
Citation: Hu, G.; Zhang, H.; Xie, N.;

Hussien, A.G. CMRLCCOA:

Multi-Strategy Enhanced Coati

Optimization Algorithm for

Engineering Designs and Hypersonic

Vehicle Path Planning. Biomimetics

2024, 9, 399. https://doi.org/

10.3390/biomimetics9070399

Academic Editors: Ameer

Hamza Khan, Shuai Li and

Danish Hussain

Received: 30 May 2024

Revised: 25 June 2024

Accepted: 27 June 2024

Published: 1 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

CMRLCCOA: Multi-Strategy Enhanced Coati Optimization
Algorithm for Engineering Designs and Hypersonic Vehicle
Path Planning
Gang Hu 1,2,* , Haonan Zhang 1, Ni Xie 1 and Abdelazim G. Hussien 3,4,5,6

1 Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, China;
zhanghaonan2023@163.com (H.Z.); xieni2024@sina.com (N.X.)

2 School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
3 Department of Computer and Information Science, Linköping University, 58183 Linköping, Sweden;

abdelazim.hussien@liu.se
4 Faculty of Science, Fayoum University, Faiyum 63514, Egypt
5 Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan
6 MEU Research Unit, Middle East University, Amman 11831, Jordan
* Correspondence: hugang@xaut.edu.cn

Abstract: The recently introduced coati optimization algorithm suffers from drawbacks such as
slow search velocity and weak optimization precision. An enhanced coati optimization algorithm
called CMRLCCOA is proposed. Firstly, the Sine chaotic mapping function is used to initialize the
CMRLCCOA as a way to obtain better-quality coati populations and increase the diversity of the pop-
ulation. Secondly, the generated candidate solutions are updated again using the convex lens imaging
reverse learning strategy to expand the search range. Thirdly, the Lévy flight strategy increases the
search step size, expands the search range, and avoids the phenomenon of convergence too early.
Finally, utilizing the crossover strategy can effectively reduce the search blind spots, making the
search particles constantly close to the global optimum solution. The four strategies work together to
enhance the efficiency of COA and to boost the precision and steadiness. The performance of CMRL-
CCOA is evaluated on CEC2017 and CEC2019. The superiority of CMRLCCOA is comprehensively
demonstrated by comparing the output of CMRLCCOA with the previously submitted algorithms.
Besides the results of iterative convergence curves, boxplots and a nonparametric statistical analysis
illustrate that the CMRLCCOA is competitive, significantly improves the convergence accuracy, and
well avoids local optimal solutions. Finally, the performance and usefulness of CMRLCCOA are
proven through three engineering application problems. A mathematical model of the hypersonic
vehicle cruise trajectory optimization problem is developed. The result of CMRLCCOA is less than
other comparative algorithms and the shortest path length for this problem is obtained.

Keywords: coati optimization algorithm; chaos mapping strategy; Lévy flight strategy; lens imaging
reverse learning strategy; crossover strategy

1. Introduction

An optimization problem is to achieve the optimal value of the design objective
under certain constraints. Optimization problems exist widely in intelligent production,
engineering manufacturing, agricultural development, and many other fields [1]. But as
the rapidly evolving digital age, data are showing explosive growth, and there are more
and more multidimensional and multimodal problems, making many real-world problems
more complex and diverse [2]. For traditional mathematical optimization means, such as the
gradient descent method [3], conjugate gradient method [4], and quasi-Newton method [5],
they often have some limitations when handling both discrete and other questions [6].
They have a tendency to trap into local optimal solutions, slow convergence speed, or
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low computational accuracy. Therefore, it is very difficult to use traditional algorithms
for calculation and extracting meaningful information. Generally speaking, solving NP
hard problems involves finding a point in a multidimensional hyperspace, which is the
optimal solution. However, the identification process is very complex, time-consuming,
and computationally expensive. Therefore, it is important to find a biomimetic computing
method that is fast and effective [1].

Nowadays, metaheuristic algorithms have been proven to be competitive alternative
algorithms, often used to solve highly complicated nonlinear optimization issues, such
as multi-objective optimization problems [7], multimodal optimization problems [8], and
complex constraint optimization problems [9].

Metaheuristic algorithms can avoid local optima and have faster convergence speed,
better robustness, and higher stability than traditional algorithms [10]. This field has been
developed so far that quite a number of very classical algorithms have been proposed. This
mainly includes a genetic algorithm (GA) that emulates the evolutionary processes of living
species [11], differential evolution (DE) that optimizes a search through cooperation and
competition among individuals within a group [12], artificial immune systems (AIS) for
modeling the body immune response mechanism [13], an ant colony algorithm (ACO) using
ants’ way finding behavior as a model [14], particle swarm optimization (PSO) modeling
the actions of birds in search of food [15], a simulated annealing algorithm (SA) modeled
on the annealing procedure with solid materials [16], and a taboo search algorithm (TSA)
for modeling the human intellectual memory procedure [17]. They always emerge from
the imitation or exposition of specific natural occurrences and sequences, or the cognitive
actions of living collectives and have the characteristics of simplicity, universality, and ease
of parallel processing.

Based on sources of inspiration, metaheuristic algorithms mainly include evolution
algorithms, human behavior-based algorithms, physics and chemistry-based algorithms,
and swarm intelligence-based algorithms [18,19].

The evolutionary algorithm is based on concepts such as biology and genetics and is
built by modeling the laws of nature’s superiority and inferiority. They achieve population
progress according to the laws of natural selection, and thus finish the best solution.
Conventional evolutionary algorithms are primarily represented by GA and DE. Both
algorithms are modeled from the principle of reproduction in nature and then use strategies
such as crossover, selection, and mutation to update the population.

Human behavior-based algorithms are inspired by human performance, such as self-
learning actions and social activities [20]. The most commonly used algorithm is the
imperialist competition algorithm [21], social-based algorithms [22], league championship
algorithm [23], and poor and rich optimization algorithm [24].

The algorithms based on physics and chemistry mainly come from the physical laws
and chemical phenomena in the universe. Among them, SA mentioned above is a classical
algorithm. Furthermore, there are many algorithms developed from physical laws, such as
gravity search algorithms [25] based on the law of universal gravitation; chaos optimization
algorithms [26] based on the traversal, randomness, and regularity of chaotic phenomena;
optical optimization algorithms [27] based on the principle of optical reflection; and black
hole algorithms based on strong attractive forces [28].

Swarm intelligence-based algorithms simulate the behavior of natural populations
such as ants, birds, bees, whales, lions, wolves, etc. Each population is a population of
organisms. Groups search for the best location among themselves through behaviors such
as cooperation and hunting. The representative algorithms are PSO and ACO referred
to above. In addition, there are many algorithms of this type, such as beluga whale
optimization [29], grey wolf optimizer [30], marine predator algorithm [31], white shark
optimizer [32], emperor penguin optimizer [33], and so on.

For metaheuristic algorithms, the ability to explore and develop directly determines
the performance of the algorithms [34]. Their imbalance will directly cause a reduction in
the precision of problem-solving. Weak exploration ability will affect the population to
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explore more places, which will lead to getting trapped at local optima. And the lack of
exploitation ability will directly affect the population’s ability to find the optimal value.
This is likewise a prevalent issue with current optimization methodologies. At the same
time, this is exactly what is meant by improvements to the algorithm.

M. Dehghani et al. [35] presented the coati optimization algorithm (COA) in 2023.
Coatis are very active, agile in movement, and have strong adaptability. They forage during
the day and rest on trees at night. Iguanas are one of the favorite foods of long coatis,
and coatis often cooperate to prey on them. In addition, long coatis also face the risk
of being preyed upon. Thus, COA was inspired by the strategies used by long-haired
coatis when they are attacking iguanas, as well as the strategies they use when facing and
avoiding predators. Although COA shows a high level of competitiveness on some of
the problems, it still has room for improvement. According to the literature [36], COA
always exhibits a state of premature convergence and is highly susceptible to falling into a
local optimum. Meanwhile, during the experiments, the performance of COA relative to
some newly proposed superior metaheuristic algorithms is always at a disadvantage when
facing large-scale problems. And the disadvantage of low diversity in COA populations
cannot be ignored either. As a result, many researchers have enhanced COA to solve more
sophisticated engineering problems. F.A. Hashim et al. [37] proposed an efficient adaptive
mutation COA and applied it to feature selection and global optimization. P. Tamilarasu
and G. Singaravel [38] use an improved COA to achieve efficient scheduling in cloud
computing environments. K. Thirumoorthy and J.J.B. J [39] improved the COA and applied
it to breast cancer classification.

Nevertheless, the No Free Lunch derivation [40] has indicated that no single algorithm
is capable of addressing every optimization challenge flawlessly. Excellent performance on
one problem may not lead to a viable solution on another unrelated problem. As a result,
researchers need to constantly develop new algorithms or make targeted improvements to
certain algorithms to cope with increasingly complex real-world problems. Therefore, the
improvement in some existing algorithms is very necessary.

Consequently, in this paper, the chaotic mapping strategy, lens imaging reverse learn-
ing strategy, crossover strategy, and Lévy flight strategy are applied to improve the COA.
Firstly, the chaotic mapping strategy [1] is introduced in the population initialization stage
to use chaotic sequences for population initialization to obtain higher-quality populations.
Secondly, the use of the lens imaging reverse learning strategy [41] not only improves
population diversity but also enlarges the scope of the search. In the early stage, the Lévy
flight strategy [42] is applied. It allows the population to get rid of partial optima and
expand the search capability. In the end, the introduction of the crisscross optimization
algorithm [43] helps to amend the phenomenon of early convergence of the algorithm. The
amalgamation of these strategies augments the optimization capability of the COA. The
innovations as well as the main contributions of this paper are as follows.

(1) The enhanced COA consists of four strategies, namely the chaotic mapping strat-
egy, the lens imaging reverse learning strategy, the Lévy flight strategy, and the
crossover strategy.

(2) The effect of 10 common chaotic strategies to improve the COA is analyzed and the
optimal strategy is finally selected.

(3) The CMRLCCOA is compared with the primitive COA, six new algorithms proposed
in the last two years, four classic and well-recognized algorithms, and three im-
proved algorithms, which are tested with the functions included in the CEC2017 and
CEC2019 function sets. In addition, dim = 50 and 100 were also selected in the
CEC2017 test set.

(4) CMRLCCOA is used to solve three engineering optimization problems, including a
single-stage cylindrical gear reducer, a welded beam design problem, and a cantilever
beam design problem.

(5) This paper establishes a mathematical model of the cruise trajectory of a hypersonic
vehicle and solves the path planning problem with the newly proposed CMRLCCOA.



Biomimetics 2024, 9, 399 4 of 51

Furthermore, the results of nine algorithms are compared. Thus, the reliability of
CMRLCCOA is verified.

The remainder of this paper is organized as follows: Section 2 briefly describes the
mathematical model of COA. Section 3 describes the detailed structure of the CMRLCCOA
algorithm. The performance of the CMRLCCOA is evaluated on the basis of numerical
experimental results in Section 4. Section 5 solves three real-world problems using CM-
RLCCOA. In Section 6, The cruise ballistic trajectory problem for hypersonic vehicles is
modeled and solved using CMRLCCOA. Finally, Section 7 summarizes this paper.

2. Introduction to Mathematical Modeling of Coati Optimization Algorithm

The coati optimization algorithm (COA) is a new metaheuristic algorithm proposed
in 2023 [35]. It is inspired by two natural behaviors of the coatis, including strategies
for cooperating in attacking iguanas and behavioral strategies for facing and escaping
predators. In p-dimensional space, each coati acts as a separate searching individual.
The hunting process and escape process of the coati from predators are both individual
updates. The position of the coati will be dynamically adjusted according to the position
of the iguana and the migrated locations, and finally the globally optimal location (the
best candidate solution) will be selected. Next, we will briefly introduce the mathematical
model of COA.

2.1. Initialization Process

Firstly, the COA initializes m random individuals, x1, . . . , xi, . . . xm, by Equation (1),
where the maximum boundary for individual values is Xmax = (xmax

1 , . . . , xmax
p ) and the

minimum boundary is Xmin = (xmin
1 , . . . , xmin

p ). Then, evaluate the initialized random
individuals through the objective function.

xi,j = xmin
j + rand · (xmax

j − xmin
j ), i = 1, 2, . . . m, j = 1, 2, . . . , p. (1)

2.2. Hunting and Attack Strategies (Exploration Phase)

Coatis attack iguanas in groups. In this strategy, the coatis are first divided into two
groups. One group climbs up a tree to approach and scare the iguana, while the other
group waits quietly on the ground. When the iguana drops, the raccoons quickly attack
and catch it. Figure 1 shows coatis attacking an iguana.
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There are two assumptions in this strategy. First, the iguana is assumed to be in the
optimal position. Second, half of the species climbed trees and half waited on the ground.
Equation (2) is used to simulate the process of coatis climbing trees.

xnew
i,j = xi,j + b · (Iguj − I · xi,j), i = 1, 2, . . . ,

⌊m
2

⌋
. (2)

When the iguana is frightened to land, the position of the iguana is set randomly;
however, the other half of the coatis waiting on the ground move according to the random
placement of the iguana. This behavior is represented by Equations (3) and (4). A schematic
of the iguana’s updated position is shown in Figure 2.

Iguj = xmin
j + b · (xmax

j − xmin
j ), j = 1, 2, . . . , p, (3)

xnew
i,j =

{
xi,j + b · (Iguj − I · xi,j), FIgu < Fi
xi,j + b · (xi,j − Iguj), FIgu > Fi

, i =
[

N
2

]
+ 1,

[
N
2

]
+ 2, . . . , N, j = 1, 2, . . . , m, (4)

where xi,j represents the j-th dimension of the i-th coati, and b is a stochastic number
between [0, 1]. Igu is the randomly given location of the iguana. I is any stochastic value in
1 and 2.
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2.3. The Stage of Escaping Predators (Exploitation Stage)

During the development phase, the strategy adopted by the coati in facing and es-
caping predators is used to update its position. When a predator captures a coati, the
coati quickly runs away and enters a relatively safe position, approaching the optimal
position, as shown in Figure 3. This strategy demonstrates the capability of the COA
algorithm development.
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lowj =
xmin

j

t
, upj =

xmax
j

t
, t = 1, 2, ..., T, (5)

xnew
i,j = xi,j + (1 − 2b) · (lowj + b · (upj − lowj)), i = 1, 2, ..., m; j = 1, 2, ..., p (6)

where lowj and upj indicate the local lower and upper bound of the j-th dimension, a
stochastic number with a value of b between [0, 1].

If the updated adaptation value for the coati is preferable to the original adaptation
value, the value is accepted; otherwise, do not accept this value. Equation (7) represents
the update process.

Xi =

{
Xnew

i , Fnew
i < Fi

Xi, else
. (7)

3. Multi-Strategy Enhanced COA

This part uses four strategies to strengthen COA. These strategies are the chaotic
mapping strategy, lens imaging reverse learning strategy, Lévy flight strategy, and crossover
strategy. The newly proposed CMRLCCOA solves the shortcomings of COA, which is
prone to local optimization and premature convergence. The improvement strategy of the
algorithm is presented next and the results are briefly analyzed.

3.1. Chaos Mapping Strategy

The traditional COA adopts the method of randomly setting the initial population,
which is difficult to spread throughout the population, resulting in a lack of diversity in the
original coati population and restricting the flexibility. Chaos mapping was first proposed
by Lorenz et al. in 1963 [44]. Chaos mapping has characteristics such as randomness,
traversal, and regularity [45]. This strategy can guarantee the diversity of the original
population. Therefore, many intelligent algorithms employ chaotic mapping strategies to
strengthen the optimization of algorithms. Zeng et al. use chaotic mapping to generate a
random and regular initialization particle swarm, improving global search capability [46].
Xin et al. applied the chaotic mapping method for reinforcing the sparrow optimization
algorithm [47].

Chaos theory mainly studies the behavior of dynamic systems that are sensitive to
initial states. The method of generating an initial population through chaotic mapping
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is to first use a one-dimensional chaotic map, specify a random initial value in it, and
iteratively generate a series of continuous points. Chaotic mapping strategies can boost
the competence of population diversity, success rate, and convergence. Table 1 describes
ten common chaotic mapping functions. To have a clearer perception of these functions,
Figure 4 visualizes some of the initialization functions. The image shows that these map-
pings allow random initial population positions to be evenly distributed in the search space.
For the selection of different initialization methods, please see Section 4.3.

Table 1. Introduction to ten common chaotic mapping functions.

NO. Function Name Function Definition Parameter

1 Sinusoidal [48] zk+1 = bz2
k sin(π zk) b = 2.3 and z0 = 0.7.

2 Logistic [49] zk+1 = bzk(1 − zk) zk is the kth chaotic number, and z0 ∈ (0, 1).

3 Tent [50] zk+1 =

{ zk
α , zk ∈ (0, α]
1−zk
1−α , zk ∈ (zk, 1] -

4 Gauss/Mouse [51] zk+1 =

{
0, zk = 0
mod( µ

zk
, 1), otherwise Generates chaotic sequences in (0, 1).

5 Circle [52] zk+1 = zk + b − mod( a
2π sin(2πzk), 1) a = 2.2 and b = 0.5.

6 Chebyshev [53] zk+1 = cos(k cos−1(zk)) -
7 Singer [54] zk+1 = µ(7.86zk − 23.31z2

k + 28.75z3
k − 13.30z4

k) µ is set between 0.9 and 1.08.

8 Bernoulli [55] zk+1 =

{ zk
1−λ , zk ∈ (0, 1 − λ]

zk−1+λ
λ , zk ∈ (1 − λ, 1)

-

9 ICMIC [56] zk+1 = sin
(

a
zk

)
a∈(0, ∞).

10 Piecewise [57] xk+1 =


zk/q, zk ∈ [0, q)
(zk − q)/(0.5 − q), zk ∈ [q, 0.5)
(1 − n − zk)/(0.5 − n), zk ∈ [0.5, 1 − n)
(1 − zk)/n, zk ∈ [1 − n, 1)

n ∈ (0, 0.5) and zk ∈ [0, 1].
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3.2. Reverse Learning Strategy for Lens Imaging

Many intelligent optimization algorithms have low population diversity in the later
stages of the iteration and do not easily search for optimal solutions. It is difficult to jump
out when a coati searching for an individual falls into a local optimum. Consequently,
a specular reflection learning strategy is introduced in this paper. This strategy is an
optimization mechanism [58], which extends the algorithm’s search area by computing the
inverse solution at the current position. Therefore, it increases the likelihood of discovering
the ideal solution. However, reverse learning strategies need to be combined with the
principle of lens imaging to achieve better results [59].

Imaging by a convex lens is an optical law. A convection lens has an object and a solid
image on each side of the lens. The diagram is depicted in Figure 5.
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The lens imaging formula can be derived from Figure 5 as follows:

1
u
+

1
v
=

1
f

(8)

where u is the object distance, v is the distance imaged, and f is the focal length.
For the reverse learning strategy of convex lens imaging, an individual P is imaged in

a convex lens as in one-dimensional space. This is shown in Figure 6. The principle of lens
imaging is expressed as Equation (9).

X′ =
p + q

2
+

p + q
2k

− X
k

. (9)

Equation (10) is the solution formula for reverse learning of lens imaging, which is
extended to D-dimensional optimization problems. The reverse learning formula based on
lens imaging is obtained as follows:

X′
j =

pj + qj

2
+

pj + qj

2k
−

Xj

k
. (10)

Among them, pj is the minimum in the j-th dimension, and qj is the maximum in the
j-th dimension. Xj’ and Xj are the inverse solutions of the lens.
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3.3. Lévy Flight Strategy

In the COA, the position update is highly influenced by the iguana. However, the
position update range of iguanas is small, so the search space and solution space of this
algorithm are limited. The Lévy flight strategy is a stochastic behavior strategy proposed
by Paul Lévy in 1937 [60], used to simulate the step size and direction during random
walking or search processes. In this paper, the Lévy flight strategy is incorporated into the
search phase of the COA to enlarge the search scope. Figure 7 depicts the Lévy distribution
along with their trajectories in two- and three-dimensional spaces. This random wandering
behavior can be effective in increasing the diversity of populations, which in turn allows
individuals to explore a wider range of space. Then, the Lévy flight process can be described
as a random walk process, as shown in Equation (11).

Levy(λ) ∼ u = t−1−λ, 0 < λ ≤ 2. (11)
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The λ can be calculated using the Mantegna method, as shown in Equation (12).

s =
µ

|v|
1
λ

, (12)
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where λ is set to be 1.5, and µ and v follow a normal distribution.

σv = 1, (13)

σµ =

[
Γ(1 + λ) · sin(πλ/2)

λ · Γ[(1 + λ)/2] · 2(λ−1)/2

] 1
β

, (14)

where Γ is the gamma function.
Therefore, Equation (15) is utilized to change the position of the coati.

xt+1 = xrand
t + α · sign(rand − 1/2)⊕ Levy(λ), (15)

where sign(rand – ½) can take three values, namely −1, 0, or 1. α represents the control
quantity of step length, which can be expressed using Equation (16).

α = α0

⌊
xrand

t − xt

⌋
, (16)

where α0 is set to be 0.01.
Then, Equation (15) can be represented as

xt+1 = xrand
t + α0 · sign(rand − 0.5) · µ

|v|
1
λ

· (xrand
t − xt). (17)

3.4. Cross Optimization Algorithm

Meng et al. proposed the crisscross optimization algorithm (CSO) [43]. The algorithm
utilizes horizontal and vertical crossing to update information, which can effectively solve
the local optimization problem.

3.4.1. Horizontal Crossover

Before performing the crossover operation, two individuals are paired. Subsequently,
the crossover is performed on the variables in the corresponding dimensions to generate
new offspring. Assuming the m-th and n-th individuals are paired, the crossover operation
is performed as follows:

Mhcm,j = r1 · Xm,j + (1 − r1) · Xn,j + c1 · (Xm,j − Xn,j), (18)

Mhcn,j = r2 · Xn,j + (1 − r2) · Xm,j + c2 · (Xn,j − Xm,j), (19)

where Mhcm,j and Mhcn,j are descendants of Xm,j and Xn,j, respectively. And Xm,j and Xn,j
are two random individuals in the population. r1 and r2 are randomly distributed evenly
between 0 and 1. c1 and c2 are randomly distributed evenly between −1 and 1.

The first term in Equations (18) and (19) represents the particle’s current optimum, and
the second term represents the mutual influence between two different particles, and these
two terms are well combined through the weight factor r1. The third term can increase the
search interval. The final solutions Mhcm,j and Mhcn,j must be compared with the fitness of
the parent particles Xm,j and Xn,j, and the solution with better fitness should be retained for
the next iteration.

3.4.2. Vertical Crossover

Vertical crossover is executed across distinct dimensions of the variable. Due to the
different ranges of values for different dimensions, they need to be normalized before
crossing. Each vertical crossover only generates one offspring, and only updates one
dimension of it.

Mvcm,d1 = r · Xm,d1 + (1 − r) · Xm,d2 , (20)

where r is randomly distributed evenly between 0 and 1.
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Vertical crossing can cause the dimension that has already fallen into a local optimum
to escape from local optimality without damaging the information of the other dimension.
Thus, in general, this strategy is effective in keeping population sizes from dropping into
local minima, and the probability of a vertical crossover is lower than the probability of a
horizontal crossover.

3.4.3. Competitive Operator

There is a competitive relationship between the offspring population and the parent
population. Only if the adaptation value of the offspring population is preferred to that
of the parent population will it be retained and proceed to the next iteration. Otherwise,
the parent population will continue to be retained. As a result of this simple competitive
mechanism, individuals will move rapidly toward the search space with good fitness, close
to the optimal solution. For example, in terms of horizontal crossing, the competition
operator is defined as

Xo f f spring
m =

{
Xm, f (Xm) < f (Mhcm)
Mhcm, else

. (21)

3.5. The Framework of CMRLCCOA

Inspired by the above strategies (chaotic mapping, lens imaging reverse learning,
Lévy flight, and crossover strategy), we propose a new hybrid metaheuristic algorithm,
CMRLCCOA. These strategies greatly strengthen the stability and optimization capability
of the algorithm. The specific steps for solving the D-dimensional minimum problem using
CMRLCCOA are as follows:

Step 1: Initialize some parameters of CMRLCCOA—the number of search agents N, di-
mension of the solution D, boundaries of variables ub and lb, and number of iterations Miter.

Step 2: Initializing N populations of coatis using chaotic mapping.
Step 3: The fitness values for each candidate solution are computed. Afterwards,

record the best fitness value fbest and the optimal position Xbest.
Step 4: Using a convex lens imaging reverse learning strategy to update N initial

solutions by Equation (11), then calculating fitness values while retaining good fitness
values and optimal solutions.

Step 5: While Citer < Miter, update the location of the iguana.
Step 6: For the first half of the individual coatis, using Equation (2) to change location

of the i-th coati, and using Equation (7) again to update the position of the i-th coati.
Step 7: For the latter half of the individual coati, first set the iguana’s random location

using Equation (3), then use Equation (4) to compute the new position of the i-th coati, and
finally use Equation (7) to update the position of the i-th coati.

Step 8: Utilizing the Lévy flight strategy, the coati’s position is updated by Equation (18)
and candidate solutions are calculated, while retaining the optimal solution and corre-
sponding position.

Step 9: In the second stage of exploitation, first calculate the local boundaries of
variables by Equation (5). The location of the i-th coati is changed using Equation (6).
Equation (7) is used to update the optimal solution.

Step 10: Using the cross optimization strategy, horizontal and vertical crosses are per-
formed on individuals of the coati by Equations (19)–(21) and offspring populations are ob-
tained, and then the better preserved ones are selected from the parent and
offspring populations.

Step 11: Set Citer = Citer + 1; if Citer < Miter, return to Step 5. Otherwise, the optimal
location and fitness values obtained from solving the problem will be output.

To show the structure of the CMRLCCOA more clearly, the flowchart of CMRLCCOA
is illustrated in Figure 8. Additionally, the pseudo-code of CMRLCCOA is shown in
Algorithm 1.
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Algorithm 1: The proposed CMRLCCOA

Input: Number of coatis (N), Number of variables (D), and maximum iterations (Miter).
Output: Optimal fitness value fbest and Xbest.
1: Construct the initial value for the agents through chaotic maps.
2: Computing fitness values for coati populations.
3: Using convex lens imaging reverse learning strategy to change the coatis’ position by Equation (11).
4: Compare fitness values and retain the optimal fitness values and corresponding positions.
5: While t ≤ Miter
6: For i = 1 to N/2
7: Igu = Xbest; I = round(1 + rand(1,1)).
8: Change the position of the coati by
xi,j = xi,j + b × (Iguj − I×xi,j).
9: Update position by Equation (7).
10: End For
11: For i = N/2 to N
12: Igu = lb + rand × (ub − lb).
13: If fitness(i) > fitness(Igu)
14: Change the position by
xi,j = xi,j + b × (Iguj – I × xi,j).
15: Else
16: Change the position by
xi,j = xi,j + b × (I × xi,j − Iguj).
17: End If
18: Update position by Equation (7).
19: End For
20: Using Lévy strategy to update the position of the i-th coati by Equation (18).
21: Calculate the fitness of coatis.
22: If the fitness of coati < fitness(i)
23: x(i) = coati;fit(i) = fit(coati).
24: End If
25: For i = 1 to N
26: LbLocal = lb/t; UbLocal = ub/t.
27: If rand < 0.5
28: Update the position of the coatis by
xi,j = xi,j + (1 − 2b) × (LbLocal + b × (UbLocal − LbLocal)).
29: Update position by Equation (7).
30: Else
31: For j = 1 to D
32: r1 and r2 is a stochastic number in [0, 1]; c1 and c2 is a stochastic number in [−1, 1].
33: Update the position of the leaders using Equations (18) and (19).
34: Calculating acclimatization values of coatis.
35: End For
36: End If
37: End For
38: For i = 1 to N-1
39: For j = 1 to D
40: Update a uniformly random value r in 0 and 1.
42: Update the position of the individuals using Equation (20).
43: Calculating acclimatization values of coatis.
44: End For
45: End For
46: t = t + 1,
47: End While
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3.6. The Time Complexity of CMRLCCOA

This subsection investigates the time complexity of CMRLCCOA. First, we analyze
the COA. The population scale and the amount of problem variables mainly contribute
to the time complexity. In the initialization phase, the complexity of COA is O(ND),
where N is the size of the coati population and D is the amount of variables. Among four
improvement strategies for the presented CMRLCCOA, the chaotic mapping and lens
imaging reverse learning strategies do not increase the complexity. In the first stage, the
time complexity is O(NDT) + O(NDT/2) + O(NDT). In the second stage, the complexity is
O(NDT) + O((N − 1)DT). Thus, the complexity can be characterized as Equation (22).

O(CMRLCCOA) = O(Origin coatis) + O(Hunting) + O(Escaping)
= O(ND(1 + 5/2T) + (N − 1)DT)

(22)

4. Numerical Experiments and Comparison with Other Algorithms

In Section 4, we conduct experiments using functions from the CEC2017 and CEC2019
test suites. Among them, it contains 29 functions for CEC2017 and 10 functions for CEC2019.
The number of iterations in this experiment is 500 and thirty individuals constitute the entire
population. The dimensions of CEC2017 are 50 and 100. The CMRLCCOA is compared to
fourteen existing metaheuristic algorithms, including four recognized classical algorithms,
PSO (particle swarm optimization) [15], DE (differential evolution) [12], SA (simulated
annealing) [16], and ABC (Artificial Bee Colony Algorithm) [61]; six recently proposed
algorithms, KOA (Kepler Optimization Algorithm) [62], SWO (Spider Wasp Optimizer) [63],
GMO (Geometric Mean Optimizer) [64], OMA (Optical Microscope Algorithm) [65], TROA
(Tyrannosaurus Optimization Algorithm) [66], and GO (GOOSE Algorithm) [67]; and three
improved algorithms, ISSA (Improved Sparrow Search Algorithm) [68], IGWO (Improved
Grey Wolf Optimizer) [69], and EWOA (Enhanced Whale Optimization Algorithm) [70].
Each comparison algorithm is run independently for 20. Finally, the optimum value,
the worst value, the mean value, the standard deviation, and the rank for all results are
calculated. Furthermore, the Wilcoxon signed rank test is performed to further check the
quality of CMRLCCOA. The parameters of the other metaheuristic algorithms are listed
in Table 2. Finally, all tests are experimented in Matlab-2020b with a 2.11 GHz quad-core
Intel(R) Core(TM) i5 and 8.00 GB.

Table 2. Algorithm-related information.

Algorithm Year Parameter Name Value

PSO 1995 Inertia weight Decreasing linearly from 0.9 to 0.1
Velocity range 0.1 times the size of the variable
Cognitive and social
factors c1 = 2, c2 = 2

DE 1995 Scaling factor 0.5
Crossover probability 0.5

SA 1953 - -
ABC 2005 Limit 20
KOA 2023 Velocity Tc = 3, M0 = 0.1, λ = 15
SWO 2023 Hunting and nesting weight 0.5
GMO 2023 Dual-fitness index α = 0.05, Pa2 = 0.2, Prb = 0.2
OMA 2023 Space 0.55
TROA 2023 Hunting success rate [0.1,.1]
GO 2024 Stone weight p1 = 5, p2 = 0.001, p3 = 0.3
IGWO 2021 α Decreases linearly from 2 to 0
EWOA 2023 a Decreased from 2 to 0

b 2
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4.1. Introduction to Test Sets

A total of 39 functions were used for testing in this experiment, which come from
CEC2017 [71] and CEC2019 [72].

CEC2017 is a test set of intelligent algorithms widely used for a number of optimization
problems. The functions are rotated and translated, which in turn increases the difficulty
of finding optimization for the algorithms and has a high degree of acceptance. There are
four types of benchmark functions: single-peaked, multi-peaked, hybrid, and combined.
The single-peak functions (cec01, cec03) are characterized by the fact that there is only a
global minimum, not a local minimum. This type of function verifies the convergence of
the algorithm. Multi-peak functions (cec04–cec10) have local minima. Such functions verify
the competence to get rid of local optima. Algorithms that perform well on these functions
generally possess strong exploration capabilities. Hybrid functions (cec11–cec20) have
each sub-function assigned a certain weight, which in turn better combines the properties
of each sub-function. These functions can effectively verify the ability to find the global
optimum. Composite functions (cec21–cec30) have additional bias values and weights
for each sub-function. Such functions allow us to assess the accuracy of algorithms. The
comprehensive performance will be demonstrated on these functions. To show the details
of these functions more clearly, the partial function diagrams are shown in Figure 9.
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In addition, this experiment also uses the CEC2019 test set to assess the algorithm’s
capability. The CEC2019 test set [73] is a very effective benchmark function set for meta-
heuristic algorithm performance testing. Among them, cec01–cec03 have different dimen-
sions and ranges, and cannot be moved and rotated. cec04–cec10 are ten-dimensional
minimization problems, which can be moved and rotated. This test set is known as the
“100-bit challenge” and is often used in international competitions. Some of the functions
of CEC 2019 are shown in Figure 10.
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4.2. Assessment of Indicators

To appraise the efficacy of all algorithms, we take several performance metrics for
the analysis, which include the optimal value (Best), the worst value (Worst), the mean
value (Ave), the standard deviation (Std), and Rank. Their equations are presented in
Equation (23) to Equation (26). The comparison of these metrics can be used to analyze the
performance. It is worth noting that Ave can indicate the precision of the algorithm when
addressing specific problem categories. The stability can be obtained from Std. Rank is
obtained by comparing Ave and Std. If Rank is smaller, it means that the algorithm has a
superior performance in solving a particular problem.

(1) Optimum value (Best)

Best = min
1≤i≤m

f ∗i (23)

(2) Worst value (Worst)

Worst = max
1≤i≤m

f ∗i (24)

(3) Mean value (Ave)

Ave =
1
m

m

∑
i=1

f ∗i (25)

(4) Standard deviation (Std)

Std =

√
1

m − 1

m

∑
i=1

( f ∗i − Ave)2 (26)

where m corresponds to the tally of independent runs of the algorithms. fi* is the global
optimum obtained at the i-th independent run.
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4.3. Effect of Different Chaotic Mapping Functions on CMRLCCOA

Chaotic mapping produces a random sequence for initializing the population, pro-
ducing a better initial solution [74]. Chaotic mapping produces initial populations in
different ways and gives different results. A better strategy produces good initial solutions
and is a great enhancement for the subsequent optimization of the algorithm. In this
context, 10 functions (taken from CEC2019) are optimized using 10 of the more common
chaotic mapping methods to analyze and compare the impact of different chaotic mappings.
Table 1 lists these 10 recognized chaotic mapping methods. Table 3 displays the effect and
ranking of the 10 chaotic mapping strategies on CMRLCCOA. From the data, it can be
seen that the Sine mapping strategy has the best optimization result with the smallest total
rank, followed by the Bernoulli mapping strategy and Circle mapping strategy. From the
above analysis, it can be concluded that the Sine chaotic mapping strategy performs best
in this method and is the first strategy in this method. To show the comparison results
more clearly, the experimental data are visualized here, as shown in Figure 11, where
the horizontal coordinate is the function of the test set and the vertical coordinate is the
algorithm obtained through different mapping methods. And Figure 11 indicates that the
Sine chaotic mapping strategy ranks first among the four functions. This also shows that
these strategies can be relatively more effective in improving the performance of COA.

Table 3. Results of chaotic mapping functions in the CEC2019 test set.

Function
Chaos Mapping, Rank

Tent Logistic Cubic Chebyshev Piecewise

CEC01 1 1 1 1 1 1 1 1 1 1
CEC02 4.8343428 3 4.9086048 4 4.7536217 1 4.9480054 9 4.9127265 5
CEC03 4.5113105 9 3.6855279 2 4.4167636 8 4.0965744 6 4.5839437 10
CEC04 21.433848 7 30.186825 10 24.332956 8 16.31391 1 27.812378 9
CEC05 1.1617451 5 1.1431999 1 1.1515950 3 1.1631781 6 1.194418 9
CEC06 3.3690697 4 3.3841554 5 3.2145844 3 3.6269374 9 3.4008807 6
CEC07 732.95347 9 725.80671 8 614.88261 4 584.74687 2 618.38094 6
CEC08 2721.4771 2 2647.8950 7 2851.1804 10 2604.0760 5 2792.7936 8
CEC09 3.6744951 5 3.8464906 6 3.9101588 3 3.7696891 8 3.8590904 9
CEC10 1.1916796 1 1.2024768 8 1.1872587 9 1.2116937 5 1.2209108 7

Ave rank 4.6 5.2 5 5.2 7
Final rank 4 6 5 6 10

Function
Chaos mapping, Rank

Sinusoidal Sine ICMIC Circle Bernoulli

CEC01 1 1 1 1 1 1 1 1 1 1
CEC02 4.9393187 7 4.9476647 8 4.9675991 10 4.9228798 6 4.7674341 2
CEC03 4.1652904 7 3.6007047 1 3.8968772 4 3.9812347 5 3.7443864 3
CEC04 19.948643 5 16.530138 2 19.427083 4 20.471053 6 18.128766 3
CEC05 1.1669640 7 1.1614536 4 1.1923656 8 1.1509138 2 1.200149 10
CEC06 3.6426736 10 3.4905846 8 3.4168389 7 3.1405742 2 2.8830131 1
CEC07 813.11549 10 580.91894 1 615.26845 5 688.45524 7 604.38442 3
CEC08 2734.7201 6 2530.4876 1 2646.3779 9 2686.5244 3 2650.1646 4
CEC09 3.7708771 10 3.5869369 1 3.8648624 7 3.7574923 2 3.7603243 4
CEC10 1.2469245 6 1.1435522 4 1.2066848 10 1.1592935 2 1.1908522 3

Total rank 6.9 3.1 6.5 3.6 3.4
Final rank 9 1 8 3 2
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Figure 11. Heat maps corresponding to the rankings obtained from different chaotic mappings.

4.4. Comparison of Optimization Results for CEC2017

For the purpose of examining CMRLCCOA’s competence in exploring, developing,
and jumping out of local optimal solutions, a more competitive test suite, the CEC2017 test
suite, was chosen for this paper. CEC2017 [71] is highly recognized and is widely used to
validate the performance in all aspects. What is more, this function is not included in this
paper because it was not possible to test cec02.

4.4.1. Experimental Results of the CEC2017 Test Suite

In this experiment, CMRLCCOA is run 20 times independently with 14 other algo-
rithms, and finally, Ave, Std, and Rank are calculated. Tables A1 and A2 show the results
obtained by 15 algorithms optimized in 50 and 100 dimensions. The top-ranked values are
highlighted in a thick format.

The observation of the tabular data shows that the CMRLCCOA is ranked first overall
with an average ranking of 3 and 2.6552 for dim = 50 and 100, respectively; this result shows
that the improved CMRLCCOA is better at optimizing in different dimensions and all of
them provide excellent output values. Most of the optimal values obtained by CMRLCCOA
computation outperform other algorithms. This phenomenon shows that CMRLCCOA
is adaptable to different types of functions. CMRLCCOA is able to optimize the nine test
functions better in dim = 50 (cec03, cec11–12, cec21, cec23, and cec27-30). At dim = 100,
CMRLCCOA better optimizes 13 test functions (cec03, cec04, cec07, cec11–12, cec14, cec15,
cec20–21, cec23–24, cec27–29). GMO also optimizes better and performs better for 10 50-
dimensional problems and 100-dimensional problems, second only to CMRLCCOA, and
ranked second overall. On the contrary, COA, KOA, SWO, TROA, and GO do not show
better optimization ability. In summary, CMRLCCOA significantly outperforms COA as
well as the other 13 intelligent optimization algorithms in 50 and 100 dimensions.

The Wilcoxon signed rank test verifies the variability of results obtained by different
algorithms [75]. The significance results for dim = 50 and 100 are shown in Tables A3 and A4.
“+/=/-” means that the comparative algorithm is significantly better/equal/worse than
the CMRLCCOA. The observation of the data reveals that the Wilcoxon test results for
COA, KOA, SWO, TROA, and GO are 0/0/29 at dim = 50 and 100, indicating that these
five algorithms are inferior to CMRLCCOA in all test functions. Meanwhile, the Wilcoxon
signed rank results of GMO in two dimensions are 6/10/13 and 6/7/16, which are better.
Secondly, ISSA and IGWO also perform better; both of them have six functions better
than CMRLCCOA. However, when dim = 50 or 100, ABC, EWOA, SA, and DE algorithms
perform significantly worse than CMRLCCOA. Therefore, this result also shows that
CMRLCCOA can address different types of problems.
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Similar to Figure 11, Figure 12 shows two heat maps of the results obtained for all
compared algorithms on CEC 2017 for two different dimensions. The vertical coordinates
are all algorithms involved in comparison. The performance of all algorithms can be intu-
itively obtained from the heat map. In the heat map of both dimensions, the corresponding
squares of CMRLCCOA proposed in this paper largely show a bluer situation relative to
other algorithms. Meanwhile, the GO and TROA rows are always red. This phenomenon
indicates that these two algorithms perform poorly on this test set and their performance
needs to be improved.
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4.4.2. Convergence Curves for Iterations

Figures 13 and 14 show partial convergence curves at dim = 50 and 100. From the
figure, it can be concluded that CMRLCCOA converges better on cec09, cec20–21, cec24,
cec27, and cec28 at dim = 50. When dim = 100, CMRLCCOA converges better on functions
cec07, cec09, cec12, cec20, cec25, and cec27–28. In addition, it can be seen that CMRLCCOA
has a larger slope of the curve during the iteration of most functions, which indicates that
CMRLCCOA always can converge faster in the early stages. This is made possible by
the inclusion of the initialization strategy, which allows the population to explore a larger
area. It is able to converge to the neighborhood of the optimum very quickly. In summary,
CMRLCCOA can find the optimal solution quickly and can solve some sophisticated
optimization questions.
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The optimization ability of CMRLCCOA varies when dealing with different functions.
As can be noticed from Figures 13 and 14, CMRLCCOA is able to avoid interference factors
well in the optimization of both single-peak and multi-peak functions, and both of them
converge rapidly to the vicinity of the optimal solution. CMRLCCOA converges faster in
hybrid and composite functions. The observation of the curves reveals that the slope of
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the pre-curve is very large and almost vertical so that the optimal candidate solution can
be found in fewer iterations, which indicates that the algorithm has high sensitivity. In
addition, it can be found that CMRLCCOA maintains the stability and continuity during
the iteration process of most functions, and the convergence accuracy is better. In short,
CMRLCCOA is able to solve the functions in CEC2017 efficiently.
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Figure 14. The iteration profile of CMRLCCOA with other comparative algorithms for dim = 100.
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4.4.3. Boxplot of Experimental Results

Combined with the convergence curves above, the corresponding box plots are given
here. A box-and-line plot is an icon that describes the discrete distribution of data and
provides a good description of outliers and skewness in the data. The length of the boxes
corresponds to the stability of algorithms. If the box is narrower, the algorithm is more
stable and robust. The upper limit of the box-and-line plot is the upper quartile, and the
lower line is the lower quartile. Because of the randomized nature of the algorithm, some
outliers are generated during the optimization of the problem, and to visually demonstrate
the quality of the optimization results, box-and-line plots of the optimization results at
dim = 50 and 100 are given, as shown in Figures 15 and 16. CMRLCCOA has less variation
in the upper and lower distances than the other algorithms, especially at dim = 50 for cec22,
cec24, cec27, and cec28, and at dim = 100 for cec01, cec09, cec11, cec12, ce25, and ce27–28.
These functions verify the stability of CMRLCCOA. However, CMRLCCOA also shows
some “+” indicators in the box plots of some functions, indicating that the algorithm also
produces some outliers with uncertainty and randomness.
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In conclusion, for most of the functions, CMRLCCOA is shorter and the upper and
lower boundaries are closer together compared to the other 14 algorithms, which indicates
that CMRLCCOA is more stable and has better minimum values compared to others.

4.5. Comparison of Optimization Results for CEC2019

This part of the numerical experiments is performed using the 10 functions in CEC2019 [76].
First, the experiment was set up to run 20 independent repetitions. After that, the Ave, Best,
Worst, Std, and Rank of the 20 results are computed. Secondly, we obtain the convergence
iteration diagrams during the algorithm runs. In addition, all comparison algorithms are
consistent with the above experiments. Table 4 illustrates the calculation results. First-
ranked data are marked in bold. Finally, box-and-line plots are plotted as a visualization of
the quality of the solution results. The radar plot shows more visually how each algorithm
ranks on each test function.

4.5.1. Statistical Results on CEC2019

As indicated in Table 4, the average rank of CMRLCCOA is 2.3, which is ranked
first overall, better than the others and significantly better than COA. This effect indicates
that CMRLCCOA obtains solutions of higher quality relative to the others. In addition,
CMRLCCOA significantly optimizes the five functions (cec01, cec04, cec05, cec07, cec08).
CMRLCCOA ranks first in terms of computational results in cec01, indicating that it
performs well in low-dimensional test functions. CMRLCCOA is superior to the others
in cec04 and cec05. This indicates that it is also suitable for higher-dimensional test
functions. CMRLCCOA has excellent optimization ability in cec07 and cec08. GMO
performs excellently in completing some problems, and has excellent optimization ability,
ranking second. GMO outperforms the other algorithms and has a strong optimization
ability. In contrast, other algorithms do not solve these functions well.

Table 5 shows the final test results for the Wilcoxon signed rank [77]. A look at the
data in Table 5 reveals that the Wilcoxon symbolic rank test outputs for COA, KOA, SWO,
GMO, OMA, TROA, GO, PSO, DE, SA, ABC, ISSA, IGWO, and EWOA are 0/1/9, 0/0/10,
0/0/10, 3/2/5, 1/1/8, 0/0/10, 0/0/10, 2/2/6, 2/3/5, 0/3/7, 0/1/9, 2/2/6, 2/1/7, and
0/1/9. It can be found that KOA, SWO, TROA, and GO are not as good as CMRLCCOA
on all the tested functions, which can show that CMRLCCOA has better performance and
is competitive.
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Table 4. Comparison results of CMRLCCOA and different algorithms in CEC2019.

Function Index COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

cec01

Ave 1 1 1.84E+08 1.48E+07 1 2.84E+05 1.67E+09 1.69E+08 1 5.20E+06 1 1.05E+07 1 5.79E+04 2.37E+06
Worst 1 1 4.54E+08 1.64E+08 1 1,122,748 3.12E+09 2.92E+08 1 11,058,720 1 23,234,725 1 314,276 13,879,628
Best 1 1 2.44E+07 9.39E+01 1 3.36E+04 3.74E+08 2.25E+07 1 5.33E+05 1 2.90E+06 1 1.23E+01 5.95E+04
Std 0 0 9.53E+07 3.73E+07 9.92E-08 2.48E+05 8.49E+08 7.31E+07 0 3.20E+06 0 5.06E+06 0 8.21E+04 3.05E+06

Rank 1 1 14 12 6 8 15 13 1 10 1 11 1 7 9

cec02

Ave 5 4.818 12,317.590 861.263 4.901 294.950 30,233.500 9853.688 4.524 2666.823 4679.524 5229.067 4.254 334.713 2764.978
Worst 5 5.000 16,901.760 4888.710 5.016 1082.046 48,225.370 15,077.270 4.767 4079.375 8195.320 6785.122 4.374 520.294 6792.063
Best 5 4.227 8797.222 6.154 4.484 103.766 19,285.510 6266.771 4.313 1603.955 1354.395 3788.566 4.217 184.893 494.261
Std 1.04E-06 0.262 1984.790 1278.936 0.162 201.267 7041.787 2262.994 0.150 716.899 2066.515 747.501 0.034 88.850 1925.375

Rank 5 3 14 8 4 6 15 13 2 9 11 12 1 7 10

cec03

Ave 4.622 2.106 11.433 10.332 1.993 3.473 12.699 11.374 2.815 5.432 6.197 10.087 2.278 1.864 6.742
Worst 5.475 5.512 12.168 11.634 3.475 4.739 13.278 12.170 4.564 6.231 10.712 10.935 7.686 7.712 9.710
Best 2.943 1.317 10.743 6.714 1.000 2.343 11.973 9.492 1.413 3.979 1.409 8.684 1.002 1.001 3.237
Std 0.661 0.809 0.384 1.179 0.833 0.823 0.255 0.544 0.879 0.675 2.878 0.546 1.420 1.535 1.788

Rank 7 3 14 12 2 6 15 13 5 8 9 11 4 1 10

cec04

Ave 83.126 11.211 81.242 81.491 25.163 24.406 155.292 74.851 98.306 13.142 23.918 36.051 28.804 12.690 30.922
Worst 110.190 27.918 93.461 103.081 66.180 43.391 202.658 93.995 98.506 17.302 44.599 43.256 50.679 23.203 62.484
Best 60.535 3.992 65.997 62.612 5.975 14.378 102.226 50.088 97.510 5.662 7.965 26.430 5.975 4.008 13.934
Std 14.114 5.133 8.691 10.972 14.740 7.680 26.491 10.343 0.398 2.749 9.215 3.976 10.740 6.509 12.803

Rank 13 1 11 12 6 5 15 10 14 3 4 9 7 2 8

cec05

Ave 88.662 1.209 32.158 28.849 1.226 1.232 201.010 25.001 6.406 1.349 1.213 1.485 1.138 1.606 2.084
Worst 143.853 1.345 55.645 68.663 1.885 1.521 281.706 51.233 14.646 1.421 1.608 1.637 1.426 1.793 10.596
Best 34.877 1.046 16.528 10.402 1.039 1.041 60.285 9.520 2.341 1.062 1.012 1.306 1.034 1.423 1.030
Std 29.671 0.103 10.825 15.632 0.226 0.113 64.150 9.822 3.244 0.042 0.165 0.085 0.093 0.093 2.796

Rank 14 2 13 12 4 5 15 11 10 6 3 7 1 8 9

cec06

Ave 10.416 3.083 11.411 10.418 1.612 1.980 15.880 10.706 16.019 2.226 6.393 3.298 4.713 1.838 5.789
Worst 12.364 5.473 13.788 12.757 4.735 4.450 17.642 12.658 16.858 2.752 9.150 5.090 7.272 3.322 10.030
Best 8.101 1.915 9.318 6.511 1.013 1.162 11.850 8.652 14.849 1.745 3.805 1.568 2.555 1.138 2.122
Std 1.128 0.973 1.219 1.247 0.915 0.751 1.312 1.115 0.586 0.275 1.533 0.863 1.360 0.457 2.247

Rank 10 5 13 11 1 3 14 12 15 4 9 6 7 2 8

cec07

Ave 1888.543 630.452 2214.700 1984.343 1127.429 1488.903 2920.239 2057.648 1966.054 692.845 720.485 1429.335 1002.165 695.429 966.935
Worst 2213.910 998.426 2555.673 2365.470 2086.663 1744.456 3437.083 2347.304 2156.438 919.701 1130.655 1711.483 1582.198 1431.710 1526.280
Best 1364.789 271.372 1825.462 1408.175 357.282 1256.515 2219.054 1619.865 1818.921 411.468 245.729 1155.446 519.223 5.542 125.939
Std 238.431 203.125 183.251 250.080 521.197 144.181 328.974 210.137 111.793 132.633 229.616 164.750 253.134 473.452 318.565

Rank 10 1 14 12 7 9 15 13 11 2 4 8 6 3 5

cec08

Ave 4.839 3.174 5.202 5.084 3.991 4.055 5.601 5.110 5.517 3.794 4.279 4.478 4.293 3.235 4.418
Worst 5.055 4.638 5.476 5.352 4.931 4.333 5.874 5.475 5.560 4.034 5.203 4.777 5.000 3.865 4.932
Best 4.149 3.275 4.997 4.816 3.133 3.342 5.147 4.822 5.493 3.371 3.502 4.104 3.455 2.059 3.825
Std 0.227 0.368 0.140 0.147 0.510 0.239 0.179 0.168 0.022 0.198 0.434 0.177 0.398 0.562 0.293

Rank 10 1 13 11 4 5 15 12 14 3 6 9 7 2 8

cec09

Ave 3.726 1.209 2.528 2.312 1.095 1.495 6.666 2.264 1.234 1.275 1.486 1.277 1.330 1.216 1.435
Worst 4.445 1.385 3.225 3.296 1.208 1.829 8.271 3.043 1.377 1.337 1.904 1.362 1.475 1.297 1.723
Best 2.779 1.056 1.925 1.544 1.045 1.251 5.311 1.601 1.083 1.185 1.058 1.169 1.144 1.081 1.196
Std 0.488 0.084 0.313 0.453 0.038 0.146 0.733 0.401 0.098 0.037 0.225 0.056 0.108 0.047 0.156

Rank 14 2 13 12 1 10 15 11 4 5 9 6 7 3 8
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Table 4. Cont.

Function Index COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

cec10

Ave 21.455 21.017 21.788 21.635 19.365 21.381 22.101 21.737 20.985 20.934 21.019 21.452 21.368 21.434 21.462
Worst 21.624 21.464 21.992 21.832 21.601 21.566 22.367 21.978 20.987 21.191 21.115 21.620 21.592 21.577 21.628
Best 21.205 21.145 21.413 21.373 1.001 20.591 21.709 21.464 20.983 18.057 21.000 21.253 21.027 21.263 21.185
Std 0.121 0.082 0.140 0.143 6.123 0.201 0.193 0.126 0.001 0.705 0.032 0.098 0.162 0.088 0.106

Rank 10 4 14 12 1 7 15 13 3 2 5 9 6 8 11

Mean Rank 9.4 2.3 13.3 11.4 3.6 6.4 14.9 12.1 7.9 5.2 6.1 8.8 4.7 4.3 8.6
Final Ranking 11 1 14 12 2 7 15 13 8 5 6 10 4 3 9

Table 5. Significance of CMRLCCOA and different algorithms in CEC2019.

Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

cec01 NaN/= 8.01E-09/- 6.08E-08/- 2.99E-08/- 8.01E-09/- 8.01E-09/- 6.08E-01/- NaN/= 6.51E-08/- NaN/= 8.01E-09/- NaN/= 8.01E-09/- 7.93E-09/-
cec02 1.57E-08/- 6.80E-08/- 9.23E-06/- 1.33E-02/- 6.80E-08/- 7.33E-07/- 6.80E-08/- 7.58E-04/+ 9.21E-08/- 6.33E-08/- 3.76E-06/- 7.95E-07/+ 6.31E-08/- 6.80E-08/-
cec03 3.85E-02/- 7.99E-08/- 6.80E-08/- 7.95E-07/+ 1.93E-02/- 6.80E-08/- 6.31E-07/- 2.22E-04/- 1.81E-05/- 1.79E-02/- 6.80E-08/- 7.58E-06/- 6.67E-06/+ 9.75E-06/-
cec04 6.80E-08/- 6.04E-09/- 3.88E-09/- 4.39E-02/- 1.01E-02/- 9.38E-06/- 9.03E-06/- 6.80E-08/- 8.59E-02/= 9.05E-03/- 7.92E-09/- 1.79E-04/- 6.04E-03/- 1.61E-04/-
cec05 7.32E-07/- 6.80E-08/- 7.90E-08/- 3.10E-01/= 5.08E-01/= 3.20E-05/- 5.30E-06/- 6.80E-08/- 1.33E-01/= 6.95E-01/= 5.23E-07/- 3.37E-02/+ 9.11E-09/- 2.62E-01/=
cec06 6.80E-08/- 4.26E-07/- 6.80E-08/- 3.99E-06/+ 1.25E-05/+ 6.80E-08/- 7.69E-07/- 9.60E-04/- 1.81E-05/+ 2.32E-05/- 4.41E-01/- 1.79E-02/- 2.56E-07/+ 2.561E-03/-
cec07 3.68E-08/- 7.30E-08/- 6.80E-08/- 3.97E-03/- 6.80E-08/- 6.80E-08/- 9.01E-06/- 7.31E-06/- 2.50E-01/= 2.62E-01/= 2.50E-07/- 8.29E-05/- 8.18E-01/= 3.75E-04/-
cec08 7.88E-05/- 6.80E-08/- 9.10E-06/- 3.99E-06/- 1.25E-05/- 6.36E-09/- 6.80E-08/- 6.80E-08/- 1.81E-05/- 2.36E-06/- 4.41E-01/= 1.79E-02/- 2.56E-07/- 2.56E-03/-
cec09 8.21E-08/- 6.80E-08/- 6.80E-08/- 1.81E-05/+ 6.01E-07/- 6.80E-08/- 3.67E-04/- 2.98E-01/= 2.80E-03/- 1.61E-04/- 6.04E-03/- 9.21E-04/- 2.39E-02/- 1.41E-05/-
cec10 9.05E-03/- 1.23E-07/- 1.38E-06/- 1.26E-01/= 7.64E-02/- 6.80E-08/- 6.80E-08/- 5.33E-05/+ 2.56E-07/+ 6.80E-08/- 3.06E-03/- 5.08E-01/= 1.06E-02/- 1.95E-03/-
+/=/- 0/1/9 0/0/10 0/0/10 3/2/5 1/1/8 0/0/10 0/0/10 2/2/6 2/3/5 0/3/7 0/1/9 2/2/6 2/1/7 0/1/9
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4.5.2. Convergence Curves for Iterations

The convergence curves of comparison algorithms are shown in Figure 17. CMRLC-
COA has a very smooth iteration curve and can approach the optimal solution quickly. This
shows that CMRLCCOA converges faster than other algorithms, so this algorithm is capable
to solve high- and low-dimensional problems. In the experiments on the high-dimensional
cec03 function, the CMRLCCOA function converges very fast and moves rapidly to the
optimal solution. The CMRLCCOA reaches the neighborhood of the optimum with few
iterations during the solution of functions cec05, cec07, and cec09. The convergence is
significantly better. The GMO for cec08 is closest to the optimal value and its convergence
effect is also excellent. In addition, as shown in Figure 12, the CMRLCCOA algorithm
has a very large slope, almost vertical, on the early convergence curves of most functions,
indicating that the algorithm has a high sensitivity. Also, PSO, IGWO, OMA, and GMO
algorithms show good competence in certain functions. The results show that CMRLCCOA
converges faster, gradually approaches the optimal solution, and has better optimization
ability than others.

4.5.3. Boxplot of Experimental Results

Figure 18 illustrates a box-and-line plot of CMRLCCOA and other comparative algo-
rithms optimizing the CEC2019 test function. As can be noticed from the figure, it can be
noticed that the CMRLCCOA has a lower median case and narrower inter-quartile range,
especially in the functions cec01, cec02, cec05, and cec10. It shows that the solutions of
CMRLCCOA are more centralized than the other algorithms and are robust. However,
CMRLCCOA produces outliers in the optimization process of some functions, such as
cec08 and cec09. This phenomenon indicates that this algorithm is unstable to some extent.
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4.5.4. Radargram Behavior Analysis

A radar chart is a chart that shows multidimensional data and also shows how much
weight is given to each variable in a set of data and can be used to show performance data.
To visualize the performance ranking of the different tested functions for all algorithms,
Figure 19 illustrates the radar chart of the results for the 10 tested functions sorted. A
larger area of the filled portion indicates a lower overall ranking of the algorithm. From
Figure 19, it can be concluded that CMRLCCOA has the smallest area, which indicates that
CMRLCCOA has the smallest total ranking and the best overall optimization capability.
Furthermore, GMO and IGWO also show better performance.
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Figure 19. Radar chart of CMRLCCOA and other algorithms on CEC2019. Figure 19. Radar chart of CMRLCCOA and other algorithms on CEC2019.

To show the results on the test set more clearly, they are shown here by stacked
histograms. As shown in Figure 20, the total height of CMRLCCOA is the lowest. This
indicates that CMRLCCOA has relatively the best overall performance and CMRLCCOA is
effective. This shows that the mixing of multiple strategies with COA and the construction
of CMRLCCOA are effective as well as successful.
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5. Solutions to Real-World Engineering Optimization Problems

To further test the performance of CMRLCCOA, this section tests it against several
excellent metaheuristic algorithms on several complex real-world engineering applications.
The comparison algorithms include KOA [62], TROA [66], BWO [29], AO [78], HBA [79],
SWO [63], GMO [64], OMA [65], and GO [67]. Their parameters are kept consistent with
Table 2. They are not repeated here. The experimental part is as follows.

5.1. Single-Stage Cylindrical Gear Reducer (SSCGR)

SSCGR [80] is a kind of reducer that is widely used. The reducer consists of an input
shaft and an output shaft. It typically serves as a speed reducer between the primary
component and the operational machinery. However, designers tend to focus on the quality
and design efficiency of the reducer, thus ignoring the reducer’s consumables, resulting in
a huge waste. With the goal of minimizing the number of reducer consumables, SSCGR
is established as follows under the premise of meeting the physical model and stability
requirements of the reducer: tooth width D, case width B, discrete parameter modulus P
and three integer parameters, {d1, d2, z1}, namely. Figure 21 illustrates a diagram of the
SSCGR. After specifying the optimization objective, we define the problem as follows:

X =
[
D, B, P, d′1, d′2, z1

]
.

Minimize

f (X) = π(1.1875x1x2
3x2

6 + 0.262x1x2
4 − 0.282x1x2

5)
+21.25x1x2

3x6 + 0.25x2x2
4 + 0.25x2x2

5 + 70x2
4

+80x2
5 − 21.25x1x2

3 + 0.2x1x3x5x6 − 0.4x1x3x5)

subject to

g1(X) =
1,367,657.1038

x3x6
√

x1
− 855 ≤ 0,

g2(X) =
6,952,400,000

−0.0854x1x2
3x3

6 + 6.666x1x2
3x2

6 + 169x1x2
3x6

− 261 ≤ 0,



Biomimetics 2024, 9, 399 32 of 51

g3(X) =
6,952,400,000

−0.394x1x2
3x3

6 + 17.695x1x2
3x2

6 + 2824x1x2
3x6

− 213 ≤ 0,

g4(X) =
12.077149x3

2
x3x4

4x6
− 0.003x2 ≤ 0,

g5(X) =
28,456,113.636

x3x2
4x6

√
1 + 0.307380

x2
3x2

6
x2

2
− 55 ≤ 0,

g6(X) =
28,456,113.636x2

x3x3
5x6

√
1 + 7.684501

x2
3x2

6
x2

2
− 55 ≤ 0,

g7(X) = 17 − x6 ≤ 0, g8(X) = 2 − x3 ≤ 0,

g9(X) = x3x6 − 300 ≤ 0, g10(X) = 16 − x1/x3 ≤ 0,

g11(X) = x1/x3 − 35 ≤ 0, g12(X) = 100 − x4 ≤ 0,

g13(X) = x4 − 150 ≤ 0, g14(X) = 130 − x5 ≤ 0,

g15(X)− 200 ≤ 0, g16(X) = x1 + 0.5x5 + 40 − x2 ≤ 0,

where the ranges of six design variables being 50 ≤ x1 ≤ 150, 150 ≤ x2 ≤ 350, 0 ≤ x3 ≤ 50,
50 ≤ x4 ≤ 150, 50 ≤ x5 ≤ 200, and 15 ≤ x6 ≤ 30. In addition, x3 is a discrete variable, the
range of the variable is shown in Table 6, and x4, x5, and x6 are integer variables.
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Table 6. The discrete value of the standard modulus.

x3: Standard Modulus (mm)

0.1 0.12 0.15 0.2 0.25 0.3 0.4
0.5 0.6 0.8 0.1 1.25 1.5 2
2.5 3 4 5 6 8 10
12 16 20 25 32 40 50

Tables 7 and 8 contain the values of the variables taken and the minimum amount of
consumables obtained by CMRLCCOA and other algorithms. It proves that CMRLCCOA
outperforms other algorithms on average and is relatively stable. Therefore, CMRLCCOA
is preferred for solving this hybrid discrete problem.
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Table 7. The results of the SSCGR problem.

Algorithms x1 x1 x1 x1 x1 x1

CMRLCCOA 84.3521 164.5389 12 76 96 15
KOA 68.31117 163.3201 12 61 87 19
TROA 127.9832 236.9841 6 100 138 23
BWO 125.2962 242.9624 10 77 72 15
AO 52.0544 150.0000 8 68 84 19
HBA 59.0237 150.0234 8 67 83 21
SWO 112.3465 265.799 6 108 148 24
GMO 125.6832 234.0342 5 107 140 27
OMA 120.4782 243.8961 6 100 98 24
GO 120.9341 230.4218 6 108 138 25

Table 8. The solution quality of SSCGR problem.

Algorithms Best Cost Worse Cost Average Cost Standard Deviation

CMRLCCOA 9,753,030 19,553,655 15,358,330 258,799.75
KOA 11,703,116 49,804,525 23,770,950 9,668,408.43
TROA 11,020,774 37,884,551 20,846,936 6,707,838.46
BWO 14,902,880.2 17,193,421.69 15,818,208.26 544,502.38
AO 15,235,791.91 16,184,369.46 15,671,961.51 255,292.88
HBA 15,525,037.23 16,184,369.46 15,986,219 282,022.135
SWO 19,478,312.31 28,378,921.72 24,589,213.91 5,423,637.31
GMO 20,786,321.63 34,762,811.82 28,970,643.84 6,272,892.32
OMA 28,876,731.35 34,678,891.78 31,328,901.12 256,893.21
GO 26,895,531.98 36,755,467.90 31,548,903.82 4,983,221.34

5.2. Welded Beam Design Problem (WBD)

WBD [81,82] is a classical nonlinear programming problem. Its target is to reduce the
production costs associated with the design. Figure 22 illustrates the WDB. This problem
is to obtain four constraints that satisfy the constraints of shear stress (τ), bending stress
(θ), bending load (P) of the beam bar, end deviation (δ), and boundary conditions, such
that the cost of fabricating the welded beam is minimized. This question can be explained
as follows:
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strates that CMRLCCOA can solve the cantilever beam problem effectively. 
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Variant: →
Q = [q1, q2, q3, q4] = [h, l, t, b].

Minimize
f (

→
Q) = 1.10471q2

1q2 + 0.04811q3q4(14.0 + q2).
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subject to

f1(
→
Q) = τ(

→
Q)− τmax ≤ 0,

f2(
→
Q) = σ(

→
Y)− σmax ≤ 0,

f3(
→
Q) = δ(

→
Q)− δmax ≤ 0,

f4(
→
Q) = q1 − q4 ≤ 0,

f5(
→
Q) = P − Pc(

→
Q) ≤ 0,

f6(
→
Q) = 0.125 − q1 ≤ 0,

f7(
→
Q) = 1.10471q2

1 + 0.04811q3q4(14.0 + q2)− 5.0 ≤ 0.

Variable Scope:
0.1 ≤ q1 ≤ 2, 0.1 ≤ q2 ≤ 10,

0.1 ≤ q3 ≤ 10, 0.1 ≤ q4 ≤ 2.

where

τ(
→
Q) =

√
(τ′)2 + 2τ′τ′′ q2

R
+ (τ′′ )2,

τ′ =
P√

2q1q2
, τ′′ =

MR
J

,

M = P(L +
q2

2
),

R =

√
q2

2
4
+ (

q1 + q3

2
)

2
,

J = 2

{√
2q1q2

[
q2

2
4
+ (

q1 + q3

2
)

2
]}

,

σ(
→
Q) =

6PL
q4q2

3
, δ(

→
Q) =

6PL3

Eq2
3q4

,

Pc(
→
Q) =

4.013E
√

q2
3q6

4
36

L2 (1 − q3

L

√
E

64G
),

P = 6000lb, L = 14in, δmax = 0.25in, G = 12 × 106 psi,

E = 30 × 106 psi, τmax = 13, 600psi, σmax = 30, 000psi.

Table 9 presents the values of the variables and the manufacturing costs. Observing
the graphs, it is noticeable that the mean and minimum expenses obtained by CMRLCCOA
are less than the comparative algorithms. Therefore, CMRLCCOA can be prioritized when
solving similar problems and this algorithm is significantly competitive.

Table 9. Numerical results of ten algorithms for the WBD.

Element CMRLCCOA KOA TROA BWO AO HBA SWO GMO OMA GO

x1 0.634 0.163 0.205 0.204 0.156 0.723 0.621 0.169 0.483 0.341
x2 4.211 4.981 3.572 3.721 5.242 1.502 3.411 4.822 3.274 2.592
x3 6.802 9.164 9.824 9.311 8.968 5.368 5.391 9.231 8.021 7.608
x4 0.633 0.246 0.214 0.287 0.219 0.642 0.511 0.205 0.425 0.328
Best 1.660 1.664 1.661 1.663 1.747 2.011 1.683 1.662 1.673 1.691
Worse 1.671 2.130 1.683 2.173 2.162 4.702 6.326 2.750 2.238 2.691
Mean 1.665 1.932 1.674 1.801 1.944 3.164 3.890 2.137 1.902 2.185
Std 0.006 0.132 0.008 0.121 0.133 0.783 1.311 0.185 0.133 0.170
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5.3. Cantilever Beam Design Problem (CBDP)

This problem is to reduce the weight of the suspension beam arm. The structure of the
cantilever beam consists of five hollow cells, each of which has the same cross-sectional
thickness [83]. Figure 23 illustrates the structure. The thickness of the crossbar remains
fixed and the variables are the widths of the five sections. The issue is presented as follows:
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Minimize
f (b) = 0.0624(b1 + b2 + b3 + b4 + b5), bi > 0.
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+
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b3

3
+

7
b3

4
+

1
b3

5
≤ 1.

Variable range:
0.01 ≤ bi ≤ 100, i = 1, 2, 3, 4, 5.

Table 10 shows the values of the variables obtained from all algorithms, as well as the
quality. The best results are marked in bold. Comparing the other results, CMRLCCOA
obtains the minimum mass and the results are more stable. This phenomenon demonstrates
that CMRLCCOA can solve the cantilever beam problem effectively.

Table 10. Statistical results of cantilever beam design issues.

Element CMRLCCOA KOA TROA BWO AO HBA SWO GMO OMA GO

x1 5.970619 6.340312 5.934021 6.094141 5.952939 6.023157 6.093914 5.873219 6.013591 5.909183
x2 5.271230 5.329041 5.312115 5.245089 5.279312 5.372044 5.172349 5.309218 5.305521 5.328713
x3 4.463102 4.502875 4.476823 4.454137 4.47316 4.780241 4.768092 4.457552 4.432802 4.795219
x4 3.476491 3.592133 3.508861 3.425591 3.469623 3.542192 3.523891 3.492033 3.509931 3.480216
x5 2.137348 2.160322 2.436287 2.102532 2.149688 2.023797 2.153571 2.437761 2.189233 2.039822
Best 13.302191 16.433288 14.306442 13.32191 13.317692 13.347884 13.863016 13.712833 13.690375 13.926679
Worse 3.313796 24.306681 27.683391 13.396380 13.329414 14.216902 13.926871 16.086629 14.283347 19.37228
Mean 13.308977 20.499271 19.903173 13.358301 13.322805 13.983346 13.890766 14.03799 13.998273 15.349741
Std 3.16E-05 3.8891 4.0399 1.98E-02 2.93E-03 2.57E-02 1.79E-02 9.91E-01 3.88E-02 2.67E-01

6. Real Application: Engineering Optimization Problems

Hypersonic technology is an important milestone in the history of the world’s ar-
maments and equipment, which greatly enriches the content of offensive and defensive
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confrontation in the adjacent space, represents a country’s ability to develop and utilize
space in the future, and is an important symbol of the army’s combat power and surviv-
ability, and has a wide range of prospects for application and extremely important military
value. The main advantages of hypersonic vehicles are fast flight speed, high flyable
altitude from the ground, strong capability of surprise and defense, and great destructive
power. In the face of future informationization and intelligent combat, hypersonic vehicles
can play a great role by using their characteristics [84].

Since hypersonic vehicles are extremely fast in flight, the environment becomes more
complex when the vehicle enters the re-entry or cruise phase, resulting in the need for
a control system that is extremely stabilized and at the same time can achieve precise
control. Due to the extremely high speed, the missile cannot make a sharp turn in the
air. Therefore, in some instances, it is necessary to limit the curvature and turn rate of the
aircraft trajectory [85]. Many scholars at home and abroad have also studied this problem.
In this section, we will model the path planning of cruise missiles for hypersonic vehicles
and apply CMRLCCOA to solve the problem [86].

6.1. Background and Establishment of the Model

With the continuous development of weapons technology, the system in the field of
military defense and control is being gradually improved. The traditional ballistic missile
path may face the risk of being predicted or even intercepted, which is not safe. For the
actual ballistic path optimization design problem, different tactical indicators often have
different optimization objectives. Hypersonic cruise missiles fly extremely fast and can
change their trajectory, thus greatly reducing the risk of interception. These characteristics
make it possible to attack targets with very short warning times and at very high speeds.
However, current research in this area is relatively small and has not achieved a major
breakthrough. In this section, we look at cruise missile trajectories at hypersonic speeds,
first considering only the following two conditions:

The hypersonic flight threat area and trajectory map are shown in Figure 24. The
constrained region is shown in Figure 25, which shows the positional coordinates of the
craft in relation to the radar. In this paper, the radar-centered range of 400 km is used as the
solution space, and it is considered that the vertical distance between each defense unit is
as far as possible, thus increasing the lateral distance of the interceptor missile.
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Hypersonic missile trajectory modeling needs to satisfy certain conditions. Assuming
that there are a total of n cubic curves, the curvature of the i-th curve is denoted as pi(t),
1 ≤ i ≤ n. The length of the curve is denoted as li, and the derivative of the curvature is
denoted as d′i(t). The control fixed points are Bi,0, Bi,1, Bi,2, Bi,3, respectively.

Optimization Objective: The length of the missile trajectory curve is the shortest and
the curvature derivative is the largest.

Limitations: The range of feasible domains, continuity constraints, maximum curva-
ture constraints.

Decision Variable: The control vertex.
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Minimize

k1

n

∑
i=1

li + k2

n

∑
i=1

Di(t).

subject to
Di(t) = min(d′ i(t)), 0 ≤ di(t) ≤ 1/R,

i = 1, 2, . . . , n, j = 0, 1, 2, 3,

li =
∫ 1

0

√
(p′(t))2 + (q′(t))2dt,

di(t) =
p′(t)q′′ (t)− q′(t)p′′ (t)

((p′(t))2 + (q′(t))2)
3/2 .

where k1 and k2 are the weighting factor.
The above is a more complex minimization problem proposed in this paper. Next,

CMRLCCOA is used to solve it for hypersonic missiles.

6.2. Solving the Model

CMRLCCOA, as well as KOA, TROA, BWO, AO, HBA, SWO, GMO, OMA, and GO,
is applied to the hypersonic cruise ballistic optimization problem. Table 11 lists the optimal
ballistic lengths solved by the 10 algorithms. Observing the table, it can be observed that the
shortest length obtained by CMRLCCOA is 51.231801 km. This result is less than the results
calculated by the others. This phenomenon indicates that CMRLCCOA performs better.

Table 11. Path lengths of CMRLCCOA and other algorithms.

Element CMRLCCOA KOA TROA BWO AO HBA SWO GMO OMA GO

Length/km 51.231801 57.228763 58.183246 51.243317 51.375423 53.902461 55.320411 51.410963 53.801934 57.944201

7. Summary and Outlook

In this paper, four strategies are used to improve COA, which leads to the proposed
CMRLCCOA. First, in the initialization population phase, the coati population is initialized
using the Sine chaotic mapping function to avoid population randomization. Second,
a lens imaging reverse learning strategy is applied to renew the location of the coati
population again. This strategy can expand the search space and enhance the quality of
coati populations. Then, the Lévy flight strategy allows coatis to move over a wide range
in the search space, reducing the iguana constraint. This method makes the algorithm
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better at finding a global optimum. Finally, the use of the crossover strategy reduces the
search blind spots and improves the algorithm’s accuracy. Experiments are conducted
in CEC2017 and CEC2019 test suites, where 50 and 100 dimensions are used in CEC2017.
Lastly, the optimization results derived from CMRLCCOA are compared with COA, six new
algorithms proposed in the last two years, four classical and well-recognized algorithms,
and three enhanced algorithms. Then, we find that the newly proposed CMRLCCOA
has better results and higher performance. In addition, CMRLCCOA is able to optimize
to obtain better solutions to the three engineering problems. Finally, this paper also
establishes a model of a hypersonic vehicle cruise ballistic problem. CMRLCCOA performs
best in solving the hypersonic cruise ballistic trajectory optimization, reflecting the strong
optimization capability and stability of CMRLCCOA.

To conclude, this study has strong scientific and practical value. The possible future
work is as follows: Although the proposed CMRLCCOA has enhanced optimization ca-
pability and accelerated convergence speed, it still has areas of improvement in terms of
computational complexity and computation time. CMRLCCOA will be further optimized
for this problem in the follow-up work. In addition, we will continue to study on the
basis of CMRLCCOA to obtain better solutions and apply it to address many complicated
optimization problems, including route planning [87,88], image division problems [89],
workshop scheduling [90], feature selection [91,92], shape optimization [76], and engineer-
ing optimization [93], and further expand the application field of intelligent algorithms.
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Appendix A. Results of the CEC2017 Test Set
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Table A1. Optimization results of CMRLCCOA algorithm with 14 algorithms in cec2017 function when dim = 50.

Function Index
Algorithms

COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC01
Ave 1.08E+11 22,777,249 1.18E+11 1.07E+11 43,547.92 8.9E+09 2.67E+11 1.49E+11 1.23E+10 1.28E+08 22,115.01 4.19E+09 4,589,023 3.26E+08 1.13E+10
Std 2.56E+09 7,420,778 1.47E+10 1.26E+10 20,964.4 2.01E+09 8.81E+09 1.09E+10 4.49E+09 46,273,671 17,616.93 3E+08 3,000,020 2.78E+08 8.81E+09
Rank 12 4 13 11 2 8 15 14 10 5 1 7 3 6 9

CEC03
Ave 193,393.7 83,357.22 495,184.8 374,612.9 151,513.8 168,988.4 1.63E+10 14,125,521 108,651.2 261,878.2 427,856.9 333,521.1 258,155.3 61,505.58 324,586.3
Std 16,512.06 13,517.11 120,262.1 55,484.44 11,447.75 22,600.47 3.2E+10 25,904,509 16,905.62 23,397.86 109,269.6 45,840.02 52,501 7858.062 73,677.19
Rank 6 2 13 11 4 5 15 14 3 8 12 10 7 1 9

CEC04
Ave 37,169.12 666.11843 29,217.66 32,616.67 595.0011 1957.124 116,582.1 50,507.09 3696.137 862.5515 658.4734 1263.84 655.8 659.9922 2276.58
Std 8525.985 50.203537 9385.45 4779.994 47.57367 613.9945 12,298.04 7394.986 856.2404 17.60447 79.87179 91.04166 85.99321 25.16279 1473.755
Rank 13 5 11 12 1 8 15 14 10 6 3 7 2 4 9

CEC05
Ave 1193.308 739.7449 1290.262 1289.723 678.3483 850.7566 1683.433 1356.928 888.8936 904.5467 783.4538 1010.374 872.9973 705.418 926.5937
Std 22.23096 34.83147 16.77681 42.89903 43.8473 33.98982 64.33351 25.00527 8.49458 18.80467 25.24603 16.72415 33.29331 82.20668 47.40865
Rank 11 3 13 12 1 5 15 14 7 8 4 10 6 2 9

CEC06
Ave 697.2991 652.73418 708.4708 707.0367 617.3871 638.1543 746.2198 714.9182 674.0721 602.7132 600.5653 623.6647 659.8166 603.5628 656.9779
Std 4.636789 9.3784893 3.542636 8.981565 5.473167 2.657291 6.883185 4.726849 2.803705 0.159644 0.360944 2.518193 11.04104 0.565964 7.909236
Rank 11 7 13 12 4 6 15 14 10 2 1 5 9 3 8

CEC07
Ave 2034.219 1254.761 3043.196 2108.583 900.3868 1681.005 5910.989 3364.926 1819.316 1174.162 1083.525 1413.702 1528.194 1014.83 1427.293
Std 43.61301 118.2879 371.1122 58.89466 25.55611 168.9367 403.1108 293.7753 17.72496 15.6616 49.23108 12.65898 150.4762 109.4659 312.1561
Rank 11 5 13 12 1 9 15 14 10 4 3 6 8 2 7

CEC08
Ave 1477.196 1144.4651 1614.532 1549.343 1020.067 1203.821 1986.525 1682.505 1240.873 1192.076 1057.334 1307.304 1145.338 982.4962 1192.125
Std 13.15204 65.467167 47.45637 32.80135 147.442 63.90452 26.18005 27.834 6.61208 13.27879 62.73983 45.10759 29.54384 30.64892 55.9351
Rank 11 4 13 12 2 8 15 14 9 6 3 10 5 1 7

CEC09
Ave 36,375.47 3960.819 55,732.01 49,408.77 2846.232 15,906.27 108,071.8 67,110.53 17,183.96 11,831.44 21,525.81 12,520.32 12,959.32 2920.979 23,925.96
Std 2849.587 1075.734 7913.843 2455.993 2283.157 1504.345 8244.483 8710.391 917.6917 920.0699 2877.513 1540.828 676.074 849.9576 15,603.63
Rank 11 3 13 12 1 7 15 14 8 4 9 5 6 2 10

CEC10
Ave 15,101.72 8546.989 16,203.35 15,835.74 5414.964 14,919.44 17,242.51 16,910.83 9302.555 12,483.82 7057.742 15,084.94 7065.536 13,192.26 9308.447
Std 221.4496 682.51606 399.6127 841.2409 897.9448 331.3749 1234.191 233.4546 331.255 400.1101 417.6019 223.1407 474.6596 2732.186 626.4859
Rank 11 4 13 12 1 9 15 14 5 7 2 10 3 8 6

CEC11
Ave 24,864.66 1361.044 44,046.72 31,941.3 1587.692 2697.973 109,948.7 44,945.56 2221.056 6490.606 5980.947 8613.898 1751.453 1477.223 3489.805
Std 1508.507 25.92436 10,908.1 6367.875 120.0267 548.0429 28,355.74 9232.634 186.8323 1611.709 5798.111 214.1184 75.62217 112.0471 1468.077
Rank 11 1 13 12 3 6 15 14 5 9 8 10 4 2 7

CEC12
Ave 6.72E+10 20,936,519 5E+10 4.72E+10 55,244,111 5.16E+08 1.38E+11 5.79E+10 2.8E+09 2.49E+08 22,295,145 5.49E+08 19,124,122 51,274,629 2E+09
Std 1.15E+10 4,209,179.7 1.11E+10 9.29E+09 34,524,448 2.56E+08 1.9E+10 8.63E+09 9.69E+08 37,525,785 7,007,320 1.42E+08 5,497,266 31,451,961 1.35E+09
Rank 14 2 12 11 5 7 15 13 10 6 3 8 1 4 9

CEC13
Ave 4.13E+10 29,603.37 1.69E+10 2.28E+10 69,344.11 10,428,566 7.66E+10 2.53E+10 4.85E+08 9,842,121 13,215.19 15,946.13 29,501.78 731,335.7 7.33E+08
Std 4.45E+09 10,333.93 1.01E+09 8.46E+09 30,601.48 8,246,186 2.85E+10 6.37E+09 4.08E+08 3,460,376 8034.778 7434.498 9961.064 315,648.8 1.35E+09
Rank 14 4 11 12 5 8 15 13 9 7 1 2 3 6 10

CEC14
Ave 65,470,166 229,560.17 29,239,168 72,680,621 279,850.6 225,788.2 3.19E+08 1.09E+08 1,936,955 2,688,963 5,564,561 3,131,591 657,740.9 112,276.5 1,570,218
Std 81,051,780 107,000.38 5,317,825 66,025,071 199,602.7 240,768.8 1.3E+08 74,868,291 2,057,292 828,156 4,939,227 916,533.5 212,279.2 60,721.49 1,164,916
Rank 12 3 11 13 4 2 15 14 7 8 10 9 5 1 6
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Table A1. Cont.

Function Index
Algorithms

COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC15
Ave 9.89E+09 16,700.68 4.89E+09 4.46E+09 17,082.37 33,754.76 2.56E+10 9.46E+09 49,965.49 1,548,365 11,555.33 17,365.23 15,979.73 210,972.8 28,621,778
Std 2.3E+09 9719.672 1.26E+09 1.66E+09 4809.354 48,172.26 6.24E+09 2.33E+09 65,045.48 551,610.4 7479.573 9723.996 7150.865 118,015.6 34,812,203
Rank 14 3 12 11 4 6 15 13 7 9 1 5 2 8 10

CEC16
Ave 9099.678 3207.398 7618.124 8901.292 3039.643 4477.407 15,601.72 8329.691 4518.336 4322.064 3834.053 5282.878 3208.344 2878.653 4429.806
Std 298.344 375.81309 245.3604 436.3029 388.9831 188.797 1509.998 673.5675 221.828 187.1573 729.1978 214.755 233.0231 444.956 352.1305
Rank 14 3 11 13 2 8 15 12 9 6 5 10 4 1 7

CEC17
Ave 8729.022 2845.358 12,330.74 6696.481 2718.79 3631.466 2,322,642 46,408.27 3766.865 3443.919 2916.01 3996.468 3118.238 2641.981 3889.49
Std 4081.734 248.9313 6270.508 323.4054 216.5457 332.3307 2,466,579 54,011.65 236.5153 208.5305 133.9688 116.1851 226.0531 619.8051 310.2085
Rank 12 3 13 11 2 7 15 14 8 6 4 10 5 1 9

CEC18
Ave 2.38E+08 1,234,407.4 2.23E+08 1.17E+08 1,321,256 1,231,943 1.55E+09 3.11E+08 1,271,874 8,839,026 10,469,508 22,416,209 2,581,265 885,141.6 6,242,625
Std 1.26E+08 1,161,304.1 1.14E+08 31,758,781 468,364.3 1,091,914 5.57E+08 1.67E+08 254,059 2,981,783 6,952,494 5,835,715 1,260,645 444,424.6 4,106,505
Rank 13 3 12 11 5 2 15 14 4 8 9 10 6 1 7

CEC19
Ave 3.49E+09 43,514.24 1.39E+09 2.72E+09 1,328,314 30,601.03 1.64E+10 4.89E+09 849,356.3 632,801.6 21,134.47 18,793.35 22,011.91 101,738.8 1,202,988
Std 1.33E+09 9171.384 4.54E+08 9.39E+08 1,184,440 8086.937 2.96E+09 1.84E+09 797,817.2 164,401.3 14,463.14 7799.813 14,582.63 34,515.4 2,066,650
Rank 13 5 11 12 10 4 15 14 8 7 2 1 3 6 9

CEC20
Ave 4264.671 3176.6481 5037.649 4958.044 2929.479 3959.729 5635.665 4924.366 3911.16 3391.586 3363.697 4133.166 3117.517 3200.931 3468.399
Std 217.298 166.08 231.7725 237.1699 433.6476 129.4059 189.2257 213.2764 132.3606 316.4075 412.272 130.6882 280.4358 668.7847 206.062
Rank 11 3 14 13 1 9 15 12 8 6 5 10 2 4 7

CEC21
Ave 3231.155 2344.293 3166.854 3110.984 2467.589 2632.248 3490.363 3178.499 2983.725 2691.148 2583.096 2790.708 2649.308 2479.574 2653.103
Std 45.04548 51.00179 63.29145 62.67646 32.91107 60.53255 106.4844 45.90163 49.42571 20.37949 23.93868 22.74097 109.809 23.21851 75.09771
Rank 14 1 12 11 2 5 15 13 10 8 4 9 6 3 7

CEC22
Ave 16,454.59 10,865.898 18,037.24 17,890.48 8004.233 16,180.67 19,580.2 18,154.02 14,080.81 14,360.75 8665.501 16,575.73 11,106.81 13,692.32 10,633.68
Std 413.1295 467.39056 376.7972 493.6783 2890.267 715.3968 574.2815 469.1817 213.242 322.9298 738.4887 379.5504 941.0086 4692.072 785.1567
Rank 10 4 13 12 1 9 15 14 7 8 2 11 5 6 3

CEC23
Ave 4591.849 3001.786 3957.705 4288.638 3931.111 3456.039 5008.414 4025.427 5706.731 3146.138 3003.78 3215.223 3357.584 2980.28 3247.391
Std 89.95229 54.11106 53.852 100.1697 81.06274 96.068 319.3221 49.19432 179.572 6.093371 87.61949 10.52026 350.6283 120.8443 115.2883
Rank 13 2 10 12 9 8 14 11 15 4 3 5 7 1 6

CEC24
Ave 4847.797 3231.4568 4115.103 4862.816 3090.177 3408.62 5764.142 4135.503 3806.828 3380.324 3281.577 3349.475 3393.734 3098.505 3326.246
Std 212.537 51.47082 109.419 337.2296 73.29847 39.81138 385.9678 112.9797 107.01 8.721637 48.63015 10.76343 178.0664 105.0975 12.47433
Rank 13 3 11 14 1 9 15 12 10 7 4 6 8 2 5

CEC25
Ave 15,498.68 3148.276 17,123.51 15,205.47 3062.584 4548.281 57,542.68 28,931.78 4520.973 3282.677 3078.34 3797.379 3174.841 3203.052 3386.577
Std 899.3804 31.63694 3609.818 1089.657 23.07329 510.3022 6522.157 3238.07 201.4541 34.31462 10.85326 80.88986 43.57991 45.31785 309.0026
Rank 12 3 13 11 1 10 15 14 9 6 2 8 4 5 7

CEC26
Ave 16,669.95 6579.2521 18,986.31 17,692.56 2900.934 10,710.99 32,282.28 19,108.84 12,965.48 7752.529 7172.061 8627.301 8630.337 6004.097 8398.559
Std 767.8479 747.62355 1052.36 869.9465 0.127582 996.7537 3493.074 581.5774 496.3631 166.1123 729.2199 147.012 3003.13 779.4425 1175.369
Rank 11 3 13 12 1 9 15 14 10 5 4 7 8 2 6

CEC27
Ave 6725.142 3200.012 5903.513 6138.577 3428.48 3829.855 9553.585 5847.802 11,871.15 3729.927 3565.047 3591.646 3518.086 3315.919 3930.156
Std 508.8131 0.000107 262.9817 553.7433 29.68044 95.57017 916.492 516.5143 522.0628 30.22302 100.1004 10.31284 93.57749 26.93388 202.9049
Rank 13 1 11 12 3 8 14 10 15 7 5 6 4 2 9
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Table A1. Cont.

Function Index
Algorithms

COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC28
Ave 12,383.48 3300.012 14,706.42 11,444.54 3341.592 4973.66 24,354.67 14,033.13 5608.795 3668.433 3353.469 5002.39 3404.716 3570.996 4836.268
Std 576.9375 9.85E-05 1124.724 1487.904 24.33589 323.4519 3063.77 804.8052 515.085 79.06832 28.3977 301.4169 25.25116 95.67398 1568.961
Rank 12 1 14 11 2 8 15 13 10 6 3 9 4 5 7

CEC29
Ave 82,826.59 4272.29 19,484.39 30,984.81 4510.673 6019.704 3,041,045 128,315 8518.909 4863.249 4556.345 5851.252 4557.7 4330.394 5326.608
Std 35,551.16 120.8293 5203.725 14,718.85 132.2595 575.5447 2,595,774 52,579.9 571.9604 185.5084 329.6816 292.1598 300.2586 337.9723 623.0801
Rank 13 1 11 12 3 9 15 14 10 6 4 8 5 2 7

CEC30
Mean 4.61E+09 308,753.48 4.45E+09 3.99E+09 94,377,063 24,692,618 1.73E+10 5.89E+09 3.21E+08 23,709,127 1,689,550 43,351,659 3,526,259 24,012,726 1.25E+08
Std 1.9E+09 179,270.61 1.84E+09 1.38E+09 18,863,257 9,651,455 2.23E+09 1.11E+09 1.56E+08 5,350,374 417,644.7 13,203,141 855,339.4 4,668,925 1.74E+08
Rank 13 1 12 11 8 6 15 14 10 4 2 7 3 5 9

Mean Rank 12.0345 3 12.2414 11.8276 3.0690 7.0690 14.9310 13.3793 8.7241 6.3103 4.1034 7.6207 4.7586 3.3103 7.6207
Final Rank 12 1 13 11 2 7 15 14 10 6 4 8 5 3 8

Table A2. Optimization results of CMRLCCOA algorithm with 14 algorithms in CEC2017 function when dim = 100.

Function Index
Algorithms

COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC01
Ave 2.73E+11 4.76E+08 3.05E+11 2.5E+11 7,628,116 9.6E+10 6.39E+11 3.94E+11 8.41E+10 3.12E+09 10,307,943 8.24E+10 2.43E+09 1.76E+10 3.43E+10
Std 8.18E+09 89,561,166 2.71E+10 2.24E+10 2,544,815 9.7E+09 2.34E+10 2.8E+10 1.67E+10 2.85E+08 7,374,891 3.79E+09 8.27E+08 4.35E+09 2.18E+10
Rank 12 3 13 11 1 10 15 14 9 5 2 8 4 6 7

CEC03
Ave 353,298.7 294,569.3 3,718,006 756,044.1 339,270.6 399,314.7 4.12E+11 15,310,302 276,368.2 643,108.1 1,113,873 854,945.8 544,057.3 390,295.3 953,783.1
Std 10,495.9 21,142.14 4,128,337 276,199.6 13,893.96 37,294.87 7.97E+11 18,395,921 21,043.15 53,397.2 129,217.1 41,434 155,162 49,504.25 131,015.4
Rank 4 2 13 9 3 6 15 14 1 8 12 10 7 5 11

CEC04
Ave 101,944.54 1179.5831 96,262.08 92,409.128 1368.321 12,339.293 270,799.61 145,276.92 16,319.20 2359.016 795.9192 12,190.83 1361.444 2088.448 6656.466
Std 18,309.166 66.4505 11,938.31 13,065.122 122.1895 1195.149 23,881.649 18,696.464 820.030 214.246 63.0896 1673.555 120.840 406.598 1996.070
Rank 13 2 12 11 4 9 15 14 10 6 1 8 3 5 7

CEC05
Ave 2097.627 1280.933 2360.325 2191.964 945.841 1693.396 3119.092 2459.332 1485.856 1623.203 1249.014 1764.648 1376.699 1010.249 1622.343
Std 34.239 39.25346 57.647 61.9605 118.542 94.8014 87.2340 114.773 19.236 14.159 43.788 29.640 79.527 44.240 62.798
Rank 11 4 13 12 1 9 15 14 6 8 3 10 5 2 7

CEC06
Ave 711.111 631.881 728.124 719.281 634.420 679.548 766.976 736.541 678.797 617.688 603.119 667.219 667.610 618.385 672.617
Std 2.855 4.015 9.051 6.394 6.717 8.726 4.791 3.643 2.993 1.236 0.752 3.028 3.168 4.752 4.218
Rank 11 4 13 12 5 10 15 14 9 2 1 6 7 3 8

CEC07
Ave 3973.682 1601.900 6784.713 4474.539 1236.418 3421.330 13,605.060 7270.222 3527.810 2051.804 1741.728 4560.807 3136.223 1690.668 3224.124
Std 90.347 161.715 534.917 521.344 93.781 377.718 568.164 654.671 42.312 37.318 100.206 135.052 205.364 187.352 514.155
Rank 10 2 13 11 1 8 15 14 9 5 4 12 6 3 7

CEC08
Ave 2596.122 1377.833 2777.239 2627.281 1241.784 1895.857 3574.714 2934.162 2018.710 1898.329 1611.926 2074.589 1835.894 1331.396 1758.926
Std 25.657 68.975 85.027 61.265 59.469 120.992 46.844 43.659 23.397 43.196 80.188 20.183 49.698 38.782 53.408
Rank 11 3 13 12 1 7 15 14 9 8 4 10 6 2 5
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Table A2. Cont.

Function Index
Algorithms

COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC09
Ave 79,222.24 29,122.33 128,660.1 111,673.2 29,490.81 67,538.21 235,848.2 152,831.8 40,565.62 67,863.99 61,209.63 79,012.54 28,820.27 27,704.02 64,112.62
Std 3339.864 1659.778 10,524.07 5554.772 17,556.36 10,277.35 10,392.25 11,425.5 1512.182 6235.145 10,585.77 3162.34 1595.513 6824.531 13,595.48
Rank 11 3 13 12 4 8 15 14 5 9 6 10 2 1 7

CEC10
Ave 32,790.450 19,417.990 35,416.69 33,516.215 18,559.31 32,401.431 36,375.258 34,398.562 20,776.46 29,847.280 15,319.49 32,762.45 16,711.11 28,343.490 19,512.837
Std 879.312 1047.593 425.501 817.597 7132.740 407.106 440.794 520.312 928.078 389.829 1244.049 259.041 1193.722 4604.623 1175.141
Rank 11 4 14 12 3 9 15 13 6 8 1 10 2 7 5

CEC11
Ave 284,104 17,053.48 554,277.2 338,236.7 81,392.67 77,729.78 14,809,565 469,379.8 63,239.33 120,986.8 167,235.9 246,033.7 210,863 23,652.52 202,278.1
Std 34,082.19 5422.174 102,540.6 66,713.98 14,876.86 12,723.94 26,685,425 164,626.9 11,427.57 22,715.01 42,663.2 42,622.43 93,454.82 6154.067 52,814.22
Rank 11 1 14 12 5 4 15 13 3 6 7 10 9 2 8

CEC12
Ave 1.93E+11 460,434,226 1.78E+11 1.763E+11 4.63E+08 1.42E+10 3.54E+11 1.96E+11 2.42E+10 2.81E+09 1.7E+08 1.07E+10 6.06E+8 1.51E+09 1.978E+10
Std 1.36E+10 107,771,590 2.67E+10 3.20E+10 1.04E+08 3.17E+09 4.11E+10 2.88E+10 6.97E+09 2.66E+08 1.14E+08 1.04E+09 2.14E+08 2.71E+08 7.336E+09
Rank 13 2 12 11 3 8 15 14 10 6 1 7 4 5 9

CEC13
Ave 4.58E+10 705,374.6 3.44E+10 3.66E+10 46,143.51 4.69E+08 9.34E+10 4.68E+10 1.52E+09 8,858,153 3,760,681 4,052,036 120,982.1 14,931,836 2.62E+09
Std 6.47E+09 445,638.9 5.63E+09 3.84E+09 12,587.5 2.73E+08 9.9E+09 6.9E+09 3.52E+08 4,161,014 4,310,239 972,256.9 24,388.88 6,671,448 1.79E+09
Rank 13 3 11 12 1 8 15 14 9 6 4 5 2 7 10

CEC14
Ave 6.74E+07 2.25E+06 2.02E+08 1.15E+08 2.56E+06 2.58E+06 7.22E+08 3.09E+00 3.52E+06 2.08E+07 1.04E+07 4.44E+07 2.45E+06 2.48E+06 5.86E+06
Std 4.20E+07 1.12E+06 4.17E+07 6.53E+07 9.72E+05 7.21E+05 2.84E+08 1.09E+08 1.19E+06 6.85E+06 4.49E+06 1.12E+07 1.10E+06 1.27E+06 2.47E+06
Rank 11 1 13 12 4 5 15 14 6 9 8 10 2 3 7

CEC15
Ave 1.95E+10 9546.696 1.3E+10 1.37E+10 35,189.55 3,470,295 4.82E+10 2.08E+10 3.01E+08 7,078,410 6571.879 15,657.54 38,617.58 754,986.3 5.94E+08
Std 2.82E+09 2966.846 1.49E+09 2.44E+09 9953.871 3,123,840 6.54E+09 3.87E+09 2.47E+08 2,463,740 2706.805 3315.815 29,318.37 1,050,180 8E+08
Rank 13 2 11 12 4 7 15 14 9 8 1 3 5 6 10

CEC16
Ave 24,402.47 7196.036 18,935.32 20,688.44 5439.32 8527.542 38,331.94 22,767.99 11,415.94 10,739.32 6311.46 11,300.92 5976.64 5650.51 7333.15
Std 3534.919 813.892 2167.616 1096.959 410.573 1219.020 7863.731 1145.17 500.003 281.964 511.179 424.847 414.886 470.192 1121.849
Rank 14 5 11 12 1 7 15 13 10 8 4 9 3 2 6

CEC17
Ave 7,506,495 5203.436 1,696,042 5,354,902 4300.178 6188.381 59,721,631 10,217,110 8101.716 6507.391 5951.282 8219.927 5242.485 4757.864 8528.298
Std 5,469,303 505.0944 1,208,380 3,019,677 422.1045 545.5352 38,442,244 2,397,608 858.9186 358.4553 597.9158 171.115 501.1035 828.9385 2031.196
Rank 13 3 11 12 1 6 15 14 8 7 5 9 4 2 10

CEC18
Ave 2.60E+08 3.55E+06 5.02E+08 1.82E+08 1.64E+06 4.07E+06 1.23E+09 5.45E+08 1.57E+06 3.67E+07 1.04E+07 1.31E+08 4.88E+06 4.42E+06 2.41E+07
Std 8.37E+07 3.89E+05 1.01E+08 5.72E+07 5.30E+05 1.75E+06 3.65E+08 3.26E+08 6.43E+05 1.18E+07 3.79E+06 1.85E+07 1.56E+06 1.50E+06 2.16E+07
Rank 12 3 13 11 2 4 15 14 1 9 7 10 6 5 8

CEC19
Ave 2.73E+10 1,018,630 1.39E+10 1.38E+10 6,524,024 18,875,435 5.14E+10 1.98E+10 2.66E+08 9,040,765 109,473.1 770,649.9 54,888.12 2,390,721 1.47E+09
Std 3E+09 542,126.6 3.18E+09 3.84E+09 5,458,763 11,616,502 1.04E+10 2.32E+09 85,076,058 2,358,535 186,753.9 820,071.7 53,159.43 943,459.9 1.37E+09
Rank 14 4 12 11 6 8 15 13 9 7 2 3 1 5 10

CEC20
Ave 8020.2245 5396.4145 8892.6405 8794.723 4463.43 7233.1513 9916.4206 8897.9015 6600.841 6694.9341 5790.443 7975.430 5644.283 5854.5736 6046.9466
Std 376.70445 346.05236 299.83103 312.94215 583.2524 381.89934 227.58954 347.79495 174.1747 130.75939 294.7866 257.0606 348.9281 1480.4182 691.95824
Rank 11 2 13 12 1 9 15 14 7 8 4 10 3 5 6

CEC21
Ave 4888.186 2533.89 4654.448 4606.759 2720.731 3224.877 5524.452 4607.875 3886.961 3456.748 3178.491 3655.453 3364.423 2855.625 3411.429
Std 141.2145 57.18946 214.5147 198.2536 45.67756 97.90937 272.4738 71.80242 98.18394 13.77816 128.2499 26.63459 108.223 76.3268 208.9475
Rank 14 1 13 11 2 5 15 12 10 8 4 9 6 3 7
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Table A2. Cont.

Function Index
Algorithms

COA CMRLCCOA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC22
Ave 34,490.404 25,105.719 37,645.034 36,570.993 16,826.23 34,600.645 38,334.646 37,449.751 23,964.47 32,419.038 17,160.27 34,504.04 21,157.94 26,213.823 22,792.238
Std 396.41199 1457.9349 174.97446 474.48635 1091.814 200.1131 587.74333 564.42666 924.0662 762.90312 1744.518 653.493 826.021 7547.8622 1498.8567
Rank 9 6 14 12 1 11 15 13 5 8 2 10 3 7 4

CEC23
Ave 6503.197 3275.887 5826.441 6630.901 3508.979 3937.316 8480.193 5589.357 8996.312 3788.27 3255.018 4021.647 4101.495 3287.275 4014.837
Std 315.331 87.22193 384.8876 529.0215 53.98898 111.6973 375.7383 218.6821 245.7108 32.64485 78.62813 18.24601 136.4175 66.19829 183.4196
Rank 12 2 11 13 4 6 14 10 15 5 1 8 9 3 7

CEC24
Ave 10,331.813 3801.2902 8149.7752 10,531.847 3924.763 5374.5511 14,217.06 8458.3736 7050.088 4404.326 3866.233 4476.147 4803.436 3841.8987 4712.7342
Std 673.16157 73.831631 636.5428 664.72773 348.1868 168.4099 1940.4872 295.27939 848.3431 19.290105 45.89686 24.21110 164.6322 69.362821 91.601062
Rank 13 1 11 14 4 9 15 12 10 5 3 6 8 2 7

CEC25
Ave 29,982.11 3766.666 38,265.27 29,475.7 3518.926 10,042.58 141,206.3 64,809.23 9681.781 5455.682 3508.178 18,778.26 3933.946 4654.795 5947.987
Std 839.0102 46.42058 3295.22 1039.571 81.98765 371.1804 8339.274 8752.447 794.073 253.9241 18.48204 1647.064 82.79425 74.44109 559.7637
Rank 12 3 13 11 2 9 15 14 8 6 1 10 4 5 7

CEC26
Ave 53,905.554 16,607.433 49,831.049 52,030.564 5346.84 28,800.354 93,352.355 59,272.557 31,138.84 16,865.354 13,607.51 18,747.20 22,075.81 12,563.857 20,319.833
Std 1261.3088 188.70411 8545.3802 2621.0534 4029.018 2549.202 6546.7066 5126.4462 1337.740 189.60249 79.16086 496.9604 4464.751 1101.7688 2422.8096
Rank 13 4 11 12 1 9 15 14 10 5 3 6 8 2 7

CEC27
Ave 14,222.25 3200.025 11,482.32 11,104.92 3573.907 4880.305 17,577.51 10,404.1 17,999.45 4620.348 3584.569 4695.712 3776.538 3630.951 3942.932
Std 951.5254 2.72E-05 593.6496 360.6818 15.45457 87.57426 1018.793 967.0674 804.6664 27.57688 81.8085 127.6579 123.9443 84.29333 129.5346
Rank 13 1 12 11 2 9 14 10 15 7 3 8 5 4 6

CEC28
Ave 28,955.578 3300.0244 38,716.091 35,506.138 3543.84 12,947.367 70,502.543 470,23.009 14,905.25 7831.266 5528.982 19,013.48 4371.154 5548.1365 11,891.086
Std 1490.045 0.000134 3428.683 5416.921 54.42149 736.89411 10,771.583 1481.4072 1598.156 595.11732 2352.895 570.0481 196.3864 605.24884 3871.7329
Rank 11 1 13 12 2 8 15 14 9 6 4 10 3 5 7

CEC29
Ave 584,866.3 6979.847 192,863.7 275,968 7286.966 11,678.47 28,654,765 3,417,453 16,704.44 9806.624 7380.821 11,546.01 7410.963 6868.564 8763.036
Std 207,043.8 373.0695 80,340.59 244,242.2 422.6287 939.0838 12,289,301 3,286,742 1873.528 236.608 387.5825 305.4215 582.053 349.5731 611.8979
Rank 13 2 11 12 3 9 15 14 10 7 4 8 5 1 6

CEC30
Ave 3.74E+10 7,082,731.5 3.18E+10 2.936E+10 1.65E+08 575,021,335 7.815E+10 2.79E+10 2.76E+09 12,919,420 60,285.47 3.78E+07 4.13E+06 4.53E+07 9.14E+08
Std 6.55E+09 3,118,888.5 3.339E+09 4.468E+09 61,999,619 270,105,224 2.44E+10 8.08E+09 1.43E+09 2,453,869.9 42,095.78 1.11E+07 2.95E+06 2.03E+07 1.08E+09
Rank 14 3 13 12 7 8 15 11 10 4 1 5 2 6 9

Mean Rank 11.8276 2.6552 12.4138 11.6897 2.7241 7.7586 14.9310 13.3103 8.2069 6.6897 3.5517 8.2759 4.6207 3.9310 7.4138
Final Rank 12 1 13 11 2 8 15 14 9 6 3 10 5 4 7

Table A3. Wilcoxon signed rank test for all optimization results when dim = 50.

Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC01
6.80E-08 5.99E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.73E-08 6.80E-08 9.17E-08 6.80E-08
- - - - - - - - - + - + - -

CEC03
6.80E-08 6.16E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.69489 6.80E-08 6.80E-08 6.80E-08 6.80E-08 8.29E-05 6.80E-08
- - - - - - - = - - - - + -
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Table A3. Cont.

Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC04
6.80E-08 4.37E-07 6.80E-08 0.00432 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.06E-07 0.507505 6.80E-08 0.011433 0.239324 6.92E-07
- - - + - - - - - = - = = =

CEC05
6.80E-08 0.0000821 6.80E-08 0.00432 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.06E-07 0.507505 6.80E-08 0.011433 0.239324 6.92E-07
- - - + - - - - - = - - = -

CEC06
6.80E-08 7.88E-07 6.80E-08 7.15E-06 0.003638 6.80E-08 6.80E-08 3.79E-06 6.80E-08 6.80E-08 7.38E-06 0.000836 6.80E-08 0.005115
- - - + + - - - + - + - = -

CEC07
6.80E-08 3.44E-06 6.80E-08 2.98E-01 2.96E-07 6.80E-08 6.80E-08 7.21E-08 7.58E-06 5.23E-07 2.06E-06 1.20E-06 6.80E-08 3.15E-02
- - - = - - - - + + - - + -

CEC08
6.80E-08 2.37E-07 6.80E-08 1.43E-07 0.0023413 6.80E-08 6.80E-08 9.17E-08 0.001481 0.009045 6.80E-08 0.797197 0.000129 0.060111
- - - + - - - - - = - = + =

CEC09
6.80E-08 7.23E-08 6.80E-08 5.17E-02 0.635945 6.80E-08 6.80E-08 0.424883 3.07E-06 0.350702 5.87E-06 0.000375 6.80E-08 0.860431
- - - = = - - = - = - - = =

CEC10
6.80E-08 0.000766 6.80E-08 0.001625 6.80E-08 6.80E-08 6.80E-08 0.0294409 6.80E-08 1.20E-06 6.80E-08 9.75E-06 0.000836 0.597863
- - - + - - - - - + - + - =

CEC11
6.80E-08 6.80E-08 6.80E-08 1.43E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 2.96E-07 0.0004155 6.80E-08
- - - - - - - - - - - - - -

CEC12
6.80E-08 6.80E-08 6.80E-08 0.297677 7.38E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.0006868 6.80E-08 2.04E-05 0.560852 6.80E-08
- - - = - - - - - - - + = -

CEC13
6.80E-08 3.53E-06 6.80E-08 4.54E-07 3.07E-06 6.80E-08 6.80E-08 6.80E-08 7.90E-08 6.80E-08 1.06E-07 1.06E-07 0.000104 0.067868
- - - - - - - - - - + + - =

CEC14
6.80E-08 7.99E-08 6.80E-08 0.101729 0.029441 6.80E-08 6.80E-08 0.0011159 1.38E-06 3.94E-07 2.22E-07 0.198834 0.00556 0.009045
- - - = = - - - - - - = = -

CEC15
6.80E-08 1.40E-03 6.80E-08 0.000116 0.003336 6.80E-08 6.80E-08 0.180577 6.80E-08 0.067868 5.17E-06 0.0002 4.54E-07 0.002341
- - - - - - - = - = - + - -

CEC16
6.80E-08 6.80E-08 6.80E-08 0.005115 8.60E-06 6.80E-08 6.80E-08 7.90E-08 1.92E-07 0.003336 6.80E-08 0.067868 0.000758 0.000104
- - - = - - - - - - - = - -

CEC17
6.80E-08 4.74E-08 6.80E-08 0.090907 2.92E-05 6.80E-08 6.80E-08 1.23E-07 2.30E-05 0.000144 0.0000023 0.027483 0.060111 1.05E-06
- - - = - - - - - - - - = -

CEC18
6.80E-08 0.000742 6.80E-08 0.0097864 0.053289 6.80E-08 6.80E-08 0.881731 1.66E-07 0.009786 6.80E-08 0.198834 0.067868 0.273285
- - - - = - - = - - - = = =

CEC19
6.80E-08 0.000384 6.80E-08 7.90E-08 0.001359 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.002561 0.00604 5.90E-02 9.75E-06 6.67E-06
- - - - + - - - - + = = - -

CEC20
6.80E-08 4.54E-06 6.80E-08 0.113551 6.80E-08 6.80E-08 6.80E-08 6.80E-08 2.06E-06 0.1135513 6.80E-08 2.96E-07 0.163596 1.80E-06
- - - = - - - - - - - + = -
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Table A3. Cont.

Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC21
6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.542772 6.80E-08 6.80E-08 6.80E-08 3.50E-06 0.336915 6.80E-08 0.394171 7.95E-07 0.0007579
- - - - = - - - - = - = - -

CEC22
9.17E-08 4.63E-08 6.80E-08 5.90E-02 0.000375 6.80E-08 6.80E-08 6.80E-08 4.54E-06 5.23E-02 6.80E-08 0.133283 0.053103 0.735268
- - - = - - - - - = - = = =

CEC23
6.80E-08 0.000914 6.80E-08 6.80E-08 1.23E-07 6.80E-08 6.80E-08 6.80E-08 0.456951 1.20E-06 5.25E-05 0.616775 7.95E-07 0.002139
- - - - - - - - = - - = - -

CEC24
6.80E-08 4.77E-06 6.80E-08 6.17E-02 3.42E-07 6.80E-08 6.80E-08 6.80E-08 6.92E-07 0.218406 2.04E-05 0.009786 0.000375 0.000921
- - - = - - - - - = - - = -

CEC25
6.80E-08 3.24E-08 6.80E-08 2.22E-07 0.000735 6.80E-08 6.80E-08 6.80E-08 7.60E-06 9.13E-02 9.21E-05 0.003966 0.542772 0.000305
- - - + - - - - - = - - = -

CEC26
6.80E-08 0.000761 6.80E-08 9.17E-08 0.001227 6.80E-08 6.80E-08 6.80E-08 0.218406 0.000104 0.635945 0.261616 3.07E-06 0.755743
- - - - - - - - = - = = + =

CEC27
6.80E-08 0.000822 6.80E-08 0.524986 1.92E-07 6.80E-08 6.80E-08 6.80E-08 1.92E-07 0.036048 2.69E-06 0.001349 0.000305 5.90E-05
- - - = - - - - - - - - - -

CEC28
6.80E-08 1.87E-06 6.80E-08 1.60E-05 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
- - - - - - - - - - - - - -

CEC29
6.80E-08 6.74E-08 6.80E-08 0.02748 1.20E-06 6.80E-08 6.80E-08 6.80E-08 0.020735 0.44075 7.90E-08 0.261616 2.96E-07 5.25E-05
- - - - - - - - - = - = - -

CEC30
6.80E-08 0.000374 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 3.47E-08 7.49E-06 6.80E-08 4.54E-06 1.06E-07 0.000129
- - - - - - - - - - - - - -

+/=/- 0/0/29 0/0/29 0/0/29 6/10/13 2/4/23 0/0/29 0/0/29 0/4/25 2/2/25 4/10/15 2/2/25 6/11/12 6/11/12 0/7/22

Table A4. Wilcoxon signed rank test for all optimization results when dim = 100.

Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC01
6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
- - - + - - - - - + - - - -

CEC03
6.80E-08 1.93E-05 6.80E-08 5.17E-06 6.80E-08 6.80E-08 6.80E-08 0.0016253 6.80E-08 6.80E-08 6.80E-08 1.66E-07 1.43E-07 6.80E-08
- - - - - - - + - - - - - -

CEC04
6.80E-08 4.52E-06 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.0013486 6.80E-08 6.80E-08
- - - - - - - - - + - - - -
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Table A4. Cont.

Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC05
6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.4248835 6.80E-08 6.80E-08 0.001014 0.009786 6.90E-02 6.80E-08 3.99E-06 6.80E-08 0.063892
- - - - = - - - - = - - + =

CEC06
6.80E-08 4.64E-06 6.80E-08 9.31E-06 0.0027986 6.80E-08 6.80E-08 0.0003048 6.80E-08 9.80E-01 0.001227 0.016669 6.80E-08 0.903116
- - - - - - - - + = - - + =

CEC07
6.80E-08 6.80E-08 6.80E-08 6.80E-08 3.74E-06 6.80E-08 6.80E-08 6.80E-08 0.0012941 7.90E-08 6.80E-08 3.50E-06 1.66E-07 6.80E-08
- - - + - - - - - - - - - -

CEC08
6.80E-08 3.78E-06 6.80E-08 3.94E-01 0.9031165 6.80E-08 6.80E-08 0.000222 0.903116 2.22E-07 3.94E-07 0.049864 3.42E-07 0.015479
- - - = = - - - = - - - + -

CEC09
6.80E-08 7.91E-05 6.80E-08 1.81E-05 0.0047025 6.80E-08 6.80E-08 6.80E-08 0.003966 0.989209 6.01E-07 2.96E-07 6.80E-08 0.285305
- - - - - - - - - = - + + =

CEC10
6.80E-08 6.80E-08 6.80E-08 1.20E-06 6.80E-08 6.80E-08 6.80E-08 0.000921 6.80E-08 6.80E-08 6.80E-08 1.80E-06 0.119856 0.013321
- - - + - - - - - + - + = -

CEC11
6.80E-08 8.37E-06 6.80E-08 6.80E-08 7.90E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 9.17E-08 6.80E-08 6.80E-08 0.027483 6.80E-08
- - - - - - - - - - - - - -

CEC12
6.80E-08 9.17E-08 6.80E-08 0.394171 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 7.95E-07 6.80E-08 0.989209 6.80E-08 6.80E-08
- - - = - - - - - = - = - -

CEC13
6.80E-08 7.81E-09 6.80E-08 8.59E-02 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.23E-07 0.655361 4.54E-06 6.01E-07 6.92E-07 0.000247
- - - = - - - - - = - + - -

CEC14
6.80E-08 5.56E-06 6.80E-08 0.085855 0.490334 6.80E-08 6.80E-08 0.946084 6.80E-08 9.17E-08 6.80E-08 0.119856 0.261616 1.60E-05
- - - = = - - = - - - = = -

CEC15
6.80E-08 6.80E-08 6.80E-08 3.94E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.0810312 5.90E-05 4.54E-07 6.80E-08 1.25E-05
- - - - - - - - - = - - - -

CEC16
6.80E-08 8.97E-06 6.80E-08 5.59E-02 4.68E-05 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.033718 6.80E-08 1.81E-05 4.54E-06 0.014364
- - - = - - - - - = - + + -

CEC17
6.80E-08 0.006423 6.80E-08 1.05E-06 0.597863 6.80E-08 6.80E-08 2.22E-07 6.80E-08 0.946084 6.80E-08 0.694891 5.87E-06 3.50E-06
- - - - = - - - - = - = + -

CEC18
6.80E-08 6.80E-08 6.80E-08 0.000416 0.560852 6.80E-08 6.80E-08 2.04E-05 6.80E-08 2.22E-07 6.80E-08 0.033718 0.597863 1.23E-07
- - - = = - - + - - - - = -

CEC19
6.80E-08 5.91E-08 6.80E-08 4.68E-05 6.80E-08 6.80E-08 6.80E-08 6.80E-08 4.13E-05 3.94E-07 1.38E-06 1.06E-07 1.41E-05 4.68E-05
- - - - - - - - - + + + - -

CEC20
6.80E-08 1.31E-07 6.80E-08 0.001227 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.119856 6.80E-08 0.379332 0.02227 4.17E-05
- - - + - - - - - = - = - -

CEC21
6.80E-08 7.93E-07 6.80E-08 6.80E-08 0.002799 6.80E-08 6.80E-08 6.80E-08 0.597863 1.38E-06 2.06E-06 0.228694 6.80E-08 0.323482
- - - - - - - - = - - = - -
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Table A4. Cont.

Function COA KOA SWO GMO OMA TROA GO PSO DE SA ABC ISSA IGWO EWOA

CEC22
9.17E-08 6.32E-06 6.80E-08 1.80E-06 6.80E-08 6.80E-08 6.80E-08 0.0097865 6.80E-08 6.80E-08 6.80E-08 1.06E-07 1.81E-05 3.07E-06
- - - + - - - + - + - + - +

CEC23
6.80E-08 3.86E-07 6.80E-08 3.94E-07 0.000144 6.80E-08 6.80E-08 6.80E-08 0.473481 6.80E-08 7.58E-06 0.033718 7.90E-08 1.41E-05
- - - - - - - - = + - - - -

CEC24
6.80E-08 0.000037 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.01E-07 6.80E-08 8.29E-05 0.261616 7.90E-08 0.090907
- - - - - - - - - - - = - =

CEC25
6.80E-08 9.87E-06 6.80E-08 1.23E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 5.23E-01 6.80E-08 2.36E-06 6.80E-08 6.80E-08
- - - + - - - - - = - - - -

CEC26
6.80E-08 6.80E-08 6.80E-08 5.16E-02 9.17E-08 6.80E-08 6.80E-08 6.80E-08 3.99E-06 6.80E-08 0.038515 0.776391 6.80E-08 0.180577
- - - = - - - - - - - = = =

CEC27
6.80E-08 6.80E-08 6.80E-08 9.13E-07 1.43E-07 6.80E-08 6.80E-08 6.80E-08 2.30E-05 6.01E-07 3.50E-06 1.25E-05 9.13E-07 0.04986369
- - - - - - - - - - - - - =

CEC28
6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
- - - - - - - - - - - - - -

CEC29
6.80E-08 6.80E-08 6.80E-08 1.66E-07 2.22E-07 6.80E-08 6.80E-08 6.80E-08 2.92E-05 6.80E-08 6.80E-08 4.54E-07 6.01E-01 0.0565165
- - - - - - - - - - - - = =

CEC30
6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 0.085855 6.80E-08 3.42E-07 6.80E-08 1.92E-07 0.002139
- - - - - - - - = - - = - -

+/=/- 0/0/29 0/0/29 0/0/29 6/7/16 0/5/24 0/0/29 0/0/29 3/1/25 1/4/24 6/10/14 1/0/28 6/8/14 6/5/18 1/7/21
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