Verification of Criterion-Related Validity for Developing a Markerless Hand Tracking Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Target
2.3. Device
2.3.1. MediaPipe
2.3.2. Fahrenheit
2.3.3. Basic Performance of Fahrenheit and MediaPipe
2.4. Protocol
2.5. Preprocessing
2.5.1. Data Specification and Angle Conversion
2.5.2. Smoothing Process
2.5.3. Detection and Completion of Misestimated Frames
2.6. Statistical Analysis
2.6.1. DTW Distance
1 ≤ m ≤ M, 1 ≤ n ≤ N, m, n ∈ ℕ (2.4)
2.6.2. Cross-Correlation Analysis
3. Results
3.1. Subjects
3.2. Comparison of Corrections
3.3. Comparison of the Results
3.4. Comparison of Agreement between Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kivell, T.L.; Baraki, N.; Lockwood, V.; Williams-Hatala, E.M.; Wood, B.A. Form, Function and Evolution of the Human hand. Am. J. Biol. Anthropol. 2023, 181 (Suppl. S76), 6–57. [Google Scholar] [CrossRef]
- Ji, Q.; Luo, Z.-X.; Yuan, C.-X.; Wible, J.R.; Zhang, J.-P.; Georgi, J.A. The Earliest Known Eutherian Mammal. Nature 2002, 416, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke Rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Jørgensen, H.S.; Raaschou, H.O.; Olsen, T.S. Recovery of Upper Extremity Function in Stroke Patients: The Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 1994, 75, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Norouzi-Gheidari, N.; Archambault, P.S.; Fung, J. Effects of Robot-Assisted Therapy on Stroke Rehabilitation in Upper Limbs: Systematic Review and Meta-Analysis of the Literature. J. Rehabil. Res. Dev. 2012, 49, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Hsiao, S.F.; Chang, C.M.; Huang, M.H.; Liu, C.K.; Lin, Y.T. Factors Influencing Functional Independence Outcome in Stroke Patients after Rehabilitation. Kaohsiung J. Med. Sci. 2000, 16, 351–359. [Google Scholar] [PubMed]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The Post-Stroke Hemiplegic Patient. I. A Method for Evaluation of Physical Performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [CrossRef]
- Lrvine, R.E. Movement Therapy in Hemiplegia: A Neurophysiological Approach. Gerontologist 1972, 12, 205–208. [Google Scholar] [CrossRef]
- Liu, M.; Chino, N.; Tuji, T.; Masakado, Y.; Hase, K.; Kimura, A. Psychometric Properties of the Stroke Impairment Assessment Set (SIAS). Neurorehabilit. Neural Repair 2002, 16, 339–351. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Saito, T.; Suzuki, M.; Ishioka, T.; Tomisawa, Y.; Nakaya, N.; Abo, M. Support Vector Machine-Based Classifier for the Assessment of Finger Movement of Stroke Patients Undergoing Rehabilitation. J. Med. Biol. Eng. 2020, 40, 91–100. [Google Scholar] [CrossRef]
- Saito, T.; Ishioka, T.; Yoshimura, S.; Hamaguchi, T. Predictive Ability of Fahrenheit, a Hand Motion Recording System for Assessing Hand Motor Function in Patients with Hemiplegia Post-cerebrovascular Disease—A Pilot Study. Appl. Sci. 2021, 11, 8153. [Google Scholar] [CrossRef]
- Google. Mediapipe. Github. 2023. Available online: https://github.com/google-edge-ai/mediapipe-samples (accessed on 12 December 2023).
- Asta, A.K.A.A.; Yuniarno, E.M.; Nugroho, S.M.S.; Avian, C. Handwriting Classification Based on Hand Movement Using ConvLSTM. In Proceedings of the 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 26–27 July 2023; Volume 2023. [Google Scholar]
- Christian, S.-C.; Dan, G.; Alexandra, F.; Adela, P.-P.; Ovidiu, S.; Honoriu, V.; Liviu, M. Hand Gesture Recognition and Infrared Information System. In Proceedings of the 2022 23rd International Carpathian Control Conference (ICCC), Sinaia, Romania, 29 May–1 June 2022; Volume 2022. [Google Scholar]
- Bazarevsky, V.; Zhang, F. On-Device, Real-Time Hand Tracking with MediaPipe. In Google AI Blog. 2019. Available online: https://research.google/blog/on-device-real-time-hand-tracking-with-mediapipe/ (accessed on 30 June 2024).
- Challis, J.H. A Procedure for the Automatic Determination of Filter Cutoff Frequency for the Processing of Biomechanical Data. J. Appl. Biomech. 1999, 15, 303–317. [Google Scholar] [CrossRef]
- Rauch, H.E.; Tung, F.; Striebel, C.T. Maximum Likelihood Estimates of Linear Dynamic Systems. AIAA J. 1965, 3, 1445–1450. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Uno, K.; Matsui, Y. Types of Anomalies in Two-Dimensional Video-Based Gait Analysis in Uncontrolled Environments. PLoS Comput. Biol. 2023, 19, e1009989. [Google Scholar] [CrossRef]
- Nakamoto, K.; Yamada, Y.; Suzuki, E. Fast Clustering for Time-Series Data with Average-Time-Sequence-Vector Generation Based on Dynamic Time Warping. Trans. Jpn. Soc. Artif. Intell. 2003, 18, 144–152. [Google Scholar] [CrossRef]
- Lin, L.I.-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Hills, M.; Fleiss, J.L. The Design and Analysis of Clinical Experiments. J. R. Stat. Soc. Ser. A (Gen.) 1987, 150, 400. [Google Scholar] [CrossRef]
- Dill, S.; Rösch, A.; Rohr, M.; Güney, G.; De Witte, L.; Schwartz, E.; Antink, C.H. Accuracy Evaluation of 3D Pose Estimation with MediaPipe Pose for Physical Exercises. Curr. Dir. Biomed. Eng. 2023, 9, 563–566. [Google Scholar] [CrossRef]
- Alfieri, F.M.; Massaro, A.R.; Filippo, T.R.; Portes, L.A.; Battistella, L.R. Evaluation of Body Temperature in Individuals with Stroke. NeuroRehabilitation 2017, 40, 119–128. [Google Scholar] [CrossRef]
- Anderson, M.E.; Moore, T.L.; Lunt, M.; Herrick, A.L. The ‘Distal-Dorsal Difference’: A Thermographic Parameter by Which to Differentiate between Primary and Secondary Raynaud’s Phenomenon. Rheumatology 2007, 46, 533–538. [Google Scholar] [CrossRef]
- Ultraleap. Tracking | Leap Motion Controller. Available online: https://www.ultraleap.com/leap-motion-controller-overview/ (accessed on 1 December 2023).
- Giang, T.A.; Ong, A.W.G.; Krishnamurthy, K.; Fong, K.N. Rehabilitation Interventions for Poststroke Hand Oedema: A Systematic Review. Hong Kong J. Occup. Ther. 2016, 27, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Kim, C.-S.; Sontakke, P. Accurate deep model for electricity consumption forecasting using multi-channel and multi-scale feature fusion CNN–LSTM. Energies 2020, 13, 1881. [Google Scholar] [CrossRef]
- Ryumin, D.; Ivanko, D.; Ryumina, E. Audio-Visual Speech and Gesture Recognition by Sensors of Mobile Devices. Sensors 2023, 23, 2284. [Google Scholar] [CrossRef]
- Amprimo, G.; Ferraris, C.; Masi, G.; Pettiti, G.; Priano, L. GMH-D: Combining Google MediaPipe and RGB-Depth Cameras for Hand Motor Skills Remote Assessment. In Proceedings of the 2022 IEEE International Conference on Digital Health (ICDH), Barcelona, Spain, 10–16 July 2022. [Google Scholar] [CrossRef]
- Asteriadis, S.; Daras, P. Landmark-based multimodal human action recognition. Multimedia Tools Appl. 2017, 76, 4505–4521. [Google Scholar] [CrossRef]
- Li, R.; Li, Q.; Yang, S.; Zeng, X.; Yan, A. An efficient and accurate 2D human pose estimation method using VTTransPose network. Sci. Rep. 2024, 14, 7608. [Google Scholar] [CrossRef]
- Yu, J.; Qin, M.; Zhou, S. Dynamic gesture recognition based on 2D convolutional neural network and feature fusion. Sci. Rep. 2022, 12, 4345. [Google Scholar] [CrossRef]
MediaPipe | Fahrenheit | |
---|---|---|
Frame rate | 30 | 60 * detune to 30 |
Number of joint landmarks | 21 | 24 |
Observable joint range of motion | 180 | 90 |
Attribute | Classification | Values |
---|---|---|
Age | 71 ± 11 | |
Gender | Male/Female | 30/10 |
Paralyzed side | Right/Left | 23/17 |
Day of a patient’s illness | 13.5 ± 14.8 | |
Diagnosis | Cerebral hemorrhage/cerebral infarction | 9/31 |
Brunnstrom stage (finger) | I/II/III/IV/V/VI | 2/8/6/6/9/9 |
MediaPipe | Fahrenheit | |
---|---|---|
Subjects with mis-estimated frames detected | 3/40 | 9/40 |
MAD of raw data | 2.46 ± 0.87 | 1.42 ± 0.46 |
MAD after preprocessing | 0.81 ± 0.32 | 0.02 ± 0.01 |
Peak_Flexion (deg) | BRS I–II (n = 10) | BRS III (n = 6) | BRS IV (n = 6) | BRS V (n = 9) | BRS VI (n = 9) |
---|---|---|---|---|---|
MediaPipe | |||||
Thumb | 35.1 ± 14.4 | 34.9 ± 14.5 | 55.6 ± 16.3 | 41.3 ± 12.6 | 42.3 ± 8.1 |
Index | 54.5 ± 15.6 | 45.5 ± 26.6 | 75.9 ± 25.9 | 93.5 ± 10.7 | 99.2 ± 0.8 |
Middle | 52.8 ± 9.4 | 56.0 ± 20.6 | 87.6 ± 11.3 | 99.5 ± 0.6 | 98.6 ± 3.2 |
Ring | 60.8 ± 8.8 | 60.7 ± 18.2 | 91.5 ± 7.2 | 99.5 ± 1.1 | 99.4 ± 1.1 |
Pinky | 52.8 ± 10.2 | 59.9 ± 21.2 | 68.5 ± 15.7 | 98.9 ± 1.3 | 97.4 ± 6.0 |
Fahrenheit | |||||
Thumb | 53.3 ± 24.0 | 52.1 ± 22.0 | 68.3 ± 17.7 | 31.5 ± 6.0 | 40.2 ± 15.4 |
Index | 60.1 ± 19.4 | 52.9 ± 22.4 | 73.6 ± 20.0 | 86.4 ± 3.1 | 89.1 ± 1.3 |
Middle | 60.5 ± 18.1 | 51.6 ± 20.6 | 73.3 ± 20.9 | 87.1 ± 2.6 | 88.1 ± 2.2 |
Ring | 59.7 ± 17.7 | 51.3 ± 21.0 | 72.4 ± 19.7 | 86.8 ± 3.1 | 88.0 ± 2.5 |
Pinky | 18.2 ± 11.6 | 14.2 ± 22.2 | 37.8 ± 15.7 | 87.2 ± 2.3 | 88.1 ± 2.7 |
Peak_Velocity/Average_Velocity (deg/s) | BRS I–II (n = 10) | BRS III (n = 6) | BRS IV (n = 6) | BRS V (n = 9) | BRS VI (n = 9) |
---|---|---|---|---|---|
MediaPipe | |||||
Thumb | 87.9/6.2 | 111.2/14.7 | 274.7/55.3 | 667.6/110.1 | 780.8/186.9 |
Index | 82.6/9.8 | 236.1/29.7 | 505.0/101.6 | 1296.6/231.1 | 1400.5/365.9 |
Middle | 61.1/9.7 | 240.0/26.8 | 544.8/108.6 | 1309.0/239.9 | 1425.9/380.4 |
Ring | 58.5/9.4 | 256.2/27.6 | 573.6/110.6 | 1233.8/227.6 | 1392.0/365.5 |
Pinky | 104.2/9.6 | 187.8/25.8 | 574.8/96.6 | 1198.8/177.8 | 1231.8/282.3 |
Fahrenheit | |||||
Thumb | 43.7/7.9 | 126.0/10.8 | 167.9/49.6 | 271.7/99.4 | 672.0/207.5 |
Index | 72.7/12.3 | 214.0/28.3 | 506.4/114.2 | 1295.8/214.7 | 1412.8/355.7 |
Middle | 69.2/13.2 | 225.8/27.0 | 501.6/102.6 | 1240.1/217.7 | 1448.2/373.8 |
Ring | 77.5/14.9 | 216.8/24.7 | 587.2/100.2 | 1300.6/200.2 | 1403.1/351.1 |
Pinky | 79.9/13.3 | 165.7/22.5 | 501.6/74.4 | 1225.1/205.3 | 1208.5/345.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwabe, R.; Saito, T.; Hamaguchi, T. Verification of Criterion-Related Validity for Developing a Markerless Hand Tracking Device. Biomimetics 2024, 9, 400. https://doi.org/10.3390/biomimetics9070400
Suwabe R, Saito T, Hamaguchi T. Verification of Criterion-Related Validity for Developing a Markerless Hand Tracking Device. Biomimetics. 2024; 9(7):400. https://doi.org/10.3390/biomimetics9070400
Chicago/Turabian StyleSuwabe, Ryota, Takeshi Saito, and Toyohiro Hamaguchi. 2024. "Verification of Criterion-Related Validity for Developing a Markerless Hand Tracking Device" Biomimetics 9, no. 7: 400. https://doi.org/10.3390/biomimetics9070400
APA StyleSuwabe, R., Saito, T., & Hamaguchi, T. (2024). Verification of Criterion-Related Validity for Developing a Markerless Hand Tracking Device. Biomimetics, 9(7), 400. https://doi.org/10.3390/biomimetics9070400