Igu = Xppps; I = round(1 + rand(1,1)).

8: Change the position of the coati by

xl‘,]' = xi,]‘ +b x (Igu] — IXxi,]').

9: Update position by Equation (7).

10:  End For

11: Fori=N/2toN

12: Iqu =1b + rand x (ub — Ib).

13: If fitness(i) > fitness(Igu)

14: Change the position by

Xz'/]' = xi,j +b x (Ing] -Ix xi,j)'

15: Else

16: Change the position by

xl‘,]' = xi/]‘ +b x (I X X,'/j — Igu])

17: End If

18: Update position by Equation (7).
19:  End For

20:  Using Lévy strategy to update the position of the i-th coati by Equation (18).
21:  Calculate the fitness of coatis.

22:  If the fitness of coati < fitness(i)

23: x(i) = coati;fit(i) = fit(coati).

24:  End If

25: Fori=1toN

26: Lbyocar = 1b/t; Ubpyeqr = ub/t.

27: If rand < 0.5

28: Update the position of the coatis by

Xjj =X+ (1 —2b) X (Lbrocar + b x (UbLocas — LbLoca1))-

29: Update position by Equation (7).

30: Else

31: Forj=1toD

32: r1 and r; is a stochastic number in [0, 1]; ¢; and ¢, is a stochastic number in [—1, 1].
33: Update the position of the leaders using Equations (18) and (19).
34: Calculating acclimatization values of coatis.

35: End For

36: End If

37:  End For

38: Fori=1toN-1
39: Forj=1toD

40: Update a uniformly random value 7 in 0 and 1.

42: Update the position of the individuals using Equation (20).
43: Calculating acclimatization values of coatis.

44: End For

45:  End For

46: t=t+1,

47: End While
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Figure 8. Flowchart of CMRLCCOA.
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3.6. The Time Complexity of CMRLCCOA

This subsection investigates the time complexity of CMRLCCOA. First, we analyze
the COA. The population scale and the amount of problem variables mainly contribute
to the time complexity. In the initialization phase, the complexity of COA is O(ND),
where N is the size of the coati population and D is the amount of variables. Among four
improvement strategies for the presented CMRLCCOA, the chaotic mapping and lens
imaging reverse learning strategies do not increase the complexity. In the first stage, the
time complexity is O(NDT) + O(NDT/2) + O(NDT). In the second stage, the complexity is
O(NDT) + O((N — 1)DT). Thus, the complexity can be characterized as Equation (22).

O(CMRLCCOA) = O(Origin coatis) + O(Hunting) + O(Escaping) (22)
=O(ND(1 +5/2T) + (N — 1)DT)

4. Numerical Experiments and Comparison with Other Algorithms

In Section 4, we conduct experiments using functions from the CEC2017 and CEC2019
test suites. Among them, it contains 29 functions for CEC2017 and 10 functions for CEC2019.
The number of iterations in this experiment is 500 and thirty individuals constitute the entire
population. The dimensions of CEC2017 are 50 and 100. The CMRLCCOA is compared to
fourteen existing metaheuristic algorithms, including four recognized classical algorithms,
PSO (particle swarm optimization) [15], DE (differential evolution) [12], SA (simulated
annealing) [16], and ABC (Artificial Bee Colony Algorithm) [61]; six recently proposed
algorithms, KOA (Kepler Optimization Algorithm) [62], SWO (Spider Wasp Optimizer) [63],
GMO (Geometric Mean Optimizer) [64], OMA (Optical Microscope Algorithm) [65], TROA
(Tyrannosaurus Optimization Algorithm) [66], and GO (GOOSE Algorithm) [67]; and three
improved algorithms, ISSA (Improved Sparrow Search Algorithm) [68], IGWO (Improved
Grey Wolf Optimizer) [69], and EWOA (Enhanced Whale Optimization Algorithm) [70].
Each comparison algorithm is run independently for 20. Finally, the optimum value,
the worst value, the mean value, the standard deviation, and the rank for all results are
calculated. Furthermore, the Wilcoxon signed rank test is performed to further check the
quality of CMRLCCOA. The parameters of the other metaheuristic algorithms are listed
in Table 2. Finally, all tests are experimented in Matlab-2020b with a 2.11 GHz quad-core
Intel(R) Core(TM) i5 and 8.00 GB.

Table 2. Algorithm-related information.

Algorithm Year Parameter Name Value

PSO 1995 Inertia weight Decreasing linearly from 0.9 to 0.1
Velocity range 0.1 times the size of the variable
Cognitive and social (122,22
factors
DE 1995 Scaling factor 0.5
Crossover probability 0.5
SA 1953 - -
ABC 2005 Limit 20
KOA 2023 Velocity Tc=3,My=01,A=15
SWO 2023 Hunting and nesting weight 0.5
GMO 2023 Dual-fitness index « =0.05, Pa, =0.2, Prb=0.2
OMA 2023 Space 0.55
TROA 2023 Hunting success rate [0.1,.1]
GO 2024 Stone weight pl=5,p2=0.001,p3=0.3
IGWO 2021 « Decreases linearly from 2 to 0
EWOA 2023 a Decreased from 2 to 0

b

2
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CECO01

4.1. Introduction to Test Sets

A total of 39 functions were used for testing in this experiment, which come from
CEC2017 [71] and CEC2019 [72].

CEC2017 is a test set of intelligent algorithms widely used for a number of optimization
problems. The functions are rotated and translated, which in turn increases the difficulty
of finding optimization for the algorithms and has a high degree of acceptance. There are
four types of benchmark functions: single-peaked, multi-peaked, hybrid, and combined.
The single-peak functions (cec01, cec03) are characterized by the fact that there is only a
global minimum, not a local minimum. This type of function verifies the convergence of
the algorithm. Multi-peak functions (cec04—cec10) have local minima. Such functions verify
the competence to get rid of local optima. Algorithms that perform well on these functions
generally possess strong exploration capabilities. Hybrid functions (cec11-cec20) have
each sub-function assigned a certain weight, which in turn better combines the properties
of each sub-function. These functions can effectively verify the ability to find the global
optimum. Composite functions (cec21-cec30) have additional bias values and weights
for each sub-function. Such functions allow us to assess the accuracy of algorithms. The
comprehensive performance will be demonstrated on these functions. To show the details
of these functions more clearly, the partial function diagrams are shown in Figure 9.

CECO04 CECO

3000 i 650 <
2000 | 600
1000 4. 550 ooV
100 = 100
100 100
- -50 ) 50 N
100 -100 ~2° 100 -100 2 100 -100 "
CECO07 CEC24
900 - 4000 +-
4000 4
3500 {-
800 4- 3500 4
3000 {-
3000 4.~
700 2500 4.
100 100 100
100
100 -100 "0

Figure 9. The partial function diagrams in CEC 2017.

In addition, this experiment also uses the CEC2019 test set to assess the algorithm’s
capability. The CEC2019 test set [73] is a very effective benchmark function set for meta-
heuristic algorithm performance testing. Among them, cec01-cec03 have different dimen-
sions and ranges, and cannot be moved and rotated. cec04—cecl0 are ten-dimensional
minimization problems, which can be moved and rotated. This test set is known as the
“100-bit challenge” and is often used in international competitions. Some of the functions
of CEC 2019 are shown in Figure 10.
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Figure 10. The partial function diagrams in CEC 2019.

4.2. Assessment of Indicators
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To appraise the efficacy of all algorithms, we take several performance metrics for
the analysis, which include the optimal value (Best), the worst value (Worst), the mean
value (Ave), the standard deviation (Std), and Rank. Their equations are presented in
Equation (23) to Equation (26). The comparison of these metrics can be used to analyze the
performance. It is worth noting that Ave can indicate the precision of the algorithm when
addressing specific problem categories. The stability can be obtained from Std. Rank is
obtained by comparing Ave and Std. If Rank is smaller, it means that the algorithm has a

superior performance in solving a particular problem.

(1) Optimum value (Best)

Best = min f/'
1<i<m’

(2) Worst value (Worst)
W = *
orst [max fi

(3) Mean value (Ave)

1 m
Ave = =Y fF

(4) Standard deviation (Std)

1 m

Std = \/mZ(fl* —AVE)2

i=1

(23)

(24)

(25)

(26)

where m corresponds to the tally of independent runs of the algorithms. f;* is the global

optimum obtained at the i-th independent run.
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4.3. Effect of Different Chaotic Mapping Functions on CMRLCCOA

Chaotic mapping produces a random sequence for initializing the population, pro-
ducing a better initial solution [74]. Chaotic mapping produces initial populations in
different ways and gives different results. A better strategy produces good initial solutions
and is a great enhancement for the subsequent optimization of the algorithm. In this
context, 10 functions (taken from CEC2019) are optimized using 10 of the more common
chaotic mapping methods to analyze and compare the impact of different chaotic mappings.
Table 1 lists these 10 recognized chaotic mapping methods. Table 3 displays the effect and
ranking of the 10 chaotic mapping strategies on CMRLCCOA. From the data, it can be
seen that the Sine mapping strategy has the best optimization result with the smallest total
rank, followed by the Bernoulli mapping strategy and Circle mapping strategy. From the
above analysis, it can be concluded that the Sine chaotic mapping strategy performs best
in this method and is the first strategy in this method. To show the comparison results
more clearly, the experimental data are visualized here, as shown in Figure 11, where
the horizontal coordinate is the function of the test set and the vertical coordinate is the
algorithm obtained through different mapping methods. And Figure 11 indicates that the
Sine chaotic mapping strategy ranks first among the four functions. This also shows that
these strategies can be relatively more effective in improving the performance of COA.

Table 3. Results of chaotic mapping functions in the CEC2019 test set.

Chaos Mapping, Rank
Function
Tent Logistic Cubic Chebyshev Piecewise

CECO01 1 1 1 1 1 1 1 1 1 1
CEC02 4.8343428 3 4.9086048 4 4.7536217 1 4.9480054 9 4.9127265 5
CECO03 4.5113105 9 3.6855279 2 4.4167636 8 4.0965744 6 4.5839437 10
CEC04 21.433848 7 30.186825 10 24.332956 8 16.31391 1 27.812378 9
CECO05 1.1617451 5 1.1431999 1 1.1515950 3 1.1631781 6 1.194418 9
CEC06 3.3690697 4 3.3841554 5 3.2145844 3 3.6269374 9 3.4008807 6
CEC07 732.95347 9 725.80671 8 614.88261 4 584.74687 2 618.38094 6
CEC08 27214771 2 2647.8950 7 2851.1804 10 2604.0760 5 2792.7936 8
CEC09 3.6744951 5 3.8464906 6 3.9101588 3 3.7696891 8 3.8590904 9
CEC10 1.1916796 1 1.2024768 8 1.1872587 9 1.2116937 5 1.2209108 7

Ave rank 4.6 52 5 52 7

Final rank 4 6 5 6 10

Chaos mapping, Rank
Function
Sinusoidal Sine ICMIC Circle Bernoulli

CECO01 1 1 1 1 1 1 1 1 1 1
CEC02 4.9393187 7 4.9476647 8 4.9675991 10 4.9228798 6 4.7674341 2
CECO03 4.1652904 7 3.6007047 1 3.8968772 4 3.9812347 5 3.7443864 3
CEC04 19.948643 5 16.530138 2 19.427083 4 20.471053 6 18.128766 3
CECO05 1.1669640 7 1.1614536 4 1.1923656 8 1.1509138 2 1.200149 10
CEC06 3.6426736 10 3.4905846 8 3.4168389 7 3.1405742 2 2.8830131 1
CEC07 813.11549 10 580.91894 1 615.26845 5 688.45524 7 604.38442 3
CEC08 2734.7201 6 2530.4876 1 2646.3779 9 2686.5244 3 2650.1646 4
CEC09 3.7708771 10 3.5869369 1 3.8648624 7 3.7574923 2 3.7603243 4
CEC10 1.2469245 6 1.1435522 4 1.2066848 10 1.1592935 2 1.1908522 3

Total rank 6.9 3.1 6.5 3.6 34

Final rank 9 1 8 3 2
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Figure 11. Heat maps corresponding to the rankings obtained from different chaotic mappings.

4.4. Comparison of Optimization Results for CEC2017

For the purpose of examining CMRLCCOA’s competence in exploring, developing,
and jumping out of local optimal solutions, a more competitive test suite, the CEC2017 test
suite, was chosen for this paper. CEC2017 [71] is highly recognized and is widely used to
validate the performance in all aspects. What is more, this function is not included in this
paper because it was not possible to test cec02.

4.4.1. Experimental Results of the CEC2017 Test Suite

In this experiment, CMRLCCOA is run 20 times independently with 14 other algo-
rithms, and finally, Ave, Std, and Rank are calculated. Tables A1 and A2 show the results
obtained by 15 algorithms optimized in 50 and 100 dimensions. The top-ranked values are
highlighted in a thick format.

The observation of the tabular data shows that the CMRLCCOA is ranked first overall
with an average ranking of 3 and 2.6552 for dim = 50 and 100, respectively; this result shows
that the improved CMRLCCOA is better at optimizing in different dimensions and all of
them provide excellent output values. Most of the optimal values obtained by CMRLCCOA
computation outperform other algorithms. This phenomenon shows that CMRLCCOA
is adaptable to different types of functions. CMRLCCOA is able to optimize the nine test
functions better in dim = 50 (cec03, cec11-12, cec21, cec23, and cec27-30). At dim =100,
CMRLCCOA better optimizes 13 test functions (cec03, cec04, cec07, cec11-12, cec14, cecl5,
cec20-21, cec23-24, cec27-29). GMO also optimizes better and performs better for 10 50-
dimensional problems and 100-dimensional problems, second only to CMRLCCOA, and
ranked second overall. On the contrary, COA, KOA, SWO, TROA, and GO do not show
better optimization ability. In summary, CMRLCCOA significantly outperforms COA as
well as the other 13 intelligent optimization algorithms in 50 and 100 dimensions.

The Wilcoxon signed rank test verifies the variability of results obtained by different
algorithms [75]. The significance results for dim = 50 and 100 are shown in Tables A3 and A4.
“+/=/-" means that the comparative algorithm is significantly better/equal/worse than
the CMRLCCOA. The observation of the data reveals that the Wilcoxon test results for
COA, KOA, SWO, TROA, and GO are 0/0/29 at dim = 50 and 100, indicating that these
five algorithms are inferior to CMRLCCOA in all test functions. Meanwhile, the Wilcoxon
signed rank results of GMO in two dimensions are 6,/10/13 and 6/7/16, which are better.
Secondly, ISSA and IGWO also perform better; both of them have six functions better
than CMRLCCOA. However, when dim = 50 or 100, ABC, EWOA, SA, and DE algorithms
perform significantly worse than CMRLCCOA. Therefore, this result also shows that
CMRLCCOA can address different types of problems.
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Similar to Figure 11, Figure 12 shows two heat maps of the results obtained for all
compared algorithms on CEC 2017 for two different dimensions. The vertical coordinates
are all algorithms involved in comparison. The performance of all algorithms can be intu-
itively obtained from the heat map. In the heat map of both dimensions, the corresponding
squares of CMRLCCOA proposed in this paper largely show a bluer situation relative to
other algorithms. Meanwhile, the GO and TROA rows are always red. This phenomenon
indicates that these two algorithms perform poorly on this test set and their performance
needs to be improved.

KOA
CMRLCCOA
COA

(a). Heat map of experimental results on 50 dimensions of CEC 2017.

EWOA Rank 15
IGWO
ISSA
ABC 12
SA
DE 9
PSO
GO 7
TROA
OMA
GMO 4
SWO
KOA 1
CMRLCCOA
COA

(b). Heat map of experimental results on 100 dimensions of CEC 2017.
Figure 12. Heat map of experimental results on CEC 2017.

4.4.2. Convergence Curves for Iterations

Figures 13 and 14 show partial convergence curves at dim = 50 and 100. From the
figure, it can be concluded that CMRLCCOA converges better on cec09, cec20-21, cec24,
cec27, and cec28 at dim = 50. When dim = 100, CMRLCCOA converges better on functions
cec07, cec09, cec12, cec20, cec25, and cec27-28. In addition, it can be seen that CMRLCCOA
has a larger slope of the curve during the iteration of most functions, which indicates that
CMRLCCOA always can converge faster in the early stages. This is made possible by
the inclusion of the initialization strategy, which allows the population to explore a larger
area. It is able to converge to the neighborhood of the optimum very quickly. In summary,
CMRLCCOA can find the optimal solution quickly and can solve some sophisticated
optimization questions.
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Figure 13. The iteration profile of CMRLCCOA with other comparative algorithms for dim = 50.

The optimization ability of CMRLCCOA varies when dealing with different functions.
As can be noticed from Figures 13 and 14, CMRLCCOA is able to avoid interference factors
well in the optimization of both single-peak and multi-peak functions, and both of them
converge rapidly to the vicinity of the optimal solution. CMRLCCOA converges faster in
hybrid and composite functions. The observation of the curves reveals that the slope of
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the pre-curve is very large and almost vertical so that the optimal candidate solution can
be found in fewer iterations, which indicates that the algorithm has high sensitivity. In
addition, it can be found that CMRLCCOA maintains the stability and continuity during
the iteration process of most functions, and the convergence accuracy is better. In short,
CMRLCCOA is able to solve the functions in CEC2017 efficiently.
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Figure 14. The iteration profile of CMRLCCOA with other comparative algorithms for dim = 100.
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4.4.3. Boxplot of Experimental Results

Combined with the convergence curves above, the corresponding box plots are given
here. A box-and-line plot is an icon that describes the discrete distribution of data and
provides a good description of outliers and skewness in the data. The length of the boxes
corresponds to the stability of algorithms. If the box is narrower, the algorithm is more
stable and robust. The upper limit of the box-and-line plot is the upper quartile, and the
lower line is the lower quartile. Because of the randomized nature of the algorithm, some
outliers are generated during the optimization of the problem, and to visually demonstrate
the quality of the optimization results, box-and-line plots of the optimization results at
dim = 50 and 100 are given, as shown in Figures 15 and 16. CMRLCCOA has less variation
in the upper and lower distances than the other algorithms, especially at dim = 50 for cec22,
cec24, cec27, and cec28, and at dim = 100 for cec01, cec09, cecll, cec12, ce25, and ce27-28.
These functions verify the stability of CMRLCCOA. However, CMRLCCOA also shows
some “+” indicators in the box plots of some functions, indicating that the algorithm also
produces some outliers with uncertainty and randomness.
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Figure 16. Boxplot of CMRLCCOA algorithm with other comparative algorithms for dim = 100.

In conclusion, for most of the functions, CMRLCCOA is shorter and the upper and
lower boundaries are closer together compared to the other 14 algorithms, which indicates
that CMRLCCOA is more stable and has better minimum values compared to others.

4.5. Comparison of Optimization Results for CEC2019

This part of the numerical experiments is performed using the 10 functions in CEC2019 [76].
First, the experiment was set up to run 20 independent repetitions. After that, the Ave, Best,
Worst, Std, and Rank of the 20 results are computed. Secondly, we obtain the convergence
iteration diagrams during the algorithm runs. In addition, all comparison algorithms are
consistent with the above experiments. Table 4 illustrates the calculation results. First-
ranked data are marked in bold. Finally, box-and-line plots are plotted as a visualization of
the quality of the solution results. The radar plot shows more visually how each algorithm
ranks on each test function.

4.5.1. Statistical Results on CEC2019

As indicated in Table 4, the average rank of CMRLCCOA is 2.3, which is ranked
first overall, better than the others and significantly better than COA. This effect indicates
that CMRLCCOA obtains solutions of higher quality relative to the others. In addition,
CMRLCCOA significantly optimizes the five functions (cec01, cec04, cec05, cec07, cec08).
CMRLCCOA ranks first in terms of computational results in cec01, indicating that it
performs well in low-dimensional test functions. CMRLCCOA is superior to the others
in cec04 and cec05. This indicates that it is also suitable for higher-dimensional test
functions. CMRLCCOA has excellent optimization ability in cec07 and cec08. GMO
performs excellently in completing some problems, and has excellent optimization ability,
ranking second. GMO outperforms the other algorithms and has a strong optimization
ability. In contrast, other algorithms do not solve these functions well.

Table 5 shows the final test results for the Wilcoxon signed rank [77]. A look at the
data in Table 5 reveals that the Wilcoxon symbolic rank test outputs for COA, KOA, SWO,
GMO, OMA, TROA, GO, PSO, DE, SA, ABC, ISSA, IGWO, and EWOA are 0/1/9,0/0/10,
0/0/10,3/2/5,1/1/8,0/0/10,0/0/10,2/2/6,2/3/5,0/3/7,0/1/9,2/2/6,2/1/7, and
0/1/9. It can be found that KOA, SWO, TROA, and GO are not as good as CMRLCCOA
on all the tested functions, which can show that CMRLCCOA has better performance and
is competitive.
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Table 4. Comparison results of CMRLCCOA and different algorithms in CEC2019.
Function  Index COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
Ave 1 1 1.84E+08  148E+07 1 2.84E+05  1.67E+09  1.69E+08 1 5.20E+06 1 1.05E+07 1 579E+04  237E+06
Worst 1 1 454E+08  1.64E+08 1 1122748 3.12E+09  2.92E+08 1 11,058,720 1 23,234,725 1 314,276 13,879,628
cec01 Best 1 1 244E+07  9.39E+01 1 3.36E+04  3.74E+08  2.25E+07 1 5.33E+05 1 2.90E+06 1 123E+01  5.95E+04
Std 0 0 9.53E+07 3.73E+07 9.92E-08 2.48E+05 8.49E+08 7.31E+07 0 3.20E+06 0 5.06E+06 0 8.21E+04 3.05E+06
Rank 1 1 14 12 6 8 15 13 1 10 1 11 1 7 9
Ave 5 4818 12,317.590  861.263 4.901 294950  30,233.500  9853.688 4524 2666.823 4679.524 5229.067 4254 334.713 2764.978
Worst 5 5.000 16901.760  4888.710 5.016 1082046 48225370  15,077.270 4767 4079.375 8195.320 6785.122 4374 520.294 6792.063
cec02 Best 5 4.227 8797.222 6.154 4.484 103766 19285510  6266.771 4313 1603.955 1354.395 3788.566 4217 184.893 494.261
Std 1.04E-06 0.262 1984.790 1278.936 0.162 201.267 7041.787 2262.994 0.150 716.899 2066.515 747.501 0.034 88.850 1925.375
Rank 5 3 14 8 4 6 15 13 2 9 11 12 1 7 10
Ave 4.622 2.106 11.433 10.332 1.993 3473 12.699 11.374 2.815 5.432 6.197 10.087 2278 1.864 6.742
Worst 5.475 5.512 12.168 11.634 3475 4739 13.278 12.170 4.564 6.231 10.712 10.935 7.686 7.712 9.710
cec03 Best 2.943 1.317 10.743 6.714 1.000 2343 11.973 9.492 1413 3.979 1.409 8.684 1.002 1.001 3.237
Std 0.661 0.809 0.384 1.179 0.833 0.823 0.255 0.544 0.879 0.675 2.878 0.546 1.420 1.535 1.788
Rank 7 3 14 12 2 6 15 13 5 8 9 11 4 1 10
Ave 83.126 11211 81.242 81.491 25.163 24.406 155.292 74.851 98.306 13.142 23918 36.051 28.804 12.690 30922
Worst 110.190 27.918 93.461 103.081 66.180 43.391 202.658 93.995 98.506 17.302 44.599 43.256 50.679 23.203 62.484
cec04 Best 60.535 3.992 65.997 62.612 5.975 14.378 102.226 50.088 97.510 5.662 7.965 26.430 5.975 4.008 13.934
Std 14.114 5.133 8.691 10.972 14.740 7.680 26.491 10.343 0.398 2.749 9.215 3.976 10.740 6.509 12.803
Rank 13 1 11 12 6 5 15 10 14 3 4 9 7 2 8
Ave 88.662 1.209 32.158 28.849 1.226 1232 201.010 25.001 6.406 1.349 1.213 1.485 1.138 1.606 2.084
Worst 143.853 1.345 55.645 68.663 1.885 1.521 281.706 51.233 14.646 1.421 1.608 1.637 1.426 1.793 10.596
cec05 Best 34.877 1.046 16.528 10.402 1.039 1.041 60.285 9.520 2.341 1.062 1.012 1.306 1.034 1.423 1.030
Std 29.671 0.103 10.825 15.632 0.226 0.113 64.150 9.822 3.244 0.042 0.165 0.085 0.093 0.093 2.796
Rank 14 2 13 12 4 5 15 11 10 6 3 7 1 8 9
Ave 10416 3.083 11411 10.418 1.612 1.980 15.880 10.706 16.019 2226 6393 3.298 4713 1.838 5.789
Worst 12.364 5.473 13.788 12.757 4735 4450 17.642 12.658 16.858 2.752 9.150 5.090 7.272 3322 10.030
cec06 Best 8.101 1.915 9.318 6.511 1.013 1.162 11.850 8.652 14.849 1.745 3.805 1.568 2.555 1.138 2122
Std 1.128 0973 1.219 1.247 0915 0.751 1.312 1.115 0.586 0275 1.533 0.863 1.360 0457 2.247
Rank 10 5 13 11 1 3 14 12 15 4 9 6 7 2 8
Ave 1888.543 630.452 2214.700 1984.343 1127.429 1488.903 2920.239 2057.648 1966.054 692.845 720.485 1429.335 1002.165 695.429 966.935
Worst 2213.910 998.426 2555.673 2365.470 2086.663 1744.456 3437.083 2347.304 2156.438 919.701 1130.655 1711.483 1582.198 1431.710 1526.280
cec07 Best 1364.789 271.372 1825.462 1408.175 357.282 1256.515 2219.054 1619.865 1818.921 411.468 245.729 1155.446 519.223 5.542 125.939
Std 238.431 203.125 183.251 250.080 521.197 144.181 328.974 210.137 111.793 132.633 229.616 164.750 253.134 473452 318.565
Rank 10 1 14 12 7 9 15 13 11 2 4 8 6 3 5
Ave 4.839 3.174 5.202 5.084 3.991 4.055 5.601 5.110 5.517 3.794 4.279 4478 4293 3.235 4418
Worst 5.055 4.638 5.476 5.352 4.931 4.333 5.874 5.475 5.560 4.034 5.203 4.777 5.000 3.865 4.932
cec08 Best 4.149 3.275 4.997 4.816 3.133 3.342 5.147 4.822 5.493 3.371 3.502 4.104 3.455 2.059 3.825
Std 0.227 0.368 0.140 0.147 0.510 0.239 0.179 0.168 0.022 0.198 0.434 0177 0.398 0.562 0.293
Rank 10 1 13 11 4 5 15 12 14 3 6 9 7 2 8
Ave 3.726 1.209 2528 2312 1.095 1.495 6.666 2.264 1.234 1.275 1.486 1.277 1.330 1.216 1.435
Worst 4445 1.385 3.225 3.29 1.208 1.829 8.271 3.043 1377 1.337 1.904 1.362 1475 1.297 1.723
cec09 Best 2.779 1.056 1.925 1.544 1.045 1.251 5.311 1.601 1.083 1.185 1.058 1.169 1.144 1.081 1.196
Std 0.488 0.084 0313 0.453 0.038 0.146 0.733 0.401 0.098 0.037 0.225 0.056 0.108 0.047 0.156
Rank 14 2 13 12 1 10 15 11 4 5 9 6 7 3 8
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Table 4. Cont.
Function Index COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
Ave 21.455 21.017 21.788 21.635 19.365 21.381 22.101 21.737 20.985 20.934 21.019 21.452 21.368 21.434 21.462
Worst 21.624 21.464 21.992 21.832 21.601 21.566 22.367 21.978 20.987 21.191 21.115 21.620 21.592 21577 21.628
cecl0 Best 21.205 21.145 21.413 21.373 1.001 20.591 21.709 21.464 20.983 18.057 21.000 21.253 21.027 21.263 21.185
Std 0.121 0.082 0.140 0.143 6.123 0.201 0.193 0.126 0.001 0.705 0.032 0.098 0.162 0.088 0.106
Rank 10 4 14 12 1 7 15 13 3 2 5 9 6 8 11
Mean Rank 9.4 2.3 133 11.4 3.6 6.4 14.9 12.1 79 5.2 6.1 8.8 47 43 8.6
Final Ranking 11 1 14 12 2 7 15 13 8 5 6 10 4 3 9
Table 5. Significance of CMRLCCOA and different algorithms in CEC2019.

Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
cec01 NaN/= 8.01E-09/- 6.08E-08/- 2.99E-08/- 8.01E-09/- 8.01E-09/- 6.08E-01/- NaN/= 6.51E-08/- NaN/= 8.01E-09/- NaN/= 8.01E-09/- 7.93E-09/-
cec02 1.57E-08/- 6.80E-08/- 9.23E-06/- 1.33E-02/- 6.80E-08/- 7.33E-07/- 6.80E-08/- 7.58E-04/+ 9.21E-08/- 6.33E-08/- 3.76E-06/- 7.95E-07/+ 6.31E-08/- 6.80E-08/-
cec03 3.85E-02/- 7.99E-08/- 6.80E-08/- 7.95E-07/+ 1.93E-02/- 6.80E-08/- 6.31E-07/- 2.22E-04/- 1.81E-05/- 1.79E-02/- 6.80E-08/- 7.58E-06/- 6.67E-06/+ 9.75E-06/ -
cec04 6.80E-08/- 6.04E-09/- 3.88E-09/- 4.39E-02/- 1.01E-02/- 9.38E-06/- 9.03E-06/- 6.80E-08/- 8.59E-02/= 9.05E-03/- 7.92E-09/- 1.79E-04/- 6.04E-03/- 1.61E-04/-
cec05 7.32E-07/- 6.80E-08/- 7.90E-08/- 3.10E-01/=  5.08E-01/= 3.20E-05/- 5.30E-06/- 6.80E-08/- 1.33E-01/= 6.95E-01/= 5.23E-07/-  3.37E-02/+ 9.11E-09/-  2.62E-01/=
cec06 6.80E-08/- 4.26E-07/- 6.80E-08/-  3.99E-06/+ 1.25E-05/+ 6.80E-08/- 7.69E-07/- 9.60E-04/- 1.81E-05/+ 2.32E-05/- 4.41E-01/- 1.79E-02/-  2.56E-07/+  2.561E-03/-
cec07 3.68E-08/- 7.30E-08/- 6.80E-08/- 3.97E-03/- 6.80E-08/- 6.80E-08/- 9.01E-06/- 7.31E-06/- 2.50E-01/= 2.62E-01/= 2.50E-07/- 8.29E-05/- 8.18E-01/= 3.75E-04/-
cec08 7.88E-05/- 6.80E-08/- 9.10E-06/- 3.99E-06/- 1.25E-05/- 6.36E-09/- 6.80E-08/- 6.80E-08/- 1.81E-05/- 2.36E-06/- 4.41E-01/= 1.79E-02/- 2.56E-07/- 2.56E-03/-
cec09 8.21E-08/- 6.80E-08/- 6.80E-08/- 1.81E-05/+ 6.01E-07/- 6.80E-08/- 3.67E-04/- 2.98E-01/= 2.80E-03/- 1.61E-04/- 6.04E-03/- 9.21E-04/- 2.39E-02/- 1.41E-05/-
cecl0 9.05E-03/- 1.23E-07/- 1.38E-06/- 1.26E-01/= 7.64E-02/- 6.80E-08/- 6.80E-08/-  5.33E-05/+ 2.56E-07/+ 6.80E-08/- 3.06E-03/-  5.08E-01/= 1.06E-02/- 1.95E-03/-
+/=/- 0/1/9 0/0/10 0/0/10 3/2/5 1/1/8 0/0/10 0/0/10 2/2/6 2/3/5 0/3/7 0/1/9 2/2/6 2/1/7 0/1/9
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4.5.2. Convergence Curves for Iterations

The convergence curves of comparison algorithms are shown in Figure 17. CMRLC-
COA has a very smooth iteration curve and can approach the optimal solution quickly. This
shows that CMRLCCOA converges faster than other algorithms, so this algorithm is capable
to solve high- and low-dimensional problems. In the experiments on the high-dimensional
cec03 function, the CMRLCCOA function converges very fast and moves rapidly to the
optimal solution. The CMRLCCOA reaches the neighborhood of the optimum with few
iterations during the solution of functions cec05, cec07, and cec09. The convergence is
significantly better. The GMO for cec08 is closest to the optimal value and its convergence
effect is also excellent. In addition, as shown in Figure 12, the CMRLCCOA algorithm
has a very large slope, almost vertical, on the early convergence curves of most functions,
indicating that the algorithm has a high sensitivity. Also, PSO, IGWO, OMA, and GMO
algorithms show good competence in certain functions. The results show that CMRLCCOA
converges faster, gradually approaches the optimal solution, and has better optimization
ability than others.

4.5.3. Boxplot of Experimental Results

Figure 18 illustrates a box-and-line plot of CMRLCCOA and other comparative algo-
rithms optimizing the CEC2019 test function. As can be noticed from the figure, it can be
noticed that the CMRLCCOA has a lower median case and narrower inter-quartile range,
especially in the functions cec01, cec02, cec05, and cecl0. It shows that the solutions of
CMRLCCOA are more centralized than the other algorithms and are robust. However,
CMRLCCOA produces outliers in the optimization process of some functions, such as
cec08 and cec09. This phenomenon indicates that this algorithm is unstable to some extent.
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Figure 18. Boxplot of CMRLCCOA algorithm with other comparative algorithms in CEC2019.

4.5.4. Radargram Behavior Analysis

A radar chart is a chart that shows multidimensional data and also shows how much
weight is given to each variable in a set of data and can be used to show performance data.
To visualize the performance ranking of the different tested functions for all algorithms,
Figure 19 illustrates the radar chart of the results for the 10 tested functions sorted. A
larger area of the filled portion indicates a lower overall ranking of the algorithm. From
Figure 19, it can be concluded that CMRLCCOA has the smallest area, which indicates that
CMRLCCOA has the smallest total ranking and the best overall optimization capability.
Furthermore, GMO and IGWO also show better performance.

CMRLCCOA

Figure 19. Cont.



Biomimetics 2024, 9, 399 30 of 51

Figure 19. Radar chart of CMRLCCOA and other algorithms on CEC2019.

To show the results on the test set more clearly, they are shown here by stacked
histograms. As shown in Figure 20, the total height of CMRLCCOA is the lowest. This
indicates that CMRLCCOA has relatively the best overall performance and CMRLCCOA is
effective. This shows that the mixing of multiple strategies with COA and the construction
of CMRLCCOA are effective as well as successful.
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Figure 20. The stacked histogram on all test sets.

5. Solutions to Real-World Engineering Optimization Problems

To further test the performance of CMRLCCOA, this section tests it against several
excellent metaheuristic algorithms on several complex real-world engineering applications.
The comparison algorithms include KOA [62], TROA [66], BWO [29], AO [78], HBA [79],
SWO [63], GMO [64], OMA [65], and GO [67]. Their parameters are kept consistent with
Table 2. They are not repeated here. The experimental part is as follows.

5.1. Single-Stage Cylindrical Gear Reducer (SSCGR)

SSCGR [80] is a kind of reducer that is widely used. The reducer consists of an input
shaft and an output shaft. It typically serves as a speed reducer between the primary
component and the operational machinery. However, designers tend to focus on the quality
and design efficiency of the reducer, thus ignoring the reducer’s consumables, resulting in
a huge waste. With the goal of minimizing the number of reducer consumables, SSCGR
is established as follows under the premise of meeting the physical model and stability
requirements of the reducer: tooth width D, case width B, discrete parameter modulus P
and three integer parameters, {dq, dy, z1 }, namely. Figure 21 illustrates a diagram of the
SSCGR. After specifying the optimization objective, we define the problem as follows:

X = [D, B,P,d’,d’z,zl].
Minimize

f(X) = m(1.1875x1x3x2 + 0.262x1x3 — 0.282x1x2)
+21.25x1x3x¢ + 0.25x5x3 4 0.25xx2 + 70x2
+80x% — 21.25x1x3 + 0.2x1x3x5x6 — 0.4x1X35)

subject to

(X) = 1,367,657.1038

& X3X6+/X1

_ 6,952,400,000
—0.0854x1x3x3 + 6.666x1¥3x2 + 169x1 ¥3x4

—855 <0,

82(X) —261<0,
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6,952,400,000

X) = ~213 <0,
83(X) —0.394x1 3223 + 17.695x1 3232 + 2824x1 3% =
12.077149x3
ga(X) = =2 0.003x, <0,
X3X,4 X6
2.2
g5(X) = w\/l +0.3073807236 —55 < 0,
X3XyX6 X5
28,456,113. x3x2
g6(X) = 8456, 33 636, \/ 1+7.684501-28 — 55 <0,
X3X5X6 X5

97(X) =17 —x6 <0, g3(X) =2 —x3 <0,
89(X) = x3x6 — 300 < 0, g10(X) =16 — x1/x3 <0,
g11(X) = x1/x3 =35 <0, g12(X) =100 — x4 <0,
213(X) = x4 —150 <0, £14(X) =130 — x5 <0,
915(X) —200 <0, g16(X) = x1 +0.5x5 +40 — x <0,
where the ranges of six design variables being 50 < x; < 150, 150 < x, < 350, 0 < x3 < 50,

50 < x4 < 150,50 < x5 < 200, and 15 < x¢ < 30. In addition, x3 is a discrete variable, the
range of the variable is shown in Table 6, and x4, x5, and x¢ are integer variables.

Figure 21. Plane schematic diagram of SSCGR.

Table 6. The discrete value of the standard modulus.

x3: Standard Modulus (mm)

0.1 0.12 0.15 0.2 0.25 0.3 0.4
0.5 0.6 0.8 0.1 1.25 15 2

25 3 4 5 6 8 10
12 16 20 25 32 40 50

Tables 7 and 8 contain the values of the variables taken and the minimum amount of
consumables obtained by CMRLCCOA and other algorithms. It proves that CMRLCCOA
outperforms other algorithms on average and is relatively stable. Therefore, CMRLCCOA
is preferred for solving this hybrid discrete problem.
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Table 7. The results of the SSCGR problem.

Algorithms X1 X1 X1 x1 X1 X1
CMRLCCOA 84.3521 164.5389 12 76 96 15
KOA 68.31117 163.3201 12 61 87 19
TROA 127.9832 236.9841 6 100 138 23
BWO 125.2962 242.9624 10 77 72 15
AO 52.0544 150.0000 8 68 84 19
HBA 59.0237 150.0234 8 67 83 21
SWO 112.3465 265.799 6 108 148 24
GMO 125.6832 234.0342 5 107 140 27
OMA 120.4782 243.8961 6 100 98 24
GO 120.9341 230.4218 6 108 138 25

Table 8. The solution quality of SSCGR problem.

Algorithms Best Cost Worse Cost Average Cost Standard Deviation
CMRLCCOA 9,753,030 19,553,655 15,358,330 258,799.75
KOA 11,703,116 49,804,525 23,770,950 9,668,408.43
TROA 11,020,774 37,884,551 20,846,936 6,707,838.46
BWO 14,902,880.2 17,193,421.69 15,818,208.26 544,502.38
AO 15,235,791.91 16,184,369.46 15,671,961.51 255,292.88
HBA 15,525,037.23 16,184,369.46 15,986,219 282,022.135
SWO 19,478,312.31 28,378,921.72 24,589,213.91 5,423,637.31
GMO 20,786,321.63 34,762,811.82 28,970,643.84 6,272,892.32
OMA 28,876,731.35 34,678,891.78 31,328,901.12 256,893.21
GO 26,895,531.98 36,755,467.90 31,548,903.82 4,983,221.34

5.2. Welded Beam Design Problem (WBD)

WBD [81,82] is a classical nonlinear programming problem. Its target is to reduce the
production costs associated with the design. Figure 22 illustrates the WDB. This problem
is to obtain four constraints that satisfy the constraints of shear stress (7), bending stress
(9), bending load (P) of the beam bar, end deviation (6), and boundary conditions, such
that the cost of fabricating the welded beam is minimized. This question can be explained
as follows:

Figure 22. Schematic of WBD.
Variant:
—
Q = [91,92,93,94] = [, 1, £, b].
Minimize .
£(Q) = 110471422 + 0.048114394(14.0 + g2).
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subject to

H
f2(Q) =q1—q4 <0,
) =P —Pe(Q) <0,
) =0.125—gq; <0,

R
f7(Q) = 11047143 + 0.0481143q4(14.0 + g5) — 5.0 < 0.

Variable Scope:
01<g;<201<¢g, <10,

01<g3<10,01<g,<2.

where

@ =/ r2ee s @,
, P MR

/A

CVoge T
M=p(L+D)

+
/q +(Q12%)’

R =
+
{ 2014, (‘112‘73) }
ﬁ = 6PL3
o(Q) = Q) =
‘74‘73 Eq3q4

6
(S _4.01315\/% L _ [ E
c(Q)_T< -1 @),

P = 6000Ib, L = 14in, 6max = 0.25in, G =12 x 106;951',
E =30 x 106;951', Tmax = 13,600psi, 0max = 30,000psi.

Table 9 presents the values of the variables and the manufacturing costs. Observing
the graphs, it is noticeable that the mean and minimum expenses obtained by CMRLCCOA
are less than the comparative algorithms. Therefore, CMRLCCOA can be prioritized when
solving similar problems and this algorithm is significantly competitive.

Table 9. Numerical results of ten algorithms for the WBD.

Element CMRLCCOA KOA TROA BWO AO HBA SWO GMO OMA GO

X1 0.634 0.163 0.205 0.204 0.156 0.723 0.621 0.169 0.483 0.341
X2 4211 4981 3.572 3.721 5.242 1.502 3.411 4.822 3.274 2.592
X3 6.802 9.164 9.824 9.311 8.968 5.368 5.391 9.231 8.021 7.608
Xq 0.633 0.246 0.214 0.287 0.219 0.642 0.511 0.205 0.425 0.328
Best 1.660 1.664 1.661 1.663 1.747 2.011 1.683 1.662 1.673 1.691
Worse 1.671 2.130 1.683 2173 2.162 4.702 6.326 2.750 2.238 2.691
Mean 1.665 1.932 1.674 1.801 1.944 3.164 3.890 2.137 1.902 2.185

Std 0.006 0.132 0.008 0.121 0.133 0.783 1.311 0.185 0.133 0.170
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5.3. Cantilever Beam Design Problem (CBDP)

This problem is to reduce the weight of the suspension beam arm. The structure of the
cantilever beam consists of five hollow cells, each of which has the same cross-sectional
thickness [83]. Figure 23 illustrates the structure. The thickness of the crossbar remains
fixed and the variables are the widths of the five sections. The issue is presented as follows:

F §
S~
v

Figure 23. Illustration of CBDP.

Minimize
f(b) = 0.0624(by + by + b3 + by + bs), b; > 0.

subject to

61 37 19 7 1
b)= =+t =+ =t <1
g1(b) AR R R

Variable range:
0.01 <b; <100, i=1,2,3,4,5.

Table 10 shows the values of the variables obtained from all algorithms, as well as the
quality. The best results are marked in bold. Comparing the other results, CMRLCCOA
obtains the minimum mass and the results are more stable. This phenomenon demonstrates
that CMRLCCOA can solve the cantilever beam problem effectively.

Table 10. Statistical results of cantilever beam design issues.

Element CMRLCCOA KOA TROA BWO AO HBA SWO GMO OMA GO

X1 5.970619 6.340312 5.934021 6.094141 5.952939 6.023157 6.093914 5.873219 6.013591 5.909183
X 5.271230 5.329041 5312115 5.245089 5.279312 5.372044 5.172349 5.309218 5.305521 5.328713
X3 4.463102 4.502875 4.476823 4.454137 447316 4.780241 4.768092 4.457552 4.432802 4.795219
X4 3.476491 3.592133 3.508861 3.425591 3.469623 3.542192 3.523891 3.492033 3.509931 3.480216
X5 2.137348 2.160322 2.436287 2.102532 2.149688 2.023797 2.153571 2.437761 2.189233 2.039822
Best 13.302191 16.433288  14.306442  13.32191 13.317692  13.347884  13.863016  13.712833  13.690375  13.926679
Worse 3.313796 24306681  27.683391  13.396380  13.329414  14.216902 13.926871  16.086629  14.283347  19.37228
Mean 13.308977 20499271  19.903173  13.358301  13.322805 13.983346  13.890766  14.03799 13.998273  15.349741
Std 3.16E-05 3.8891 4.0399 1.98E-02 2.93E-03 2.57E-02 1.79E-02 9.91E-01 3.88E-02 2.67E-01

6. Real Application: Engineering Optimization Problems

Hypersonic technology is an important milestone in the history of the world’s ar-
maments and equipment, which greatly enriches the content of offensive and defensive
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initial heading

confrontation in the adjacent space, represents a country’s ability to develop and utilize
space in the future, and is an important symbol of the army’s combat power and surviv-
ability, and has a wide range of prospects for application and extremely important military
value. The main advantages of hypersonic vehicles are fast flight speed, high flyable
altitude from the ground, strong capability of surprise and defense, and great destructive
power. In the face of future informationization and intelligent combat, hypersonic vehicles
can play a great role by using their characteristics [84].

Since hypersonic vehicles are extremely fast in flight, the environment becomes more
complex when the vehicle enters the re-entry or cruise phase, resulting in the need for
a control system that is extremely stabilized and at the same time can achieve precise
control. Due to the extremely high speed, the missile cannot make a sharp turn in the
air. Therefore, in some instances, it is necessary to limit the curvature and turn rate of the
aircraft trajectory [85]. Many scholars at home and abroad have also studied this problem.
In this section, we will model the path planning of cruise missiles for hypersonic vehicles
and apply CMRLCCOA to solve the problem [86].

6.1. Background and Establishment of the Model

With the continuous development of weapons technology, the system in the field of
military defense and control is being gradually improved. The traditional ballistic missile
path may face the risk of being predicted or even intercepted, which is not safe. For the
actual ballistic path optimization design problem, different tactical indicators often have
different optimization objectives. Hypersonic cruise missiles fly extremely fast and can
change their trajectory, thus greatly reducing the risk of interception. These characteristics
make it possible to attack targets with very short warning times and at very high speeds.
However, current research in this area is relatively small and has not achieved a major
breakthrough. In this section, we look at cruise missile trajectories at hypersonic speeds,
first considering only the following two conditions:

The hypersonic flight threat area and trajectory map are shown in Figure 24. The
constrained region is shown in Figure 25, which shows the positional coordinates of the
craft in relation to the radar. In this paper, the radar-centered range of 400 km is used as the
solution space, and it is considered that the vertical distance between each defense unit is
as far as possible, thus increasing the lateral distance of the interceptor missile.

threat area

»

adjusted outbound heading
planning path

Figure 24. Threat area and path planning map.

Hypersonic missile trajectory modeling needs to satisfy certain conditions. Assuming
that there are a total of n cubic curves, the curvature of the i-th curve is denoted as p;(t),
1 < i < n. The length of the curve is denoted as [;, and the derivative of the curvature is
denoted as d;(t). The control fixed points are B;, B; 1, B; 5, B; 3, respectively.

Optimization Objective: The length of the missile trajectory curve is the shortest and
the curvature derivative is the largest.

Limitations: The range of feasible domains, continuity constraints, maximum curva-
ture constraints.

Decision Variable: The control vertex.
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hypersonic vehicle

optical warp
and woof

projector

Figure 25. Vehicle versus radar position plot.
Minimize
n n
k1) li+ko)_ Di(t)

i=1 i=1

subject to
D;(t) = min(d’;(t)), 0 < d;(t) <1/R,
i=1,2,...,n, j: 0,1,2,3,

I = / ¢ + (g (1)),
- PO <> 0 ()
(P (1)* + (¢ (1))

where k; and k; are the weighting factor.
The above is a more complex minimization problem proposed in this paper. Next,
CMRLCCOA is used to solve it for hypersonic missiles.

6.2. Solving the Model

CMRLCCOA, as well as KOA, TROA, BWO, AO, HBA, SWO, GMO, OMA, and GO,
is applied to the hypersonic cruise ballistic optimization problem. Table 11 lists the optimal
ballistic lengths solved by the 10 algorithms. Observing the table, it can be observed that the
shortest length obtained by CMRLCCOA is 51.231801 km. This result is less than the results
calculated by the others. This phenomenon indicates that CMRLCCOA performs better.

Table 11. Path lengths of CMRLCCOA and other algorithms.

Element CMRLCCOA KOA TROA BWO AO HBA SWO GMO OMA GO
Length/km  51.231801 57.228763 58.183246 51.243317 51.375423 53.902461 55.320411 51.410963 53.801934 57.944201

7. Summary and Outlook

In this paper, four strategies are used to improve COA, which leads to the proposed
CMRLCCOA. First, in the initialization population phase, the coati population is initialized
using the Sine chaotic mapping function to avoid population randomization. Second,
a lens imaging reverse learning strategy is applied to renew the location of the coati
population again. This strategy can expand the search space and enhance the quality of
coati populations. Then, the Lévy flight strategy allows coatis to move over a wide range
in the search space, reducing the iguana constraint. This method makes the algorithm
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better at finding a global optimum. Finally, the use of the crossover strategy reduces the
search blind spots and improves the algorithm’s accuracy. Experiments are conducted
in CEC2017 and CEC2019 test suites, where 50 and 100 dimensions are used in CEC2017.
Lastly, the optimization results derived from CMRLCCOA are compared with COA, six new
algorithms proposed in the last two years, four classical and well-recognized algorithms,
and three enhanced algorithms. Then, we find that the newly proposed CMRLCCOA
has better results and higher performance. In addition, CMRLCCOA is able to optimize
to obtain better solutions to the three engineering problems. Finally, this paper also
establishes a model of a hypersonic vehicle cruise ballistic problem. CMRLCCOA performs
best in solving the hypersonic cruise ballistic trajectory optimization, reflecting the strong
optimization capability and stability of CMRLCCOA.

To conclude, this study has strong scientific and practical value. The possible future
work is as follows: Although the proposed CMRLCCOA has enhanced optimization ca-
pability and accelerated convergence speed, it still has areas of improvement in terms of
computational complexity and computation time. CMRLCCOA will be further optimized
for this problem in the follow-up work. In addition, we will continue to study on the
basis of CMRLCCOA to obtain better solutions and apply it to address many complicated
optimization problems, including route planning [87,88], image division problems [89],
workshop scheduling [90], feature selection [91,92], shape optimization [76], and engineer-
ing optimization [93], and further expand the application field of intelligent algorithms.
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Appendix A. Results of the CEC2017 Test Set
See Tables A1-A4.
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Table A1l. Optimization results of CMRLCCOA algorithm with 14 algorithms in cec2017 function when dim = 50.
Algorithms
Function Index
COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

Ave 1.08E+11 22,777,249 1.18E+11  1.07E+11  43,547.92  8.9E+09 2.67E+11  149E+11  123E+10 1.28E+08  22,115.01 4.19E+09 4,589,023  3.26E+08  1.13E+10
CECO01 Std 2.56E+09 7,420,778 147E+10  1.26E+10  20,964.4 2.01E+09  8.81E+09  1.09E+10 4.49E+09 46,273,671 17,616.93  3E+08 3,000,020 2.78E+08  8.81E+09

Rank 12 4 13 11 2 8 15 14 10 5 1 7 3 6 9

Ave 193,393.7  83,357.22 495,184.8  374,6129  151,513.8 168,9884  1.63E+10 14,125,521 108,651.2  261,878.2  427,856.9  333,521.1  258,155.3  61,505.58  324,586.3
CECO03 Std 16,512.06  13,517.11 120,262.1  55,484.44  11,447.75 22,600.47  3.2E+10 25,904,509 16,905.62  23,397.86  109,269.6  45,840.02 52,501 7858.062 73,677.19

Rank 6 2 13 11 4 5 15 14 3 8 12 10 7 1 9

Ave 37,169.12  666.11843 29,217.66  32,616.67  595.0011 1957.124 116,582.1  50,507.09  3696.137 862.5515 658.4734 1263.84 655.8 659.9922 2276.58
CEC04 Std 8525.985 50.203537 9385.45 4779.994 47.57367 613.9945 12,298.04  7394.986 856.2404 17.60447 79.87179 91.04166 85.99321 25.16279 1473.755

Rank 13 5 11 12 1 8 15 14 10 6 3 7 2 4 9

Ave 1193.308 739.7449 1290.262 1289.723 678.3483 850.7566 1683.433 1356.928 888.8936 904.5467 783.4538 1010.374 872.9973 705.418 926.5937
CECO05 Std 22.23096 34.83147 16.77681 42.89903  43.8473 33.98982 64.33351 25.00527  8.49458 18.80467  25.24603 16.72415 33.29331 82.20668  47.40865

Rank 11 3 13 12 1 5 15 14 7 8 4 10 6 2 9

Ave 697.2991 652.73418 708.4708 707.0367  617.3871 638.1543 746.2198 714.9182 674.0721 602.7132 600.5653 623.6647 659.8166 603.5628 656.9779
CECO06 Std 4.636789 9.3784893 3.542636 8.981565 5.473167 2.657291 6.883185 4.726849 2.803705 0.159644 0.360944 2.518193 11.04104 0.565964 7.909236

Rank 11 7 13 12 4 6 15 14 10 2 1 5 9 3 8

Ave 2034.219 1254.761 3043.196 2108.583 900.3868 1681.005 5910.989 3364.926 1819.316 1174.162 1083.525 1413.702 1528.194 1014.83 1427.293
CEC07 Std 43.61301 118.2879 371.1122 58.89466 25.55611 168.9367 403.1108 293.7753 17.72496 15.6616 49.23108 12.65898 150.4762 109.4659 312.1561

Rank 11 5 13 12 1 9 15 14 10 4 3 6 8 2 7

Ave 1477.196 1144.4651 1614.532 1549.343 1020.067 1203.821 1986.525 1682.505 1240.873 1192.076 1057.334 1307.304 1145.338 982.4962 1192.125
CEC08 Std 13.15204 65.467167 47.45637  32.80135 147.442 63.90452 26.18005 27.834 6.61208 13.27879 62.73983  45.10759 29.54384 30.64892 55.9351

Rank 11 4 13 12 2 8 15 14 9 6 3 10 5 1 7

Ave 36,375.47  3960.819 55,732.01  49,408.77  2846.232 15,906.27  108,071.8  67,110.53 17,183.96  11,831.44  21,525.81  12,520.32  12,959.32  2920.979 23,925.96
CEC09 Std 2849.587 1075.734 7913.843 2455.993 2283.157 1504.345 8244.483 8710.391 917.6917  920.0699 2877.513 1540.828 676.074 849.9576 15,603.63

Rank 11 3 13 12 1 7 15 14 8 4 9 5 6 2 10

Ave 15,101.72  8546.989 16,203.35 15,835.74  5414.964 14,919.44  17,24251  16,910.83  9302.555 12,483.82  7057.742 15,084.94  7065.536 13,192.26  9308.447
CEC10 Std 221.4496 682.51606 399.6127 841.2409 897.9448 331.3749 1234.191 233.4546 331.255 400.1101 417.6019 223.1407 474.6596 2732.186 626.4859

Rank 11 4 13 12 1 9 15 14 5 7 2 10 3 8 6

Ave 24,864.66  1361.044 44,046.72  31,941.3 1587.692 2697.973 109,948.7  44,945.56  2221.056 6490.606 5980.947 8613.898 1751.453 1477.223 3489.805
CEC11 Std 1508.507 25.92436 10,908.1 6367.875 120.0267 548.0429 28,355.74  9232.634 186.8323 1611.709 5798.111 214.1184 75.62217 112.0471 1468.077

Rank 11 1 13 12 3 6 15 14 5 9 8 10 4 2 7

Ave 6.72E+10 20,936,519 5E+10 472E+10 55,244,111 5.16E+08  1.38E+11  5.79E+10  2.8E+09 249E+08 22,295,145 5.49E+08 19,124,122 51,274,629 2E+09
CEC12 Std 1.15E+10  4,209,179.7 1.11E+10  9.29E+09 34,524,448 2.56E+08  1.9E+10 8.63E+09  9.69E+08 37,525,785 7,007,320  1.42E+08 5,497,266 31,451,961 1.35E+09

Rank 14 2 12 11 5 7 15 13 10 6 3 8 1 4 9

Ave 4.13E+10  29,603.37 1.69E+10  2.28E+10  69,344.11 10428566 7.66E+10  2.53E+10  4.85E+08 9,842,121  13,21519 15946.13  29,501.78  731,335.7  7.33E+08
CEC13 Std 4.45E+09  10,333.93 1.01E+09  8.46E+09  30,601.48 8,246,186 2.85E+10  6.37E+09  4.08E+08 3,460,376  8034.778 7434.498 9961.064 315,648.8  1.35E+09

Rank 14 4 11 12 5 8 15 13 9 7 1 2 3 6 10

Ave 65,470,166  229,560.17 29,239,168 72,680,621 279,850.6  225,788.2  3.19E+08  1.09E+08 1,936,955 2,688,963 5564561 3,131,591  657,7409  112,276.5 1,570,218
CEC14 Std 81,051,780  107,000.38 5,317,825 66,025,071 199,602.7  240,768.8  1.3E+08 74,868,291 2,057,292 828,156 4,939,227  916,533.5  212,279.2  60,721.49 1,164,916

Rank 12 3 11 13 4 2 15 14 7 8 10 9 5 1 6
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Table Al. Cont.
Algorithms
Function Index
COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

Ave 9.89E+09  16,700.68 4.89E+09  446E+09  17,082.37  33,754.76  2.56E+10  9.46E+09  49,96549 1,548,365 11,555.33 17,365.23 15979.73  210,972.8 28,621,778
CEC15 Std 2.3E+09 9719.672 126E+09  1.66E+09  4809.354  48,172.26  6.24E+09  2.33E+09  65,045.48 551,6104  7479.573  9723.996  7150.865  118,015.6 34,812,203

Rank 14 3 12 11 4 6 15 13 7 9 1 5 2 8 10

Ave 9099.678  3207.398 7618.124  8901.292  3039.643 4477407  15601.72  8329.691  4518.336  4322.064  3834.053  5282.878  3208.344  2878.653  4429.806
CEC16 Std 298.344 375.81309 2453604  436.3029  388.9831 188.797 1509.998  673.5675  221.828 187.1573 ~ 729.1978  214.755 233.0231  444.956 352.1305

Rank 14 3 11 13 2 8 15 12 9 6 5 10 4 1 7

Ave 8729.022  2845.358 12,330.74  6696.481  2718.79 3631.466 2,322,642  46,408.27  3766.865 3443919  2916.01 3996.468 3118238  2641.981  3889.49
CEC17 Std 4081.734 2489313 6270.508  323.4054  216.5457  332.3307 = 2,466,579  54,011.65 236.5153  208.5305  133.9688  116.1851 = 226.0531 = 619.8051  310.2085

Rank 12 3 13 11 2 7 15 14 8 6 4 10 5 1 9

Ave 2.38E+08  1,234,407.4 2.23E+08  1.17E+08 1,321,256 1,231,943 155E+09 3.11E+08 1,271,874 8,839,026 10,469,508 22,416,209 2,581,265  885,141.6 6,242,625
CEC18 Std 1.26E+08  1,161,304.1 1.14E+08 31,758,781 468,364.3 1,091,914 557E+08  1.67E+08 254,059 2,981,783 6,952,494 5835715 1,260,645 4444246 4,106,505

Rank 13 3 12 11 5 2 15 14 4 8 9 10 6 1 7

Ave 3.49E+09  43,514.24 139E+09  2.72E+09 1,328,314  30,601.03 1.64E+10 4.89E+09  849,356.3 632,801.6  21,13447 18,793.35 22,011.91 101,738.8 1,202,988
CEC19 Std 1.33E+09  9171.384 454E+08  9.39E+08 1,184,440 8086.937  2.96E+09  1.84E+09 797,817.2  164,401.3  14,463.14 7799.813  14,582.63 34,5154 2,066,650

Rank 13 5 11 12 10 4 15 14 8 7 2 1 3 6 9

Ave 4264.671  3176.6481 5037.649  4958.044 2929479  3959.729  5635.665  4924.366  3911.16 3391.586  3363.697  4133.166  3117.517  3200.931  3468.399
CEC20 Std 217.298 166.08 231.7725  237.1699  433.6476  129.4059  189.2257 = 2132764 1323606  316.4075 = 412272 130.6882  280.4358  668.7847  206.062

Rank 11 3 14 13 1 9 15 12 8 6 5 10 2 4 7

Ave 3231.155  2344.293 3166.854  3110.984  2467.589  2632.248  3490.363  3178.499  2983.725  2691.148  2583.096  2790.708  2649.308  2479.574  2653.103
CEC21 Std 45.04548  51.00179 6329145  62.67646 3291107  60.53255 ~ 106.4844 4590163  49.42571  20.37949  23.93868  22.74097  109.809 23.21851  75.09771

Rank 14 1 12 11 2 5 15 13 10 8 4 9 6 3 7

Ave 16,454.59  10,865.898 18,037.24  17,80048 8004233  16,180.67  19,580.2 18,154.02  14,080.81  14,360.75  8665.501 16,575.73  11,106.81  13,692.32  10,633.68
CEC22 Std 4131295  467.39056 376.7972  493.6783  2890.267 7153968  574.2815  469.1817 = 213.242 3229298 7384887  379.5504  941.0086  4692.072  785.1567

Rank 10 4 13 12 1 9 15 14 7 8 2 11 5 6 3

Ave 4591.849  3001.786 3957.705  4288.638  3931.111  3456.039  5008.414 4025427  5706.731  3146.138  3003.78 3215223  3357.584  2980.28 3247.391
CEC23 Std 89.95229  54.11106 53.852 100.1697  81.06274  96.068 319.3221  49.19432  179.572 6.093371  87.61949  10.52026  350.6283  120.8443  115.2883

Rank 13 2 10 12 9 8 14 11 15 4 3 5 7 1 6

Ave 4847.797  3231.4568 4115.103  4862.816  3090.177  3408.62 5764.142 4135503  3806.828  3380.324 3281577  3349.475  3393.734  3098.505  3326.246
CEC24 Std 212.537 51.47082 109.419 3372296 7329847  39.81138  385.9678 1129797  107.01 8.721637  48.63015  10.76343  178.0664  105.0975  12.47433

Rank 13 3 11 14 1 9 15 12 10 7 4 6 8 2 5

Ave 15498.68  3148.276 17,123.51 1520547  3062.584 4548281  57,542.68  28,931.78 4520973  3282.677  3078.34 3797.379  3174.841  3203.052  3386.577
CEC25 Std 899.3804  31.63694 3609.818  1089.657  23.07329  510.3022  6522.157  3238.07 201.4541  34.31462  10.85326  80.88986  43.57991 4531785  309.0026

Rank 12 3 13 11 1 10 15 14 9 6 2 8 4 5 7

Ave 16,669.95  6579.2521 18,986.31  17,692.56  2900.934  10,710.99  32,28228  19,108.84  12,965.48 7752529  7172.061  8627.301 = 8630.337  6004.097  8398.559
CEC26 Std 767.8479  747.62355 1052.36 869.9465  0.127582  996.7537  3493.074  581.5774  496.3631 166.1123  729.2199  147.012 3003.13 779.4425  1175.369

Rank 11 3 13 12 1 9 15 14 10 5 4 7 8 2 6

Ave 6725.142  3200.012 5903.513 6138577  3428.48 3829.855  9553.585  5847.802  11,871.15 3729.927  3565.047  3591.646  3518.086 3315919  3930.156
CEC27 Std 508.8131  0.000107 2629817  553.7433  29.68044 9557017  916.492 516.5143  522.0628  30.22302  100.1004  10.31284  93.57749 2693388  202.9049

Rank 13 1 11 12 3 8 14 10 15 7 5 6 4 2 9
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Table Al. Cont.
Algorithms
Function Index
COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
Ave 12,383.48  3300.012 14,706.42  11,444.54  3341.592 4973.66 24,354.67  14,033.13  5608.795 3668.433 3353.469 5002.39 3404.716 3570.996 4836.268
CEC28 Std 576.9375 9.85E-05 1124.724 1487.904 24.33589 323.4519 3063.77 804.8052 515.085 79.06832 28.3977 301.4169 25.25116 95.67398 1568.961
Rank 12 1 14 11 2 8 15 13 10 6 3 9 4 5 7
Ave 82,826.59  4272.29 19,484.39  30,984.81  4510.673 6019.704 3,041,045 128,315 8518.909 4863.249  4556.345 5851.252 4557.7 4330.394 5326.608
CEC29 Std 35,551.16  120.8293 5203.725 14,718.85  132.2595 575.5447 2,595,774  52,579.9 571.9604 185.5084 329.6816 292.1598 300.2586 337.9723 623.0801
Rank 13 1 11 12 3 9 15 14 10 6 4 8 5 2 7
Mean  4.61E+09  308,753.48 445E+09  3.99E+09 94,377,063 24,692,618 1.73E+10  5.89E+09  3.21E+08 23,709,127 1,689,550 43,351,659 3,526,259 24,012,726 1.25E+08
CEC30 Std 1.9E+09 179,270.61 1.84E+09  1.38E+09 18,863,257 9,651,455  2.23E+09  1.11E+09  156E+08 5,350,374  417,644.7 13,203,141 855,339.4 4,668,925 1.74E+08
Rank 13 1 12 11 8 6 15 14 10 4 2 7 3 5 9
Mean Rank 12.0345 3 12.2414 11.8276 3.0690 7.0690 14.9310 13.3793 8.7241 6.3103 4.1034 7.6207 4.7586 3.3103 7.6207
Final Rank 12 1 13 11 2 7 15 14 10 6 4 8 5 3 8
Table A2. Optimization results of CMRLCCOA algorithm with 14 algorithms in CEC2017 function when dim = 100.
Algorithms
Function Index
COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
Ave 2.73E+11  4.76E+08 3.05E+11  2.5E+11 7,628,116  9.6E+10 6.39E+11  3.94E+11  841E+10 3.12E+09 10,307,943 8.24E+10 243E+09 1.76E+10  3.43E+10
CECO01 Std 8.18E+09 89,561,166 2.71E+10  224E+10 2,544,815 9.7E+09 2.34E+10  2.8E+10 1.67E+10  2.85E+08 7,374,801  3.79E+09  8.27E+08  4.35E+09  2.18E+10
Rank 12 3 13 11 1 10 15 14 9 5 2 8 4 6 7
Ave 353,298.7  294,569.3 3,718,006  756,044.1  339,270.6  399,314.7  4.12E+11 15,310,302 276,368.2  643,108.1 1,113,873  854,945.8  544,057.3  390,295.3  953,783.1
CECO03 Std 10,495.9 21,142.14 4,128,337  276,199.6  13,893.96  37,294.87  7.97E+11 18,395,921 21,043.15 53,397.2 129,217.1 41,434 155,162 49,504.25  131,015.4
Rank 4 2 13 9 3 6 15 14 1 8 12 10 7 5 11
Ave 101,944.54 1179.5831 96,262.08  92,409.128  1368.321 12,339.293  270,799.61 145,276.92 16,319.20  2359.016 795.9192 12,190.83  1361.444 2088.448 6656.466
CEC04 Std 18,309.166  66.4505 11,938.31  13,065.122 122.1895 1195.149 23,881.649 18,696.464 820.030 214.246 63.0896 1673.555 120.840 406.598 1996.070
Rank 13 2 12 11 4 9 15 14 10 6 1 8 3 5 7
Ave 2097.627 1280.933 2360.325 2191.964 945.841 1693.396 3119.092 2459.332 1485.856 1623.203 1249.014 1764.648 1376.699 1010.249 1622.343
CECO05 Std 34.239 39.25346 57.647 61.9605 118.542 94.8014 87.2340 114.773 19.236 14.159 43.788 29.640 79.527 44.240 62.798
Rank 11 4 13 12 1 9 15 14 6 8 3 10 5 2 7
Ave 711.111 631.881 728.124 719.281 634.420 679.548 766.976 736.541 678.797 617.688 603.119 667.219 667.610 618.385 672.617
CECO06 Std 2.855 4.015 9.051 6.394 6.717 8.726 4.791 3.643 2.993 1.236 0.752 3.028 3.168 4.752 4218
Rank 11 4 13 12 5 10 15 14 9 2 1 6 7 3 8
Ave 3973.682 1601.900 6784.713 4474.539 1236.418 3421.330 13,605.060  7270.222 3527.810 2051.804 1741.728 4560.807 3136.223 1690.668 3224.124
CEC07 Std 90.347 161.715 534.917 521.344 93.781 377.718 568.164 654.671 42312 37.318 100.206 135.052 205.364 187.352 514.155
Rank 10 2 13 11 1 8 15 14 9 5 4 12 6 3 7
Ave 2596.122 1377.833 2777.239 2627.281 1241.784 1895.857 3574.714 2934.162 2018.710 1898.329 1611.926 2074.589 1835.894 1331.396 1758.926
CEC08 Std 25.657 68.975 85.027 61.265 59.469 120.992 46.844 43.659 23.397 43.196 80.188 20.183 49.698 38.782 53.408
Rank 11 3 13 12 1 7 15 14 9 8 4 10 6 2 5
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Table A2. Cont.
Algorithms
Function Index
COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

Ave 7922224  29,122.33 128,660.1  111,6732  29,490.81 67,53821 2358482  152,831.8 40,565.62 67,863.99  61,209.63 79,012.54  28,820.27 27,704.02  64,112.62
CEC09 Std 3339.864 1659.778 10,524.07  5554.772 17,556.36  10,277.35  10,392.25 11,4255 1512.182 6235.145 10,585.77  3162.34 1595513  6824.531 13,595.48

Rank 11 3 13 12 4 8 15 14 5 9 6 10 2 1 7

Ave 32,790.450 19,417.990 35416.69  33,516.215 18,559.31  32,401.431 36,375.258 34,398.562 20,776.46  29,847.280 1531949 32,762.45 16,711.11  28,343.490 19,512.837
CEC10 Std 879.312 1047.593 425.501 817.597 7132.740  407.106 440.794 520.312 928.078 389.829 1244.049 259.041 1193.722  4604.623 1175.141

Rank 11 4 14 12 3 9 15 13 6 8 1 10 2 7 5

Ave 284,104 17,053.48 554,277.2  338,236.7 81,392.67 77,729.78 14,809,565 469,379.8  63,239.33  120,986.8 167,2359  246,033.7 210,863 23,652.52  202,278.1
CEC11 Std 34,082.19  5422.174 102,540.6  66,713.98  14,876.86  12,723.94 26,685,425 164,6269  11,427.57  22,715.01  42,663.2 42,622.43  93,454.82  6154.067  52,814.22

Rank 11 1 14 12 5 4 15 13 3 6 7 10 9 2 8

Ave 1.93E+11 460,434,226 178E+11  1.763E+11 4.63E+08  1.42E+10 3.54E+11 1.96E+11 242E+10 2.81E+09  1.7E+08 1.07E+10  6.06E+8 1.51E+09  1.978E+10
CEC12 Std 1.36E+10 107,771,590 2.67E+10  3.20E+10 1.04E+08  3.17E+09  4.11E+10 2.88E+10 6.97E+09  2.66E+08  1.14E+08 1.04E+09 2.14E+08 2.71E+08  7.336E+09

Rank 13 2 12 11 3 8 15 14 10 6 1 7 4 5 9

Ave 458E+10  705,374.6 3.44E+10 3.66E+10  46,14351 4.69E+08 9.34E+10 4.68E+10 1.52E+09 8,858,153 3,760,681 4,052,036  120,982.1 14,931,836 2.62E+09
CEC13 Std 6.47E+09  445,638.9 5.63E+09  3.84E+09  12,587.5 2.73E+08  9.9E+09 6.9E+09 3.52E+08 4,161,014 4,310,239 972,256.9  24,388.88 6,671,448  1.79E+09

Rank 13 3 11 12 1 8 15 14 9 6 4 5 2 7 10

Ave 6.74E+07  2.25E+06 2.02E+08 1.15E+08 2.56E+06  2.58E+06  7.22E+08 3.09E+00 3.52E+06  2.08E+07  1.04E+07  4.44E+07 245E+06 248E+06  5.86E+06
CEC14 Std 420E+07  1.12E+06 417E+07  6.53E+07  9.72E+05  7.21E+05 2.84E+08 1.09E+08 1.19E+06  6.85E+06  449E+06  1.12E+07 1.10E+06 1.27E+06  2.47E+06

Rank 11 1 13 12 4 5 15 14 6 9 8 10 2 3 7

Ave 1.95E+10  9546.696 1.3E+10 1.37E+10  35,189.55 3,470,295 4.82E+10 2.08E+10  3.01E+08 7,078,410  6571.879 15,657.54  38,617.58  754,986.3  5.94E+08
CEC15 Std 2.82E+09  2966.846 1.49E+09  2.44E+09  9953.871 3,123,840 6.54E+09 3.87E+09 247E+08 2,463,740 2706.805  3315.815  29,318.37 1,050,180  8E+08

Rank 13 2 11 12 4 7 15 14 9 8 1 3 5 6 10

Ave 24,402.47  7196.036 18,935.32  20,688.44  5439.32 8527.542  38,331.94 22,767.99  11,41594 10,739.32  6311.46 11,300.92  5976.64 5650.51 7333.15
CEC16 Std 3534.919 813.892 2167.616 1096.959  410.573 1219.020 7863.731 1145.17 500.003 281.964 511.179 424.847 414.886 470.192 1121.849

Rank 14 5 11 12 1 7 15 13 10 8 4 9 3 2 6

Ave 7,506,495  5203.436 1,696,042 5,354,902  4300.178 6188.381 59,721,631 10,217,110 8101.716 6507.391 5951.282  8219.927 5242485  4757.864  8528.298
CEC17 Std 5,469,303  505.0944 1,208,380 3,019,677  422.1045  545.5352 38,442,244 2,397,608 8589186  358.4553  597.9158 171.115 501.1035  828.9385  2031.196

Rank 13 3 11 12 1 6 15 14 8 7 5 9 4 2 10

Ave 2.60E+08  3.55E+06 5.02E+08  1.82E+08  1.64E+06 4.07E+06  1.23E+09  545E+08 157E+06  3.67E+07  1.04E+07 131E+08  4.88E+06  4.42E+06  2.41E+07
CEC18 Std 8.37E+07  3.89E+05 1.01E+08  5.72E+07  530E+05 1.75E+06  3.65E+08  3.26E+08  6.43E+05 1.18E+07 3.79E+06  1.85E+07 1.56E+06  1.50E+06  2.16E+07

Rank 12 3 13 11 2 4 15 14 1 9 7 10 6 5 8

Ave 2.73E+10 1,018,630 1.39E+10  1.38E+10 6,524,024 18,875,435 5.14E+10 1.98E+10 2.66E+08 9,040,765 109,473.1 770,6499  54,888.12 2,390,721  1.47E+09
CEC19 Std 3E+09 542,126.6 3.18E+09  3.84E+09  5458,763 11,616,502 1.04E+10 2.32E+09 85,076,058 2,358,535 186,753.9 820,071.7 53,159.43 9434599  1.37E+09

Rank 14 4 12 11 6 8 15 13 9 7 2 3 1 5 10

Ave 8020.2245  5396.4145 8892.6405 8794.723  4463.43 72331513 99164206  8897.9015  6600.841 6694.9341  5790.443 7975430  5644.283  5854.5736  6046.9466
CEC20 Std 376.70445  346.05236 299.83103 31294215 5832524  381.89934 227.58954 347.79495  174.1747 130.75939  294.7866  257.0606  348.9281 1480.4182  691.95824

Rank 11 2 13 12 1 9 15 14 7 8 4 10 3 5 6

Ave 4888.186  2533.89 4654.448  4606.759  2720.731 3224877  5524.452  4607.875 3886.961 3456.748  3178.491 3655.453  3364.423  2855.625  3411.429
CEC21 Std 1412145  57.18946 214.5147  198.2536  45.67756 9790937  272.4738 71.80242  98.18394 13.77816 128.2499  26.63459 108.223 76.3268 208.9475

Rank 14 1 13 11 2 5 15 12 10 8 4 9 6 3 7
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Table A2. Cont.
Algorithms
Function Index
COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

Ave 34,490.404 25,105.719 37,645.034 36,570.993 16,826.23  34,600.645 38,334.646 37,449.751 23,964.47  32,419.038 17,160.27  34,504.04 21,157.94  26,213.823 22,792.238
CEC22 Std 396.41199  1457.9349 174.97446 47448635 1091.814 200.1131 587.74333  564.42666  924.0662 76290312  1744.518 653.493 826.021 7547.8622  1498.8567

Rank 9 6 14 12 1 11 15 13 5 8 2 10 3 7 4

Ave 6503.197  3275.887 5826.441 6630.901 3508.979 3937.316 8480.193 5589.357  8996.312 3788.27 3255.018  4021.647  4101.495 3287.275  4014.837
CEC23 Std 315.331 87.22193 384.8876 529.0215 53.98898 111.6973 375.7383 218.6821 245.7108 32.64485 78.62813 18.24601 136.4175 66.19829 183.4196

Rank 12 2 11 13 4 6 14 10 15 5 1 8 9 3 7

Ave 10,331.813  3801.2902 8149.7752  10,531.847 3924.763 53745511  14,217.06  8458.3736  7050.088 4404.326 3866.233  4476.147  4803.436 3841.8987  4712.7342
CEC24 Std 673.16157  73.831631 636.5428 664.72773  348.1868 168.4099 1940.4872  295.27939  848.3431 19.290105  45.89686 2421110 164.6322 69.362821  91.601062

Rank 13 1 11 14 4 9 15 12 10 5 3 6 8 2 7

Ave 29,982.11  3766.666 38,265.27  29,475.7 3518.926 10,042.58  141,206.3  64,809.23  9681.781 5455.682 3508.178 18,778.26  3933.946 4654.795 5947.987
CEC25 Std 839.0102 46.42058 3295.22 1039.571 81.98765 371.1804 8339.274 8752.447 794.073 253.9241 18.48204 1647.064 82.79425 74.44109 559.7637

Rank 12 3 13 11 2 9 15 14 8 6 1 10 4 5 7

Ave 53,905.554  16,607.433 49,831.049 52,030.564 5346.84 28,800.354 93,352.355 59,272.557 31,138.84  16,865.354 13,607.51  18,747.20  22,075.81  12,563.857 20,319.833
CEC26 Std 1261.3088  188.70411 85453802  2621.0534  4029.018 2549.202 6546.7066  5126.4462  1337.740 189.60249  79.16086 496.9604 4464.751 1101.7688  2422.8096

Rank 13 4 11 12 1 9 15 14 10 5 3 6 8 2 7

Ave 14,222.25  3200.025 11,482.32  11,104.92  3573.907  4880.305 17,577.51  10,404.1 17,999.45  4620.348 3584.569 4695.712 3776.538 3630.951 3942.932
CEC27 Std 951.5254 2.72E-05 593.6496 360.6818 15.45457 87.57426 1018.793 967.0674 804.6664 27.57688 81.8085 127.6579 123.9443 84.29333 129.5346

Rank 13 1 12 11 2 9 14 10 15 7 3 8 5 4 6

Ave 28,955.578  3300.0244 38,716.091 35,506.138 3543.84 12,947.367 70,502.543 470,23.009 14,905.25  7831.266 5528.982 19,013.48  4371.154 5548.1365  11,891.086
CEC28 Std 1490.045 0.000134 3428.683 5416.921 54.42149 736.89411  10,771.583 1481.4072  1598.156 595.11732  2352.895 570.0481 196.3864 605.24884  3871.7329

Rank 11 1 13 12 2 8 15 14 9 6 4 10 3 5 7

Ave 584,866.3  6979.847 192,863.7 275,968 7286.966 11,678.47 28,654,765 3,417,453  16,704.44  9806.624 7380.821 11,546.01  7410.963 6868.564 8763.036
CEC29 Std 207,043.8  373.0695 80,340.59  244,242.2  422.6287  939.0838 12,289,301 3,286,742  1873.528 236.608 387.5825 305.4215 582.053 349.5731 611.8979

Rank 13 2 11 12 3 9 15 14 10 7 4 8 5 1 6

Ave 3.74E+10  7,082,731.5 3.18E+10  2.936E+10 1.65E+08 575,021,335 7.815E+10 2.79E+10 2.76E+09 12,919,420 60,285.47 3.78E+07  4.13E+06  4.53E+07  9.14E+08
CEC30 Std 6.55E+09  3,118,888.5 3.339E+09 4.468E+09 61,999,619 270,105,224 2.44E+10  8.08E+09  1.43E+09  2,453,869.9 42,095.78 1.11E+07 295E+06  2.03E+07  1.08E+09

Rank 14 3 13 12 7 8 15 11 10 4 1 5 2 6 9
Mean Rank 11.8276 2.6552 12.4138 11.6897 2.7241 7.7586 14.9310 13.3103 8.2069 6.6897 3.5517 8.2759 4.6207 3.9310 7.4138
Final Rank 12 1 13 11 2 8 15 14 9 6 3 10 5 4 7

Table A3. Wilcoxon signed rank test for all optimization results when dim = 50.
Function = COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
CECO1 6.80E-08 5.99E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.73E-08 6.80E-08 9.17E-08 6.80E-08
- - - - - - - - - + - + - -

CECO03 6.80E-08 6.16E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.69489 6.80E-08 6.80E-08 6.80E-08 6.80E-08 8.29E-05 6.80E-08

+
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Table A3. Cont.
Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
CECO4 _6.80E—08 i1.37E-O7 ?.SOE-OS 2.00432 ?.80]3-08 ?.SOE-OS _6.80E-08 _6.80E—08 _1.06E-O7 (_).507505 ?.80E-08 (_).011433 (_].239324 E.92E-07
CECO5 _6.80E—O8 ?.0000821 _6.80E-08 3.00432 _6.80E-08 _6.80E—08 _6.80E—08 _6.80E—08 _1.06E—O7 §.507505 _6.80E-08 E_).Ol 1433 (E.239324 _5.92E-07
CECO6 _6.80E-08 -7.88E-O7 _6.80E-08 Z.15E-06 2.003638 ?.80E-08 _6.80E-08 ?.79}3-06 i.BOE-OS _g.SOE-OS Z.38E-06 ?‘000836 (;.SOE-08 ?.0051 15
CECO7 _6.80E—08 1;’1.44E-O6 ?.80E-08 i.98E-01 _2.96E-07 ?.SOE-OS _6.80E-08 _7.21E—08 Z.SSE-O6 i.23E-07 _2.06E-06 -1.20E-06 (+>.80E-08 :°>.15E-02
CEC08 _6.80E—08 _2.37E—O7 _6.80E-08 1.43E-07 ?.0023413 _6.80E—08 _6.80E—08 _9.17E—O8 ?.001481 (=).009045 _6.80E-08 (=).797197 3.000129 2.060111
CEC09 6.80E-08 7.23E-08 6.80E-08 5.17E-02 0.635945 6.80E-08 6.80E-08 0.424883 3.07E-06 0.350702 5.87E-06 0.000375 6.80E-08 0.860431
CEC10 :6.80E-08 E).000766 :6.8OE-08 §.001625 ?.80]3-08 %).SOE-OS :6.80E-08 ?.0294409 :6.80E-08 E.ZOE-% %.80E-08 ;9L.75E-06 {).000836 (_E.S97863
CEC11 6.80E-08 6.80E-08 6.80E-08 1.43E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 2.96E-07 0.0004155  6.80E-08
CEC12 :6.80E-08 :6.80E-08 :6.80E-08 é.297677 :7.38E-08 %).80E-08 :6.80E-08 :6.80E-08 :6.80E-08 E).OOO6868 :6.80E-08 -3.04E-05 E_).560852 :6.80E-08
CEC13 _6.80E-08 ?.53E-O6 _6.8OE-08 %.54E-07 E’).O7E-06 ?.SOE-OS _6.80E-08 _6.80E-08 _7.9OE-08 _6.8OE-08 1.06E-07 1.06E-07 {).000104 (:).067868
CEC14 6.80E-08 7.99E-08 6.80E-08 0.101729 0.029441 6.80E-08 6.80E-08 0.0011159  1.38E-06 3.94E-07 2.22E-07 0.198834 0.00556 0.009045
CEC15 :6.80E-08 :1.4OE-O3 :6.80E-08 ?.000116 _6.003336 :6.80E-08 :6.80E-08 é.180577 :6.80E-08 é.067868 ;‘3.17E-06 é.OOOZ %.54E-07 E).002341
CEC16 6.80E-08 6.80E-08 6.80E-08 0.005115 8.60E-06 6.80E-08 6.80E-08 ;.90E-08 1.92E-07 6.003336 6.80E-08 0.067868 0.000758 0.000104
CEC17 -6.80E—08 21.74E-08 -6.80E—08 6.090907 -2.92E-05 ;.80E-08 -6.80E—08 -1.23E-O7 é.SOE-OS 6.000144 6.0000023 (_).027483 (-).06011 1 -1.05E—06
CEC18 -6.80E-08 6.000742 -6.80E-08 6.0097864 _0.053289 -6.80E-08 -6.80E-08 E).881731 _1.66E-O7 6.009786 -6.80E-08 _0.198834 6.067868 6.273285
CEC19 :6.80E-08 E).000384 :6.8OE-08 :7.90E-08 §.001359 %).SOE-OS :6.80E-08 _g.SOE-OS :6.80E-08 E)_.002561 E:).00604 E.90E-02 j;.75E-06 _5.67E-06
6.80E-08 4.54E-06 6.80E-08 0.113551 6.80E-08 6.80E-08 6.80E-08 6.80E-08 2.06E-06 0.1135513  6.80E-08 2.96E-07 0.163596 1.80E-06

CEC20

+
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Table A3. Cont.
Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
CEC21 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.542772  6.80E-08 6.80E-08 6.80E-08 3.50E-06 0.336915 6.80E-08 0.394171 7.95E-07 0.0007579
CEC22 ;.17E—08 21.63E—08 _6.80E-08 _5.90E-02 (_).000375 -6.80E—08 -6.80E—08 -6.80E—08 21.54E—O6 ;.23E-02 _6.80E-08 (_).133283 6.053103 6.735268
CEC23 -6.80E-08 6.000914 _6.80E-()8 g.8OE-08 _1.23E-O7 ;).SOE-08 _6.80E-08 -6.80E-08 6.456951 I.ZOE-O6 _5.25E-05 (1616775 ;.95E-07 6.002139
CEC24 _6.80E—08 21.77E-O6 E).SOE-OS é.17E-02 E’:.42E-07 ;).SOE-OS _6.80E-08 _6.80E—08 g.92E-O7 6.218406 _2.04E-05 (_).009786 6.000375 6.000921
CEC25 :6.80E—08 %.24E—08 :6.80E—08 %.22E-07 6).000735 :6.80E—08 :6.80E—08 :6.80E—08 :7.6OE—O6 %.13E-02 %.21E-05 E).003966 (E.542772 E).OOOBOS
CEC26 _6.80E-08 ?.000761 _6.80E-08 ?.17E-08 ?.001227 ?.80E-08 _6.80E-08 _6.80E-08 9.218406 _6.000104 (_).635945 9.261616 %O7E-06 (_).755743
CEC27 6.80E-08 0.000822  6.80E-08 0.524986 1.92E-07 6.80E-08 6.80E-08 6.80E-08 I.92E-O7 0.036048 5.69E-06 (_).001349 0.000305 g.90E-05
CEC28 -6.80E—08 -1.87E—O6 -6.80E-08 I.60E-05 .6.80E-08 ;.SOE—OS -6.80E—08 -6.80E—08 -6.80E—08 -6.80E-08 _6.80E-08 .6.80E-08 ;.SOE—OS -6.80E—08
CEC29 -6.80E-08 _6.74E-08 _6.80E-08 6.02748 i.ZOE-06 ;).SOE-08 -6.80E-08 -6.80E-08 6.020735 E).44075 _7.90E-08 6.261616 é.96E-07 :5.25E-05
CEC30 _6.80E-08 6.000374 _6.8OE-08 ;).SOE-OS ;).SOE-OS ;).SOE-OS _6.80E-08 _6.80E-08 E%.47E-08 ;.49E-06 ;).SOE-OS ;.54E-06 _1.06E-07 6.000129
+/=/- (-)/0/29 6/0/29 (-)/0/29 _6/10/13 _2/4/23 ;)/0/29 6/0/29 6/4/25 é/2/25 21/10/15 _2/2/25 _6/11/12 ;/11/12 6/7/22
Table A4. Wilcoxon signed rank test for all optimization results when dim = 100.
Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
CECO1 _6.80E—08 _6.80E—08 _6.80E—08 i.80E-08 _6.80E-08 _6.80E-08 _6.80E—08 _6.80E—08 _6.80E—08 i.SOE—OS ?.SOE-OS ?.80E-08 _6.80E-08 _6.80E—08
CECO3 _6.80E—08 _1.93E—05 _6.80E—08 _5.17E—06 ?.SOE—OS _6.80E—08 _6.80E—08 2.0016253 _6.80E—08 _6.80E—08 _6.80E—08 }.66E—07 _1.43E—07 _6.80E—08
4.52E-06 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.0013486  6.80E-08 6.80E-08

CEC04

6.80E-08

+
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Table A4. Cont.
Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
CECO5 _6.80E—08 _6.80E-08 ?.SOE-OS ?.80E-08 (_).4248835 ?.SOE-OS _6.80E-08 ?.001014 ?.009786 ?.9OE-02 ?.80E-08 ?.99E-06 (+>.80E-08 (_).063892
CECO6 _6.80E—O8 il.64E-O6 _6.80E-08 ?.31E-06 E_).0027986 _6.80E—08 _6.80E—08 ?.0003048 i.SOE—OS %.SOE-Ol ?.001227 ?.016669 i.80E—08 (E.903116
CEC07 _6.80E-08 -6.80E-08 _6.80E-08 f_.8OE-08 _3.74E-O6 ?.80E-08 _6.80E-08 _6.80E-08 ?.0012941 _;.9OE-08 _6.80E-08 _3‘50E-O6 _1.66E-07 _g.SOE-OS
CECO8 _6.80E—08 1;’1.78E-O6 ?.80E-08 ?_).94E-01 (_).9031165 ?.SOE-OS _6.80E-08 ?.000222 (_).9031 16 ?.22E-07 ?.94E-07 ?.049864 i.42E-07 ?.015479
CEC09 _6.80E—08 _7.91E-05 _6.80E-08 ?.81E-05 ?).0047025 _6.80E—08 _6.80E—08 _6.80E—O8 _(_).003966 (2.989209 _6.01E-07 i.96E-07 i.80E—08 (2.285305
CEC10 _6.80E-08 -6.80E-08 _6.80E-08 1.20E-06 _6.80E-08 ?.80E-08 _6.80E-08 ?.000921 -6.80E-08 E.SOE-OS _6.80E-08 1.80E-06 (:).1 19856 E_).013321
CEC11 6.80E-08 8.37E-06 6.80E-08 6.80E-08 7.90E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 9.17E-08 6.80E-08 6.80E-08 0.027483 6.80E-08
CEC12 -6.80E—08 é.17E-08 -6.80E-08 6.394171 -6.80E-08 ;.SOE—OS -6.80E—08 -6.80E—08 -6.80E—08 -7.95E-O7 -6.80E-08 6.989209 ;.SOE—OS -6.80E—08
CEC13 :6.80E-08 :7.81E-O9 :6.80E-08 %.59E-02 :6.80E-08 %).80E-08 :6.80E-08 :6.80E-08 :1.23E-O7 §.655361 51.54E-06 é.OlE-O7 %).92E-07 E).000247
CEC14 6.80E-08 5.56E-06 6.80E-08 (_).085855 0.490334 6.80E-08 6.80E-08 0.946084 6.80E-08 ;.17E-08 6.80E-08 0.119856 0.261616 1.60E-05
CEC15 -6.80E—08 -6.80E—08 -6.80E-08 ;.94E-07 g.80E-08 ;.80E—08 -6.80E—08 g.SOE—O8 -6.80E—08 6.0810312 -5.90E-05 ;.54E-07 g.80E—08 -1.25E—05
CEC16 :6.80E-08 %3.97E-O6 :6.80E-08 :’-':).59E-02 %.68E-05 :6.80E-08 :6.80E-08 :6.80E-08 :6.80E-08 5.033718 :6.80E-08 i.81E-05 %-.54E-06 E).014364
CEC17 _6.80E-08 ?.006423 _6.8OE-08 _1.05E-06 (_).597863 ?.SOE-OS _6.80E-08 ?.22]5-07 _6.80E-08 (2.946084 ?.80E-08 (_).694891 i.87E-06 _3.50E-06
CEC18 _6.80E—08 _6.80E-08 _6.80E—08 (2.000416 (E.560852 ?.80E-08 _6.80E—08 3.04E-05 _6.80E-08 _5.22E—07 _6.80E-08 E_).O33718 (3.597863 _1.23E-07
CEC19 _6.80E-08 :‘-'>.91E-08 _6.80E-08 %.68E-05 ?.80E-08 _6.80E-08 _6.80E-08 _6.80E-08 il.13E-05 i.94E-07 1.38E-06 -1F.O6E-07 _1_.41E-05 i1.68E-05
CEC20 _6.80E-08 _1.31E-O7 _6.8OE-08 3.001227 _6.80E-08 ?.SOE-OS _6.80E-08 _6.80E-08 _6.80E-08 (l.l 19856 _6.80E-08 (:).379332 ?.02227 i1.17E-05
6.80E-08 7.93E-07 6.80E-08 6.80E-08 0.002799 6.80E-08 6.80E-08 6.80E-08 0.597863 1.38E-06 2.06E-06 0.228694 6.80E-08 0.323482

CEC21
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Table A4. Cont.

Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA
CEC22 ?.17E-08 _6.32E-O6 ?.SOE-OS }r.SOE-Oé ?.80]3-08 ?.SOE-OS _6.80E-08 3.0097865 _6.80E-08 i.SOE-OS ?.80E-08 1.06E-07 }.81E-05 3+>.07E-06
CEC23 6.80E-08 3.86E-07 6.80E-08 3.94E-07 0.000144 6.80E-08 6.80E-08 6.80E-08 0.473481 6.80E-08 7.58E-06 0.033718 7.90E-08 1.41E-05
CEC24 -6.80E-08 6.000037 -6.80E-08 -6.80E-08 ;).SOE-OS ;).SOE-08 -6.80E-08 -6.80E-08 g.OlE-O7 g.SOE-OS -8.29E-05 2)‘261616 -7.90E-08 6.090907
CEC25 :6.80E—08 :9.87E-O6 %.8OE-08 i.23E-07 %).80]3-08 %).SOE-OS :6.80E-08 :6.80E—08 :6.80E-08 %.23E-01 %.SOE-OB -5.36E-06 %).SOE-OS _g.SOE-OS
CEC26 6.80E-08 6.80E-08 6.80E-08 5.16E-02 9.17E-08 6.80E-08 6.80E-08 6.80E-08 3.99E-06 g.SOE-OS 0.038515 0.776391 6.80E-08 0.180577
CEC27 -6.80E-08 -6.80E-08 -6.80E-08 ; 13E-07 1.43E-07 ;).SOE-08 -6.80E-08 -6.80E-08 -2.3OE-05 _6.01E-07 -3.50E-06 I.ZSE-05 ;.13E-07 6.04986369
CEC28 -6.80E-08 -6.80E-08 -6.80E-08 ;).SOE-OB ;).80]3-08 ;).SOE-OS -6.80E-08 -6.80E-08 -6.80E-08 -6.8OE-08 é.80E-08 ;).SOE-OS ;).SOE-OS g.80E-08
CEC29 -6.80E—08 -6.80E—08 -6.80E-08 _1.66E-07 _2.22E-07 ;.SOE—OS -6.80E—08 -6.80E—08 é.92E-05 -6.80E-08 -6.80E-08 21.54E-07 ;».OlE-Ol ;).0565165
CEC30 -6.80E-08 -6.80E-08 -6.80E-08 -6.80E-08 -6.80E-08 ;).SOE-O8 -6.80E-08 -6.80E-08 6.085855 -6.80E-08 _3.42E-07 -6.80E-08 I.92E-07 (_).002139
+/=/- ;)/0/29 6/0/29 6/0/29 ;)/7/16 6/5/24 6/0/29 6/0/29 é/1/25 1/4/24 _6/10/14 _1/0/28 (_)/8/14 ;)/5/18 _1/7/21
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