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Abstract: Aerodynamic investigation of a bionic coaxial-rotors unmanned aerial vehicle (UAV) is
performed. According to Chinese parasol seed features and flight requirements, the bionic conceptual
design of a coaxial-rotors UAV is described. A solution procedure for the numerical simulation
method, based on a multi-reference frame (MRF) model, is expressed, and a verification study is
presented using the typical case. The aerodynamic design is conducted for airfoil, blade, and coaxial-
rotors interference. The aerodynamic performance of the coaxial rotors is investigated by numerical
simulation analysis. The rotor/motor integrated experiment verification is conducted to assess the
performance of the coaxial-rotors UAV. The results indicate that the UAV has excellent aerodynamic
performance and bionic configuration, allowing it to adapt to task requirements. The bionic UAV
has a good cruise power load reach of 8.36 kg/kw, and the cruise flying thrust force is not less than
78 N at coaxial-rotor and rotor-balloon distance ratios of 0.39 and 1.12, respectively. It has the “blocks
stability phenomenon” formed by the rotor downwash speed decreases and the balloon’s additional
negative pressure. The present method and the bionic configuration provide a feasible design and
analysis strategy for coaxial-rotors UAVs.

Keywords: aerodynamic investigation; coaxial rotors; bionic design; numerical simulation;
experimental measurement

1. Introduction

As an unconventional vertical take-off and landing (VTOL) aircraft, the coaxial-rotor
unmanned aerial vehicle (UAV) has the advantages of a compact structure, counter-torque
mutual cancellation of the upper and lower rotors, and good hover stability and handling.
It has excellent application prospects in civil and military fields [1–3].

Coaxial rotors have fewer structural components and higher power system efficiency
than conventional multi-rotors. Still, uncertainties and irrationality exist in the mission
payload compartment arrangement, particularly difficulties meeting omnidirectional de-
tection and reconnaissance loading requirements. A coaxial-rotor UAV must consider
flight stability and efficiency to arrange the mission payload compartment. It is essential
to design highly efficient mission functional payload compartments at specific locations
above and below the rotors, ensuring they are positioned sufficiently far away from them.
This results in the formation of a combined configuration of coaxial rotors and mission
functional modules.

The need for a novel configuration design incorporating coaxial rotors and a mission
function module is inspired by the natural biological flight observed in the dispersal of
tree seeds, which exhibits similarities to rotary flight with coaxial rotors and yaw lobes
acting as rudders. In the process of drifting, the lobes of the Chinese parasol seeds rotate
similarly to coaxial rotors, and the fruit joins the lobes’ roots to act as flight stabilization
and to carry the fruit, similar to the mission function module. Therefore, we can use the
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Chinese parasol seeds for reference to develop the coaxial-rotors UAV configuration, which
has coaxial rotors and mission function modules.

The coaxial rotors can eliminate the power loss caused by tail rotor interference.
However, due to the compact configuration of the upper and lower coaxial rotors, a
significant portion of the lower rotor area is affected by the downwash flow and wake
vortex interference from the upper rotor, resulting in asymmetric interference between the
upper and lower rotors, leading to more complex aerodynamic disturbances within the flow
field [4]. Therefore, a coaxial rotor is less efficient than a single main rotor helicopter due to
the upper-to-lower rotor–rotor interference. To fully enhance the aerodynamic performance
and omnidirectional mission capability of the coaxial rotors and reduce unnecessary power
consumption, it is necessary to conduct aerodynamic design and analysis studies for
coaxial-rotor UAVs.

Lakshminarayan et al. [5,6] have designed and calculated miniature coaxial rotors,
focusing on aerodynamic interference between the coaxial rotors at different rotor pitches
and rotational speeds. They obtained clear and intuitive wake boundaries for miniature
coaxial rotors. Based on the Navier–Stokes equation and the established free wake model for
coaxial rotors, the numerical method of aerodynamic interference analysis was developed,
and the unsteady aerodynamic interference characteristics of coaxial rotors were studied
and analyzed [7–9]. Lei et al. [10] have employed the sliding mesh method to analyze
the aerodynamic performance of small coaxial rotors against wind interference under
natural incoming flow. In terms of the loading capacity of coaxial rotors, the aerodynamic
performance of single and coaxial rotors was studied by hovering force test and numerical
simulation of coaxial rotors, proving that coaxial rotors can improve the lift deficiency
of single rotors under specific circumstances [11–13]. Ma al. [14,15] used particle image
velocimetry (PIV) to study aerodynamic interference characteristics of coaxial rotors flow
fields in different conditions.

These studies provide many references for the aerodynamic design and analysis of
coaxial rotors. However, the intuitive representation of aerodynamic research on coaxial
rotors still has the following deficiencies:

(1) There is still relatively limited research on coaxial-rotor configuration optimization
and overall aerodynamic performance analysis [16];

(2) The results are unitary, and less attention is paid to designing and analyzing new
efficient bionics that emulate nature.

(3) Due to limited experimental and computational resources, it is necessary to conduct
comparative validation between calculations and experiments based on design re-
quirements to reflect the accuracy and practicality of simulation results. The MRF
(Moving Reference Frame) model used is suitable for steady-state calculations, em-
ploying a fixed rotating reference frame to handle the flow in rotating regions.

Therefore, this paper examines the aerodynamic features of a bionic coaxial-rotors
unmanned aerial vehicle (UAV). According to Chinese parasol seed features and UAV
flight requirements, the bionic conceptual design is described. A solution procedure for the
numerical simulation method, based on multi-reference frame (MRF) model, is expressed,
and a verification study is presented using a typical case, yielding favorable results. The
aerodynamic design was conducted for airfoil, blade, and coaxial-rotor interference. The
aerodynamic performance of the coaxial rotors was investigated by numerical simulation
analysis. Comparisons were made with the performance of a single-rotor UAV. The ro-
tor/motor integrated experiment verification was conducted to assess the performance of
the coaxial-rotor UAV. The sections of this paper include Conceptual Bionic Design, Numer-
ical Simulation Method, Aerodynamic Design, Performance Investigation, Experimental
Verification, Key Results, and Feasible Design Strategy.

2. Conceptual Bionic Design of UAVs

In nature, seeds of some plants can drift with the wind to achieve seeding, and the
Chinese parasol seed has the typical mode of long-duration drifting seeding [17–19]. The
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seed of Chinese parasol is composed of fruit and several lobes, which rotate with the wind
when floating and have highly efficient coaxial-rotor flight characteristics [20,21]. This can
inspire the design of coaxial-rotor UAVs [22,23].

2.1. The Design Requirement of a Coaxial-Rotor UAV

The coaxial-rotor UAV design requirements can be refined based on the the Chinese
parasol seed, combined with mission capabilities such as aerial detection, surveillance, etc.
Specific requirements are:

(1) In terms of efficiency, a coaxial-rotor power system is adopted to enhance lift and
power payload efficiency. It results in higher cruise efficiency within a specific altitude
range of 0–5 km.

(2) Regarding stability, the coaxial rotors’ power system, consisting of upper and lower
motors and folding rotors, should achieve balanced torque and variable pitch control
during a flight in the 0–5 km altitude range, despite the yaw-torque authority being
less than that of a conventional single main rotor helicopter.

(3) In terms of mission payload, a downward-mounted spherical package payload com-
partment is employed as far as possible. It allows the center of mass to move down
for UAV stability and provides partial buoyancy to achieve omnidirectional detection
and surveillance.

Therefore, the coaxial-rotor UAV has two sets of foldable motor rotor power compo-
nents, which are coaxially connected and can have individual pitch variation. The lower
component is connected to a balloon-shaped load compartment with folding rotors and
retractable balloons.

According to the design requirements of the UAV, specific constraints can be identified
for the aerodynamic design of the coaxial rotors system. The optimal operating state for
cruising is determined after considering the quadratic relationship between rotational
speed and throttle at 60% throttle. The rotational speed of the optional 35-inch rotor with
coaxial rotors/power should be kept below 2235 rpm. A lower cruise rotational speed is
preferable for optimal performance [24]. Therefore, the rotor takes an equivalent size of
no more than 35 inches and should be designed to achieve sufficient pull and higher force
efficiency at the lowest possible rotational speed.

2.2. Bionic Design Modeling of the Coaxial-Rotors UAV

Inspired by the floating behavior of Chinese parasol seeds in nature, a biomimetic
concept design for a coaxial-rotor UAV is developed. Chinese parasol seeds serve as the
biomimetic model for the design of the coaxial-rotor UAV [25]. The characteristics of the
Chinese parasol seed flight process are as follows: (1) The fruit is spherical, and the lobes
fold towards the direction of the fruit. The seed-shedding flight starts, forming a tube-like
whole. (2) After falling off, the seed lobes deploy, generally four lobes, and divide into two
diagonal groups. Each group has a certain amount of misalignment, with two groups of
lobes rotating and falling. (3) When descending to landing, the shape of the two groups of
lobes of the seeds turn outward with decreasing altitude, and the rotation speed increases.
At the same time, the seeds have some wind resistance stability and could land in a fruit
touchdown attitude. Based on these flight characteristics of the Chinese parasol seeds, the
UAV bionic conceptual design can be divided into three designs: folding cylinder type,
initiated flyby, and variable altitude variable speed flight [26,27].

2.2.1. Three-Dimensional Tube Folding Design

Referring to the maturation process of Chinese parasol seeds and observing the shape
of the lobe folding package, a three-dimensional cylindrical folding design was applied to
the UAV (as shown in the diagram in Figure 1, with lobes folded and wrapped in shape as
seen in the left second seed above).
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the balloon and coaxial rotors, similar to when the leaves of a Chinese parasol seed fall off 
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ually detach from the balloon payload compartment. Therefore, the UAV can draw on the 
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Figure 2. Design modeling sketch of the initiated flyby configuration. (a) Instantaneous morphol-
ogy of Chinese parasol seed shedding; (b) initiated flyby configuration. 
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For the variable altitude flight phase, the UAV combines the multiple forms and ac-

celerated rotation characteristics of the Chinese parasol seed descent flight to achieve high 
efficiency and sufficient stability. The cylindrical structure of the UAV detaches, and the 

Figure 1. Modeling sketch of a three-dimensional tube folding design. (a) Structure diagram of
Chinese parasol; (b) three-dimensional tube folding state.

2.2.2. Initiated Flyby Configuration Design

When starting the drift, the UAV rotates and deploys the coaxial rotors. This action
is inspired by the flying form of detached seeds of Chinese parasol, transitioning from
starting to cruising while meeting the design requirements. At this point, the rotation
speed of the coaxial rotors decreases, and the payload compartment of the balloon moves
downward and inflates. The three-dimensional cylindrical structure forms a whole with
the balloon and coaxial rotors, similar to when the leaves of a Chinese parasol seed fall
off and rotate [28]. Subsequently, as the height decreases, the cylindrical structure will
gradually detach from the balloon payload compartment. Therefore, the UAV can draw
on the instantaneous morphology of Chinese parasol seed shedding to design an initiated
flyby configuration (as shown in Figure 2).
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Figure 2. Design modeling sketch of the initiated flyby configuration. (a) Instantaneous morphology
of Chinese parasol seed shedding; (b) initiated flyby configuration.

2.2.3. Variable Altitude Variable Speed Flight Configuration Design

For the variable altitude flight phase, the UAV combines the multiple forms and
accelerated rotation characteristics of the Chinese parasol seed descent flight to achieve
high efficiency and sufficient stability. The cylindrical structure of the UAV detaches, and
the coaxial rotors fully deploy. The rotor blade pitch varies to accommodate the demands
of flight lift and stability. A modeling configuration for altitude-variable speed flight (as
depicted in Figure 3) can be designed accordingly.
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Figure 3. Modeling sketch of variable altitude variable speed configuration design. (a) Chinese
parasol seed descent flight; (b) modeling configuration for altitude-variable speed flight.

Based on design requirements and bionic design modeling, Figure 4 provides an initial
design sketch of the rotor [29]. The blade’s initial airfoil shape adopts the Clark-Y airfoil
profile. The installation angle distribution from root to tip of the blade is determined based
on the optimal effective angle of attack of each airfoil profile along the blade.
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Considering the need for comparative design analysis of the coaxial rotors, the distance
ratios between the upper and lower rotors, and between the lower rotor and the balloon,
are defined as:

i1 =
D1

R
(1)

i2 =
D2

R
(2)

D1 and D2 are the distances between the upper and lower rotors, and between the
lower rotor and the balloon, respectively. R is the rotor radius [30].

3. The Numerical Method
3.1. The Numerical Method

This paper employs the multi-reference frame (MRF) model combined with structured-
unstructured hybrid grid techniques based on the SST turbulence model. It aims to provide
a quasi-steady solution of the Reynolds mean Navier–Stokes (RANS) equation. The spatial
discretization method adopts the second-order upwind MUSCL (Monotone Upstream-
centered Scheme for Conservation Laws) interpolation in Roe format. For time discretiza-
tion and advancement, the implicit LU-SGS method is utilized.The specific calculation
process is shown in Figure 5.

The MRF model method is a mathematical method for quasi-steady numerical simu-
lation of coaxial rotors. Compared with the unsteady solution method, which consumes
excessive computational resources, the MRF method is widely used in the aerodynamic
calculation of fixed-axis rotating bodies. It can still obtain higher numerical simulation
accuracy while saving computational resources. The main idea of the MRF model method
is to simulate a propeller’s rotating motion by establishing a regular closed cylindrical flow
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region around the rotor. A numerical simulation of the flow field containing the rotating
airflow on a static grid is achieved to establish a rotating coordinate system with the same
rotating motion as the propeller. Corresponding mathematical transformations and data
interpolation transfer between the rotating and non-rotating regions achieve this.
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Considering the complex geometric characteristics of the highly twisted rotor blade,
a structured/unstructured hybrid grid generation method is employed during the rotor
grid partitioning process. That is, in the rotating basin around the rotor, the unstructured
grid is divided to improve the efficiency of grid generation. A structured grid is split
into a stationary domain between the rotation domain and the far field to reduce the
amount of grid computation. Flow field information transfers between the rotating and
stationary basins by establishing a grade separation interface [31]. Regarding the setting
of the boundary conditions of the MRF method, a pressure-far-field boundary condition
is applied on the boundary of the stationary domain, and the propeller or rotor in the
rotation domain is specified as a no-slip wall. A pair of overlapping cylindrical closed
surfaces, where the stationary domain and the rotating domain share the same boundary,
are specified as interface to exchange the flow information.

The Reynolds stress-based and separation-based ideas modify Menter’s k-ω SST
turbulent model. The transport equations of the model are summarized as follows:
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3.2. The Numerical Verification

To validate the capability of the CFD calculation method in capturing rotor aerody-
namic details, wind tunnel force and pressure measurements of the rotor were utilized
based on relevant literature [32]. This was done to verify the accuracy of the numerical
simulation method.

An experimental model of the rotor is shown in Figure 6. The rotor section airfoil
is NACA0012, with a rotor diameter of 2.286 m and an aspect ratio of six for each blade.
Experimental conditions of an 8◦ blade installation angle are selected for the calculation:
1750 rpm and 2250 rpm. The experimental static pressure is 103,027 Pa, temperature
289.75 K, and density 1.2389 kg/m3. The calculation conditions are consistent with the
experimental conditions. The grid convergence testing is conducted by using three mesh
densities: a coarse grid of 3.7 million cells, a medium grid of 7.5 million cells (about 5 million
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cells in the stationary domain and 2.5 million cells in the rotating domain), and a fine grid
of 15 million cells. The corresponding y+ values for the three different grid densities are 5.1
and 0.2, respectively. A comparison of the convergence process of the thrust coefficient for
different mesh densities is given in Figure 7. It is obvious that the results of the medium
and fine meshes are very close, but the time consumed with the medium mesh is lower
than that with the fine mesh.
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Table 1 compares rotor thrust coefficient calculations, and Figure 8 compares the chord
pressure distribution for different radial position profiles of the blades. Overall, the thrust
coefficient and pressure distribution calculated by CFD agree well with experimental results.
Thus, the multi-reference calculation method adopted in this report demonstrates a strong
capability. It effectively solves the macro aerodynamic forces and pressure distribution of
rotating components.
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Table 1. Comparison of calculated results of rotor thrust coefficient.

Rotation Speed (RMP) Experiment
CFD

Coarse Middle Fine

1750 0.00455 0.004857 0.00474 0.00469
2250 0.00462 0.004998 0.00491 0.00487

The typical flow field is shown in Figure 9. According to the surface pressure distribu-
tion, the present method can characterize the main flow field characteristics of the rotor
surface along the spanwise direction. From the velocity distribution in the Y direction, it
can be seen that the two blades induce a slight axial asymmetry. This is due to the signifi-
cant unsteady characteristics of the generation, development, and diffusion of blade tip
vortices in practice. Based on the Reynolds averaged equation, the multiple reference frame
calculation method is used to solve the flow field of the rotor. This approach enhances
computational efficiency while capturing the main flow field characteristic. It is further
proved that the calculation method has comprehensive advantages in balancing calculation
efficiency and precision.
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4. The Aerodynamic Design of a Coaxial-Rotor UAV
4.1. Rotor Airfoil Design

For coaxial rotors in unmanned aerial vehicles, the upper and lower rotors adopt the
same airfoil, divided into inner and outer airfoils in this paper. By optimizing the different
designs of the upper and lower rotors, the efficiency of the total coaxial-rotor system can be
further improved [33]. This consideration meets the requirements of balanced torque and
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variable pitch control. The parameterized design of the airfoil adopts an algebraic method
based on the Hicks–Henne function. This approach effectively achieves a smooth shape
and facilitates local adjustment optimization design. Figure 10 shows a schematic diagram
of the original and designed airfoils and their grids.

In the optimization design process, the basic optimization workflow based on sur-
rogate models is adopted, as shown in Figure 11. The optimization process includes the
following parts: (1) Parametric representation and initial sampling. (2) Solving with vary-
ing levels of confidence. (3) Optimization based on the surrogate model. (4) Adding new
sample points to continue optimization. (5) Validation of the design results. Detailed
parameters for each level of the optimization process will be provided in the design results
analysis section.

It is particularly worth noting that when conducting optimization based on surrogate
models, the two-dimensional design generally employs the Kriging surrogate model,
while the three-dimensional design often uses the Radial Basis Function (RBF) as the
surrogate model. The optimization algorithm used is the Multi-Objective Immune Genetic
Algorithm [34].
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4.1.1. Inner Section Airfoil

Figure 12 compares the results of the inner section airfoil design. It illustrates a
significant increase in the inner section airfoil’s lift-to-drag ratio over the range of available
lift coefficients.
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4.1.2. Outer Section Airfoil

The results of the outer section airfoil design are displayed in Figure 13. The figure
illustrates a significant increase in the lift-to-drag ratio of the outer section airfoil under
typical conditions. At the lift coefficient of 1.2, the lift-to-drag ratio of the initial airfoil
(airfoil2-ori) is 53.499, while the optimized airfoil (airfoil2-design1) has a lift-to-drag ratio
of 66.52, which is an improvement of 24.34% compared with the previous one.
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4.2. The Coaxial Rotors Design

Based on the airfoil design, the rotor design proceeds with different airfoils used for
the inner and outer sections of the rotor blades. The rotor airfoil configuration is illustrated
in Figure 14, where the “Airfoil-1” airfoil is employed for the inner section of the blades,
and the “Airfoil-2” airfoil is utilized for the outer section of the blades.
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Figure 14. Optimized rotor blade.

The effect of blade section mounting angles is further considered for the rotor ge-
ometry. The blade radius is R = 450 mm; the chord varied progressively along the span,
and there is a winglet design at the tip. Here are the specific steps of the design. The
design work for this three-dimensional rotor is divided into three steps: two-dimensional
airfoil optimization, airfoil configuration, and three-dimensional blade geometry optimiza-
tion. The airfoil optimization aims to improve the lift-to-drag ratio to increase lift while
reducing rotor torque. Based on the results of the previous chapter’s airfoil optimization,
two optimized airfoils, Airfoil-1 and Airfoil-2, are used for the blade design. Airfoil-1 is
applied to the inner blade section (r/R = 0.17~0.5), while Airfoil-2 is used for the outer
blade section (r/R = 0.5–1.0). Building upon these first two steps, further optimization of
the three-dimensional blade geometry includes iterative design of blade profile installation
angles and local chord lengths. Design constraints include a maximum blade radius of
R ≤ 450 mm, to achieve maximum power load. The maximum chord length of the blade
profile is located radially at r/R = 0.44, measuring 66 mm, and the maximum installation
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angle corresponds to r/R = 0.17, at 22.5◦. The minimum chord length and minimum
installation angle are both at the blade tip position.

Further integrating the requirements for balloon payload, Figure 15 illustrates the
conceptual design scheme adopted for the aerodynamic design of the coaxial-rotors UAV.
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4.2.1. Aerodynamic Performance of a Single Rotor

Figure 16 shows the relationship between the aerodynamic forces of individual rotors
and rotational speed at different altitudes. According to the computational results, the
designed rotor exhibits significantly improved performance compared to the original. At
H = 0 km and 1400 rpm, the power loading reaches 12.24 kg/kW. At the same rotational
speed, increasing flight altitude leads to approximately a 25.5% reduction in rotor thrust
and power. Due to the rapid decrease in rotor power with increasing altitude, the variation
in power loading is relatively minor.
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4.2.2. Aerodynamic Performance of Coaxial Rotors

Aerodynamic performance in the hover phase at H = 3 km altitude is analyzed for
different distance ratios of coaxial rotors to balloons (Figure 17). The distance between the
tip-path-planes of the upper and lower rotor is 120 mm, and the distance from the center of
Prop-2 to the top of the balloon is 1.75.
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4.2.3. Space Ratio Effects

Figure 18 illustrates the variation of aerodynamic forces of the initial rotor model
with rotational speed. The rotor thrust, power, and rotational speed maintain a good
linear variation relationship within the calculated rotational speed range. There is a more
significant power load at low rotational speeds.
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speed. (a) Thrust-rotational speed relation. (b) Power-rotational speed relation. (c) Rotor power
load-rotational speed relation.

The calculation results show that when the axial distance of the coaxial rotors is smaller
(distance ratio less than 0.3), significant aerodynamic interference occurs between Rotor 1
and Rotor 2. This interference leads to a 30% decrease in the thrust of each rotor compared
to the isolated rotor conditions at the same rotational speed and a 25% reduction in the
total power load of the coaxial-rotor system. It can be inferred that, within a certain range,
increasing the spacing between the rotors will effectively enhance the efficiency of the
coaxial-rotors system, and there exists an optimal rotor spacing [35].

4.2.4. Design Results of the Whole Aircraft

The distance ratio is adjusted to obtain the coaxial-rotor design results. The distance
ratio between the upper and lower rotors is 0.39. The distance ratio between the lower
rotor and the balloon is 1.12.

Figure 19 depicts the variation of the rotor’s macroscopic aerodynamic performance
with rotational speed. The computational results show that within the range of calculated
rotational speeds, rotor thrust, power, and power loading all exhibit linear increases with
increasing rotational speed.
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Figure 19. Relationship between the essential aerodynamic performance of the rotor and rotational
speed. (a) Thrust-rotational speed relation. (b) Power-rotational speed relation.

Figure 20 presents the aerodynamic calculation results of the coaxial-rotor system
under the condition of torque balance between the upper and lower rotors. To ensure
torque balance within the system, the rotational speed, thrust, and power of the upper rotor
are slightly higher than those of the lower rotor.
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Figure 20. Aerodynamic calculation results of a coaxial rotors system under torque balance conditions.
(a) Thrust-height relation. (b) Power-height relation; (c) power load-height relation.

To facilitate comparison of the effects of coaxial rotors’ aerodynamic interference on
blade aerodynamic performance, Table 2 compares the aerodynamic forces of the optimized
individual rotors with those of the coaxial rotors. From the results of the thrust calculation,
it can be seen that with the coaxial rotors distance of 175 mm, when H = 3 km and the
rotational speed is 1600 rpm, the upper and lower rotor thrusts in the coaxial-rotors system
decrease by 16.9% and 30.1%, respectively. The power load decreases by 21.21% compared
to when the rotors are isolated. Thus, it can be seen that the aerodynamic interference of the
coaxial rotors causes a significant reduction in both aerodynamic forces. Notably, the lower
rotor loses about twice as much aerodynamic force as the upper rotor. Compared to a single
rotor, the coaxial rotor experiences aerodynamic interference, resulting in a lower efficiency
for the coaxial rotor. This difference reflects the actual efficiency disparity between the
two configurations.

Table 2. Aerodynamic comparison of individual rotor with coaxial rotors.

Height Rotation Speed Single Rotor
Thrust

Upper Rotor
Thrust

Lower Rotor
Thrust

Single Rotor
Efficiency

Coaxial Rotors
Efficiency

3 km 1600 rpm 39.34 N 32.70 N 27.49 N 10.61 kg/kw 8.36 kg/kw
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5. Aerodynamic Analysis of Coaxial-Rotors UAV
5.1. Variable Pitch Analysis

Figure 21 compares the aerodynamic forces of the coaxial rotors with and without
slight pitch variation at an altitude of H = 5 km. In the figure, the pitch variation method in-
creases the installation angle of both upper and lower rotor blades by 2◦. The computational
results indicate that, after pitch variation, the total rotor thrust increases by approximately
10.9%, demonstrating a noticeable effect of pitch variation. With a total thrust demand
of 78 N, the rotational speed decreases by 5% after pitch variation. However, from the
power loading curve perspective, it is observed that the power efficiency of the rotor blades
decreases by around 7% after pitch variation compared to before the pitch variation. It can
be expected that a higher pitch setting will have a higher mean lift coefficient, and a lower
lift to drag ratio, thus leading to the lower efficiency.
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Figure 22 illustrates the aerodynamic force comparison with increased pitch variation
at 5 km altitude. The pitch variation method involves increasing the installation angle of
the upper rotor blades by 3◦ while keeping the pitch of the lower rotor blades constant.
From the results of the individual rotor with pitch variation, it can be observed that, as
the rotational speed increases, the effect of pitch variation becomes more pronounced. At
a rotational speed of 1900 rpm, the efficiency of pitch variation results in approximately
1.5 N of additional thrust per degree increase in pitch. At 2500 rpm, a 1-degree rise in
pitch results in approximately 3 N of additional thrust. The computational results from
Figure 18 indicate that the total rotor thrust increases by approximately 11% after pitch
variation. With a total thrust demand of 78 N, the rotor speed decreases by 3.7% after pitch
variation. However, from the power loading curve perspective, the power efficiency of the
rotor blades after pitch variation decreases by 3% compared to before the pitch variation.
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5.2. Flow Field Analysis

Figure 23 depicts the three-dimensional spatial streamlined distribution of the coaxial
rotors with the balloon for the hovering state with no forward flight velocity. The rotating
speed of the rotor is 1450 rpm and the altitude is 0 km. The Reynolds number based on
the blade chord of the rotor feature profile (0.7 times rotor radius) is 1.90 × 105. The figure
shows that the rotational motion of the coaxial rotors generates a certain amount of suction
effect above the rotor disk. Hence, the induced suction velocity noticeably increases as the
free stream gradually approaches Rotor-1. Beneath the Rotor-2 disk, conversely, due to the
injection of energy into the airflow by the rotating coaxial rotors, the slipstream velocity of
the rotor further significantly increases.
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Figure 23. Coaxial rotors balloon 3-D spatial streamline distribution.

Figure 24 is the cloud diagram of the rotor downwash’s velocity contours at the
symmetry plane’s location at different flight altitudes. Accordingly, the rotor downwash
velocity reaches a maximum below the radial position r/R = 0.5 of the blades, affected
by Rotor-1, Rotor-2 rotational acceleration, with a magnitude of 17 m/s at an altitude of
H = 0 km. At an altitude of H = 3 km, the maximum is about 19 m/s. Near the tip of the
balloon, the effect of balloon retarding causes a rapid decrease in rotor downwash velocity
but is still subject to a 6 m/s~10.7 m/s rotor downwash.
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Figure 26 depicts the pressure distribution contour map at the symmetric plane loca-
tion of the coaxial rotors at different altitudes. The computational results indicate that the 
thrust of the coaxial rotors primarily originates from the outer blade sections. However, 
due to their proximity, the high-pressure region on the lower surface of Rotor-1 mixes 
with the low-pressure area on the upper surface of Rotor-2. This mixing decreases the 
thrust of both rotors under the aerodynamic interference of the coaxial-rotor configura-
tion. As a result, the individual thrust of the upper or lower rotor is less than that of an 
isolated rotor. 

Figure 24. Contours of downwash velocity of a rotor on a symmetrical surface. (a) H = 0 km,
1450 rpm; (b) H = 3 km, 1680 rpm.

Figure 25 further illustrates the pressure increment distribution contour map on the
balloon’s surface under the influence of the rotor downloading. From the computational
results emerges the observation that the blocking effect of the balloon on the high-speed
rotor downloading leads to a significant increase in pressure near the top of the balloon.
This effect is notable for a maximum increment of up to 122 Pa. Since the pressure at the top
of the balloon is significantly higher than at the bottom, the rotor downloading generates
an additional drag force of approximately 6 N on the balloon.
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loading. (a) H = 0 km, 1450 rpm; (b) H = 3 km, 1680 rpm.

Figure 26 depicts the pressure distribution contour map at the symmetric plane location
of the coaxial rotors at different altitudes. The computational results indicate that the thrust
of the coaxial rotors primarily originates from the outer blade sections. However, due to
their proximity, the high-pressure region on the lower surface of Rotor-1 mixes with the
low-pressure area on the upper surface of Rotor-2. This mixing decreases the thrust of both
rotors under the aerodynamic interference of the coaxial-rotor configuration. As a result,
the individual thrust of the upper or lower rotor is less than that of an isolated rotor.
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Figure 26. Coaxial rotors pressure distribution at the location of the symmetry plane at different
altitudes. (a) H = 0 km, 1400 rpm; (b) H = 3 km, 1700 rpm.

Figure 27 further contrasts the pressure distribution across the chord section at different
radial positions of the coaxial rotors. As the coaxial rotors are coaxial and counter-rotating,
the high-speed axial slipstream induced by Rotor-1 on Rotor-2 somewhat reduces its
effective angle of attack. This effect is particularly noticeable for the outer wing section,
where leading-edge stagnation occurs visibly on the airfoil’s upper surface. Consequently,
the aerodynamic performance of Rotor-2 is inferior to that of Rotor-1.
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Figure 27. Comparison of pressure distribution in different radial position profiles of coaxial rotors
(H = 0 km, 1400 rpm). (a) r/R = 0.22, Rotor-1; (b) r/R = 0.22, Rotor-2; (c) r/R = 0.78, Rotor-1;
(d) r/R = 0.78, Rotor-2.

Figure 28 shows the velocity profile schematic of the mean flow at the 99% blade tip
position along the chordwise direction. Due to the influence of the blade tip vortex, flow
separation may occur on the rear part of the airfoil along the chordwise direction. In fact,
flow separation does not occur on the rotor surface within 78% of the blade radius.
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Figure 28. Schematic diagram of the velocity profile at the 99% blade tip position. (a) x/c = 0.2;
(b) x/c = 0.5; (c) x/c = 0.9.

5.3. Verification Measurement

The selected experimental motor model is the UA90 KV100 motor. The experiment
adopts a basic testing system [36,37]. The schematic of the experiment bench and test
principle of the coaxial rotors are illustrated in Figure 29.
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Figure 29. The schematic of the motor/rotor experiment bench and test principle. (a) The experiment
bench. (b) Workflow diagram.

The test environment is as shown in Figure 30, demonstrating the use of internally
developed testing equipment and environment.

Figure 31 shows the experiment results. Comparing the calculations and experiments
reveals that the experimental results agree with the coaxial-rotor system’s calculation
results. However, due to the balloon’s drag, there is a specific deviation between the full
aircraft calculation results and the test without the balloon.
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Figure 31. Comparison of experimental measurement and calculation results. (a) Thrust-throttle
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For the thrust demand 78 N, a single rotor should generate a thrust of at least 4 DaN. At
an altitude of H = 0 km, the rotation speed is at least 1500 rpm. At 3 km and 5 km altitudes,
higher rotation speeds and throttle inputs are required. It can be seen that choosing the
UA90 KV100 motor and optimized coaxial rotors is reasonable. They can ensure the power
system has a throttle margin for complete aircraft.The single rotor partial test results are
shown in Table 3.

Table 3. Single rotor partial test results.

Ω (RPM) Thrust (N) (g/W)

1200 42.91 9.88
1400 59.32 8.55
1600 76.99 7.46
3505 172.38 6.71
3700 185.02 6.21

6. Conclusions

(1) The bionic conceptual design is excellent. It can fully integrate Chinese parasol seed
flight features and UAV flight requirements.
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(2) The UAV, bionically modeled as a Chinese parasol seed, has high essential aerody-
namic performance. Its navigation stability and variable pitch flight capability are
good. The cruise power load reaches 8.36 kg/kw, and the cruise flying thrust force is
not less than 78 N at coaxial-rotor and rotor-balloon distance ratios of 0.39 and 1.12,
respectively. Despite achieving a cruise power loading of 10.61 kg/kw, the cruise
flying thrust force of the single rotor is only 39 N under these conditions. There-
fore, the bionic simulation of the coaxial-rotor configuration is superior to the single
rotor configuration.

(3) The UAV has the “blocks stability phenomenon” formed by decreased rotor down-
wash speed and the balloon’s additional negative pressure. However, it can provide
space for omnidirectional detection and reconnaissance missions.

(4) The efficiency experiment and simulation of the coaxial rotors/motor can be agreed
upon. The present method and the bionic configuration provide a feasible design and
analysis strategy for coaxial-rotor UAVs.

One of the potential challenges in the design of bionic conceptual design on UAVs is
the issue of fluid-structure interaction (FSI), particularly the accuracy of numerical simula-
tions for FSI involving flexible structures. Additionally, the complexity of manufacturing
due to bionic structures presents further difficulties. This paper employs the MRF model
method combined with structured-unstructured hybrid mesh techniques and utilizes the
SST turbulence model to solve for numerical simulations. Using different materials for 3D
printing, we addressed the manufacturing challenges of complex surfaces in biomimetic
structures. Additionally, this reduces manufacturing costs compared to traditional machin-
ing methods.
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