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Abstract: The gait rehabilitation knee exoskeleton is an advanced rehabilitative assistive device
designed to help patients with knee joint dysfunction regain normal gait through training and
activity support. This paper introduces a design framework based on the process knowledge rep-
resentation method to optimize the design and control efficiency of the knee exoskeleton. This
framework integrates knowledge of design objects and processes, specifically including requirements,
functions, principle work areas, and the representation and multi-dimensional dynamic mapping
of the Behavior–Structure (RFPBS) matrix, achieving multi-dimensional dynamic mapping of the
knee exoskeleton. This method incorporates biomechanical and physiological knowledge from the
rehabilitation process to more effectively simulate and support gait movements during rehabilitation.
Research results indicate that the knee rehabilitation exoskeleton design, based on the RFPBS process
knowledge representation model, accomplishes multi-dimensional dynamic mapping, providing a
scientific basis and effective support for the rehabilitation of patients with knee joint dysfunction.

Keywords: knee exoskeleton; RFPBS model; process knowledge representation; simulation analysis

1. Introduction

With the rapid development of society and the economy, the proportion of China’s ag-
ing population suffering from lower limb activity disorders has been rising, especially knee
dysfunction patients [1–5]. To meet this challenge, the development of knee exoskeletons
has emerged as a key technology to address gait rehabilitation issues [6–8]. The technology
integrates the latest achievements in the fields of human biomechanics [9–12], mechanical
design [10,13–16], bionics [17,18], electromechanical control [10,16], and information pro-
cessing [18–22], and together with intelligent robotics [23,24], it not only provides patients
with walking assistance, but also targeted training gait, aiming at restoring and enhancing
patients’ knee joint function and musculoskeletal strength [25–28]. In this context, it is
particularly important to develop a design method based on process knowledge representa-
tion to guide the design of knee exoskeletons. However, current research is still insufficient
in integrating design knowledge and problems solving strategies, so the Requirement–
Function–Principle–Behavior–Structure (RFPBS) process knowledge representation model
was constructed. The model utilizes the principle of biomechanics and, through the opti-
mized matching between function and structure, not only helps to improve the quality of
the research and development of the knee exoskeleton but also enhances the coordination
and comfort of the human–computer coupled system, which provides a solid theoretical
and empirical foundation for future design applications.
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In this study, the Requirement–Function–Principle–Behavior–Structure (RFPBS) pro-
cess knowledge representation model is proposed, aimed at effectively addressing the
complex challenges in product design. Compared to the traditional Function–Behavior–
Structure (FBS) model, the RFPBS model enhances the knowledge modeling process by
incorporating user requirements and principle space constraints, thereby facilitating a
more thorough and rational design knowledge modeling process and achieving innovative
multi-level mapping solutions. The RFPBS model systematically captures and organizes
the tacit knowledge of designers throughout the design process, ensuring its comprehensi-
bility to both human designers and computer systems. Moreover, based on the theory of
design knowledge flow, the model explores methods for product module decomposition
driven by user requirements and establishes a support system for configuring knee orthosis
modules. By clearly defining the key elements of the design process—requirements, func-
tions, principles, behaviors, and structures—the RFPBS model provides a clear framework
for design activities and builds a scientifically sound product design support platform.
Through multi-angle and hierarchical module segmentation and identification methods,
this model achieves precise mapping relationships from user requirements to product
structures, promoting multi-level innovative designs focused on function decoupling and
structure–function matching. This structured approach not only effectively identifies and
records valuable design knowledge but also fosters the logical organization and effective
transmission of design knowledge. In particular, the model enhances the systematic in-
tegration of design knowledge by closely aligning the detailed features of design objects
with the process of design activities. The introduction of the RFPBS model significantly
improves the quality and efficiency of design decisions by clearly specifying the inputs and
outputs at each stage of the design process, helping designers systematically understand
and apply engineering knowledge, thus advancing innovation and optimization in product
design. Furthermore, the implementation of the RFPBS model provides a solid theoretical
and practical framework for the development of design knowledge management software,
enabling the creation of systems that not only record design data but also capture and reuse
key knowledge generated during the design process. This capability greatly enhances the
collaborative efficiency and innovative capacity of design teams, providing strong support
for the multidimensional integration of complex system designs. Therefore, the proposal
and implementation of the RFPBS model hold significant theoretical and practical value
for enhancing the scientific and systematic nature of engineering design and achieving
efficient and innovative design solutions.

2. Theoretical Background

In product design, the design process itself is an organizational activity aimed at
integrating the resources of all stakeholders to achieve clear objectives. Throughout this
process, knowledge is continually acquired and updated among stakeholders and plays a
role in the ongoing changes in design activities. Particularly in the study of the key techni-
cal layers of product design, understanding and analyzing the flow of design knowledge
is crucial. This includes understanding how to effectively transfer knowledge between
people and knowledge processing organizations, and how to build and strengthen the
network framework of design knowledge through effective knowledge flow. In the key
technical layers of product design, the fluidity of knowledge resources is especially im-
portant. It flows not only between the user layer and the technical layer but also greatly
enhances the product innovative design process through the driving force of knowledge
and collaborative sharing. Effectively managing and utilizing these knowledge resources
can significantly enhance the efficiency of knowledge utilization in product design through
in-depth analysis and research by designers, thereby achieving the goal of innovative
design. This methodology emphasizes the central role of knowledge resources in the key
technical layers of product design, as well as the crucial position of knowledge management
in promoting the improvement of design quality and efficiency.
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2.1. Product Design Key Technology Layer Study
2.1.1. Establishment of the Design Knowledge Network Framework

In the field of product design, the design process begins with an ambiguous conceptual
phase and progresses towards a predetermined goal with its inherent complexity and
iterative nature [19,29,30]. The process moves from original sketches to detailed design,
reflecting the evolution of a system from initial uncertainty to final clarity [31,32]. The core
task is to gradually transform the designer’s initial concepts into an organized logical
framework through which design goals can be achieved, and systematically structuring
design knowledge and understanding how it is expressed is essential for optimizing the
design process. In addition, design activity is also an organizational process that integrates
the resources of various stakeholders, in which the flow and update of knowledge resources
is continuous. Knowledge resources, as the basis of innovative design, flow between the
user and technical levels, and the driving and sharing of knowledge energizes product
innovation, improves the efficiency of design knowledge utilization, and thus facilitates
the innovation and development of product design, as shown in Figure 1.
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Figure 1. Knowledge Network Framework for Product Innovation Design.

The construction of a conceptual design model is ultimately a description of a func-
tional problem that requires a set of feasible models to solve it, and the purpose of a process
knowledge representation model is to identify the commonalities behind a series of ele-
ments, summarize them, generalize them, and condense them into a simple structure that
can be reused and migrated [33]. This structure is then adapted and applied to different
scenarios to improve the efficiency of design solution construction. In the product design
process, the hierarchical model of mapping relationships is constructed through the in-
teraction between design entities and knowledge units, which is specifically embodied in
the bottom-up and top-down mapping mechanisms. That is, multiple modular systems
integrate information into a single design entity and a single modular system decentralizes
its information to multiple design entities. This bi-directional mapping not only facilitates
the effective transfer between design entities, knowledge units, and information knowl-
edge, but also enhances the systematic integration and application of information in the
design process, thus forming a multi-level, highly interactive design knowledge network.
This model not only clarifies the path of information flow, but also provides theoretical
support and practical application for design decisions, as shown in Figure 2.
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Figure 2. Hierarchical model of the design process.

2.1.2. Research Related to Knowledge Representation Modeling

For more than three decades, researchers have been trying to find better ways to
formulate design as a comprehensive iterative process, and scholars have been working
on FBS [34] for describing the process of rationalizing product design and development in
the field of engineering, as well as coordinating the different design variables in order to
achieve innovative product designs(See Table 1). Building on these basic models, further
research has added more dimensions to address more specific issues. The Situated FBS [35]
framework was introduced to extend the FBS model to help better understand design in
an open, dynamic world. The RFBS [36] model incorporates requirements analysis as an
important element of the FBS model and proposes its integration into design methodologies
and modeling languages. In addition, the FCBS [37] model seeks a complementary combi-
nation of functional and case-based modeling to develop conceptual design support tools.
A review of past research and its development reveals that the main focus has always been
on the functional, behavioral, and structural elements of engineering design. In contrast
to previous models, the RFPBS model proposed in this study innovatively incorporates
the consideration of user requirements and workspace principles while focusing on the
knowledge capture and representation of the complete design process.

Table 1. Comparison of various design modeling studies.

Model
Type

Description of
Subject

Knowledge
Representation

Background
Knowledge of Design

Multi-Dimensional
Knowledge Integration

Computer-Aided
Applicability

FBS [34]
Function Design objects and

their relations
No N/A (Not applicable) ModerateBehavior

Structure

Situated
FBS [35]

Situational
Ffunction Design knowledge

transformation
No N/A N/ABehavior

Structure

RFBS [36]
Requirement

Model-driven and
integrated Yes N/A ModerateFunction

Behavior
Structure

FCBS [37]
Function Understanding,

representing and
reusing present

design knowledge

No N/A ModerateCell
Behavior
Structure

RFPBS

Requirement
Design knowledge
multi-level hybrid
mapping solution

Yes Yes High
Function
Principle
Behavior
Structure



Biomimetics 2024, 9, 410 5 of 17

3. Method

To overcome the limitations of existing conceptual design process models, this study
proposes a new conceptual module design process model, the RFPBS model, to scien-
tifically guide product design practices. This method, by introducing “ontology” as a
design paradigm, optimizes the transformation of requirements and the construction of
functional organizational structures, thereby facilitating the precise expression and man-
agement of design knowledge. This research emphasizes the importance of constructing
effective methods to improve design efficiency and lay the foundation for future innova-
tions, demonstrating the central role of scientific methodology in advancing design practice
and theoretical development.

3.1. Model Construction
3.1.1. Process Knowledge Solving Model

Product design is a complex and iterative activity that often lacks clear definitions [38].
During the design process, designers need to refine the requirements and specifications
of a product through multiple iterations. The process involves the transformation of
the internal state of the system, which leads to the reconfiguration and solving of the
structure and optimizes the efficiency of the transformation from input to output. System
optimization requires a reconsideration of the relationships between function and form,
and how these relationships drive the evolution of a product from concept to realization.
Within this framework, an ontology-based design knowledge solving model becomes a key
mechanism for driving product innovation. The model takes user requirements as a starting
point, integrates product constraints, features, and structural knowledge, and stores them
in a knowledge base. This approach allows designers to generate and evaluate multiple
product structural solutions in order to select the optimal innovative design solution. The
process not only systematically applies design-related knowledge, but also significantly
improves the efficiency and innovativeness of design decisions through accurate model
reasoning, as shown in Figure 3.
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Viewing design modeling as a generalized configuration problem, this study proposes
a design framework based on an ontology process knowledge representation approach [39].
The model consists of five basic elements, i.e., requirements, functions, principles, behav-
iors, and structures. The design goal is not only to capture the key information in the
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design process, but also to prompt the designer to think deeply and optimize the complex
relationship between each element in the design process, so as to generate the product
structure system. This is shown in Figure 4.
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3.1.2. RFPBS Design Process Modeling

The RFPBS mapping generation model was constructed through the above analysis,
and the process was constructed through a series of interrelated stages and feedback
mechanisms, as shown in Figure 5.
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In this model, design begins with the Requirements Analysis (R) phase, which involves
identifying and defining the project’s basic requirements. These requirements are then
translated into specific Functional Objectives (F), a key step in transforming the design
into actionable objectives. Functional goals are further refined in the Principle Space (P)
phase, when the actual physical implementation is considered, and Behavioral Analysis
(B) phase predicts and evaluates the performance of the prototype. The Design Structure
(S) phase establishes the product-specific specifications and implementation requirements,
which ultimately lead to the actual outputs of the design (D). Key dynamics in this model
include constraints (C), which serve as guiding conditions throughout the design process,
and system structure (S′), which defines the framework for design execution. Feedback
mechanisms are clearly represented through direct and indirect paths between stages,
symbolizing the two-way flow of information and the iterative nature of decision-making
in the design process. Overall, the model highlights the importance of continuous feedback
and adjustment between design phases to ensure that the final design outcome meets user
needs and fits within the set constraints.

In the discipline of engineering design, product design is viewed as an inherently
complex and iterative process characterized by the precision of requirements and spec-
ifications unfolding incrementally as design goals are progressively achieved. In order
to facilitate accurate decision-making by designers, the development of computer-aided
tools based on efficient knowledge representation is essential. The RFPBS model presents
an iterative design process across multiple levels of requirements, functions, principles,
behaviors, and structures. The principal workspace layer is introduced in the model as a
mechanism to introduce design constraints. Following this, a complete design solution is
developed by mapping the principal workspace layer to the behavioral layer, which is then
translated to the structural layer. By establishing a closed-loop mapping strategy and an
explicit hierarchical structure, this study provides an adaptive process framework for knee
exoskeleton design, as shown in Figure 6.
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3.2. Multidimensional Analysis of the Knee Exoskeleton
3.2.1. User Requirements Analysis

There is a causal relationship between needs and functions that needs to be explicitly
described to facilitate knowledge reuse. The target population selected for this user study
was stroke patients suffering from knee motion dysfunction, the patients’ family members,
and the healthcare staff in the relevant rehabilitation department. Since it is more difficult
to reach the target population in ordinary life scenarios, field research was conducted in
the rehabilitation department of the hospital and the patients’ homes, in addition to the
literature study conducted during the pre-study process. Using the KJ (affinity diagram)
method to summarize and categorize the various types of information obtained from the
observation method and the interview method, a large number of the expressed texts
are converted into a clearer structural framework, as shown in the table. The structural
framework divides user needs into two dimensions, namely, the basic needs dimension
and the auxiliary needs dimension, and a total of eight user needs are identified; for ease of
representation, they are labeled as Ri (where i = 1, 2, · · · , 8). Among them, the basic needs
dimension contains four needs: safety and stability, neurological rehabilitation, human–
computer interaction, and comfort; the auxiliary needs dimension contains four needs: easy
to wear, assisted rehabilitation, stylized rehabilitation, and personalized needs, as shown
in Table 2.

Table 2. User requirements dimension.

User Requirements Dimension Serial No. User Requirement

Basic needs

R1 Security and stability
R2 Rehabilitation
R3 Precise human–machine interaction
R4 Comfortable to use

Subsidiary needs

R5 Easy to wear
R6 Supported rehabilitation
R7 Aesthetic design
R8 Individualized needs

3.2.2. Biological Principles Analysis

As a constraint in the process of complex product design, a principle is a bridge
linking function and behavior, so it is necessary to analyze the principle of the human
knee joint; doing so is conducive to the science and effectiveness of product module
identification. The human knee joint is a structurally complex and functionally critical
joint, composed of the femur, tibia, patella, and anterior and posterior cruciate ligaments,
which can be modeled as a crossed four-bar linkage [40,41]. Its stability relies on the
quadriceps muscle group, the medial and lateral collateral ligaments, and the anterior
and posterior cruciate ligaments to maintain it. In addition, the shock-absorbing effect
of the meniscus is critical for knee protection. In a normal gait, knee extension is carried
out by the quadriceps muscles (rectus femoris, intermediate femoris, lateral femoris, and
medial femoris), whereas knee flexion relies on the synergistic action of the semitendinosus,
biceps femoris, semimembranosus, thin femoris, sutures, hamstrings, gastrocnemius, and
metatarsal muscles. Figure 1 illustrates the activity of the lower limb muscles in the sagittal
plane, which plays a crucial role in the coordination of gait movements, involving major
muscles including the iliopsoas, gluteus maximus, rectus femoris, semitendinosus, vastus
medialis, short head of the biceps femoris, gastrocnemius, soleus, and tibialis anterior
muscles, as shown in Figure 7.
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3.2.3. Characteristics Analysis

The design features of the knee exoskeleton were derived from the above analysis.
The design features of the knee exoskeleton include low mass, connectivity that ensures
comfort for the wearer, safety, and the dynamic assistive force and motion control features
of the smart controller. This device connects to the wearer’s lower extremities through
braces and straps, creating an exoskeleton system that works in concert with the human
body. In this system, the knee exoskeleton moves in synchronization with the wearer’s
knee, ensuring interaction between the two. The use of soft cushions further enhances the
comfort and physical interaction between the wearer and the exoskeleton. The resulting
knee exoskeleton structure is shown in Figure 8.

Biomimetics 2024, 9, 410 9 of 17 
 

 

 
Figure 7. Human leg freedom and muscle distribution. 

3.2.3. Characteristics Analysis 
The design features of the knee exoskeleton were derived from the above analysis. 

The design features of the knee exoskeleton include low mass, connectivity that ensures 
comfort for the wearer, safety, and the dynamic assistive force and motion control features 
of the smart controller. This device connects to the wearer’s lower extremities through 
braces and straps, creating an exoskeleton system that works in concert with the human 
body. In this system, the knee exoskeleton moves in synchronization with the wearer’s 
knee, ensuring interaction between the two. The use of soft cushions further enhances the 
comfort and physical interaction between the wearer and the exoskeleton. The resulting 
knee exoskeleton structure is shown in Figure 8. 

 
Figure 8. Exoskeleton diagram of the knee joint. 

3.2.4. Structural Model Construction 
The exoskeleton mechanism mainly includes the thigh gear lever, calf gear lever, and 

large and small leg bindings, of which one end of the thigh gear lever and calf gear lever 
is an incomplete gear structure which simulates the knee joint’s variable transient motion 
characteristics through the pair of meshing gears. The point L in Figure 9 is the hyperex-
tension limit structure, which is realized by designing a right-angle transition at one end 
of the gears of the thigh gear lever and the calf gear lever that prevents the hyperextension 

Figure 8. Exoskeleton diagram of the knee joint.

3.2.4. Structural Model Construction

The exoskeleton mechanism mainly includes the thigh gear lever, calf gear lever,
and large and small leg bindings, of which one end of the thigh gear lever and calf gear
lever is an incomplete gear structure which simulates the knee joint’s variable transient
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motion characteristics through the pair of meshing gears. The point L in Figure 9 is the
hyperextension limit structure, which is realized by designing a right-angle transition
at one end of the gears of the thigh gear lever and the calf gear lever that prevents the
hyperextension of the knee joint when the knee joint is in extension and plays a role in
protecting the knee joint for patients with hyperextension of the knee joint. The thigh gear
lever and calf gear lever are parallel but not overlapping, so that they can effectively fit the
natural curve of the limb.
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3.2.5. RFPBS Mapping Mechanism Established

Through the refined user requirement analysis, the precise mapping from requirement
to function is derived to promote the development of the knee exoskeleton’s design. Firstly,
the various modular units of the knee exoskeleton system are systematically identified,
and then, based on their coupling strengths, the systematic reconstruction of functions,
the establishment of principle models, the classification of behaviors, and the innovative
construction of structural models are implemented in order to come up with the most
optimized design solutions. At the abstraction level of functionality, key categories such as
elastic load reduction, assisted rehabilitation, wearability and motion monitoring functions
were identified through requirement and function mapping. Behavioral units were divided
into basic behavioral units and integrated behavioral sequences, where the integrated
behavioral sequences included a series of movement patterns, such as assisted force, bend-
ing, and extension, and the principle of behavioral compatibility was applied in order to
achieve isomorphic mapping between movement features. In the structural dimension,
a hierarchical model of the structure was established by analyzing the interrelationships
and attributes of the components, and the structural component layer was divided into
geared knee joints, functional electrical stimulation components, anti-friction design of
the inner and outer knee joints, DC motors, etc., whereas the structural relationship level
included myoelectric activity extraction sensors, force feedback sensors, and so on. Finally,
based on the Requirement–Function–Principle–Behavior–Structure (RFPBS) design itera-
tive deconstruction model, the multi-level mapping resolution of the knee rehabilitation
exoskeleton is completed, as shown in Figure 10.
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The RFPBS mapping solution for the knee rehabilitation exoskeleton resulted in the
final design shown in Figure 11. Traditional orthoses correct the knee joint through lateral
force, which may lead to excessive wear and tear of the contralateral knee joint in long-
term use. The knee decompression principle adopted in this design directly reduces the
pressure on both sides of the knee joint, which has a better load-reduction effect, and the
brace is designed with an adjustable structure to adapt to different patient sizes and
improve its personalized fit. In addition, the design of the brace takes into account the
comfort and safety of the calf, allowing the brace to slide freely relative to the calf and
reducing direct forces. This knee exoskeleton system with integrated functional electrical
stimulation provides efficient knee rehabilitation for paralyzed patients through the synergy
of DC servomotors and electrical stimulators. The design demonstrates compactness,
a light weight, and safe non-impact operation on the knee joint, marking an innovative
advancement in the design of rehabilitation aids.
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4. Results
4.1. Mechanical Effects of Knee Exoskeletons on the Human Lower Extremity

An important measure to protect the knee joint from injury is to reduce the pressure
on the knee joint, and the mechanics of using a knee exoskeleton to protect the knee joint
are shown in Figure 12. Worn on the sides of the limb, the exoskeleton does not touch
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the ground; as such, between the exoskeleton’s foot and the human foot there is a certain
height difference, h. When the human foot descends from the air to gradually touch the
ground (from step 1⃝ to step 2⃝ of the process), the spring deformation of the exoskeleton,
due to the presence of two elastic coefficients of the same spring on the knee exoskeleton,
produces an anti-gravity elastic force, Fh, which can be expressed as

Fh =

{
2K(l − l0)− meg, l ≥ meg

2K + l0
−meg, l < meg

2K + l0
(1)

where K is the elasticity coefficient of the spring, me is the mass of the exoskeleton, g is
the acceleration of gravity, l is the length of the spring, and l0 is the original length of the
spring. Assuming that the body weight of the human body is Gh, when the human body
stands, the two sides of the legs each share half of the body’s gravity. When wearing the
knee exoskeleton on the lower limb on one side of the body, due to the existence of this
anti-gravity elasticity, the pressure on that knee joint will be smaller compared to that on
the knee joint on the side not wearing an exoskeleton. When wearing the exoskeleton on
the lower limb on one side of the body, the knee joint pressure fp can be expressed as

fp =
Gh
2

− Fh (2)
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4.2. Simulation Analysis

The movement process from step 1⃝ to step 2⃝ can be regarded as the process of
compression of the exoskeleton, and the spring located on the exoskeleton is stretched in
the process, and the mechanical influence of the exoskeleton on the human body in the
process can be simulated and analyzed. The exoskeleton weighs 1.85 kg, the elasticity
coefficient of the spring is 2 N/mm, the original length of the spring is set to 50 mm, and
the displacement of the spring is 40 mm. The lower limbs are in the supported state when
the human leg takes a step and transitions to the foot touching the ground. The initial
height difference, h, of the motion process is set to be 40 mm, the simulation time t is 2 s,
and the drive displacement function is expressed as

P = hsin
(π

2
t
)

. . . . . . (3)

After setting the simulation parameters in the Recurdyn v9r5 dynamics simulation
software, the simulation is carried out, and Figures 13 and 14 show the state demonstration
during the simulation process and the change curve of the elastic force, Fh, during the
whole movement process, respectively. When the spring is in the state of maximum
elongation (l = 90 mm), the simulation time is 1 s; at this time, the exoskeleton produces
a maximum elastic force of 141.4 N in the direction of anti-gravity on the human body,
and the maximum elastic force, calculated according to Equation (1), is 141.8 N, which is
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approximately the same as the theoretical results, and the overall observation is that the
curve of the theoretically calculated elastic force and the curve of elastic force obtained by
the software simulation in Figure 14 coincide with each other, indicating that the equations
reflect the mechanical effect of the exoskeleton on the human lower limb, thus verifying
the correctness of the results of the theoretical analysis of the knee exoskeleton and the
effectiveness of the exoskeleton in reducing the pressure on the human knee joint.
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5. Discussion

The working principle of traditional knee orthoses is based on a three-point pressure
system, designed to stabilize or correct deformities in the knee joint. This design employs
two force points on one side to apply pressure, while a third point on the opposite side
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helps create a mechanical balance, aiding in the correction of the position and movement of
the knee joint. The three-point mechanical knee orthosis effectively disperses stress around
the knee joint, thus protecting the joint, alleviating pain, preventing further damage, and
promoting proper knee movement. This type of orthosis is commonly used for treating frac-
tures of the knee joint, post-operative recovery, arthritis, and similar conditions, as shown
in Figure 15.
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Figure 15. Traditional three-point mechanical knee orthosis. P1: This point is located on the thigh,
above the knee. It mainly provides downward force, helping to stabilize the knee and resist upward
forces. P2: This point is located on the lower leg, below the knee. It provides upward support,
working in opposition to P1 to stabilize the knee. P3: Located on the opposite side of the knee
(usually the outer or inner side of the leg), it offers additional stability, assisting in the control of
lateral movement of the knee.

In existing products like the Breg Roadrunner Knee Brace, the lateral force transmis-
sion in knee orthoses like this typically occurs from one side of the brace to the other.
This transfer of force helps to correct lateral deviations or instabilities in the knee joint.
Specifically, lateral force can be transferred from a support point on the inside of the brace
to a braking point on the outside, or vice versa, to stabilize the knee joint and reduce
lateral movement.

Long-term use of existing knee orthoses can lead to some issues. This is primarily
because unloading braces transfer pressure from the diseased side (usually the side with
more severe damage to the medial or lateral joint surfaces) to a healthier joint surface,
thereby alleviating pain and wear on the affected side. However, this transfer of pressure
may cause the following problems:

(1) Overload on the non-diseased side: As joint pressure decreases on one side it relatively
increases on the other side. This increased load can accelerate wear on the non-
diseased side of the joint, which could lead to the development of arthritis or other
joint issues over time.

(2) Muscle imbalance and joint alignment issues: Long-term reliance on an orthosis
can lead to changes in the strength and range of motion of leg muscles. Muscle
strength imbalances may further affect joint stability and alignment, increasing the
risk of injury.

(3) Biomechanical changes: Gait alterations caused by reliance on an orthosis can lead to
changes in the force lines through the entire lower limb and spine. These changes can
have a cascading effect on the entire musculoskeletal system, impacting the health of
other joints and muscle tissues.

Differences between the orthosis proposed in this study and existing orthoses include:

(1) Traditional three-point mechanical knee orthoses, which pry open the affected side
of the knee, can exacerbate wear on the other side over long-term use and are not
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suitable for prolonged use. The orthosis proposed here utilizes a more direct and
effective knee joint decompression principle that directly reduces pressure on both
sides of the knee joint, offering more apparent load-reduction effects and causing no
knee joint damage over long-term wear;

(2) The brace features multiple adjustable structures, allowing for customization accord-
ing to different patient needs;

(3) Compared to traditional knee orthoses, this brace allows for free sliding relative to the
lower leg. The spring force is not applied to the lower leg but instead transfers body
weight from the thigh to the ground, providing more direct knee joint decompression
and increased comfort and safety at the lower leg;

(4) It uses a spring to alleviate joint pressure, with a compact structure and lightweight
design, ensuring no impactful forces on the knee joint, making it safer.

6. Conclusions

The construction of the RFPBS process knowledge representation model provides
an optimal matching solution between function and structure for the design of a knee
exoskeleton for gait rehabilitation. The model integrates multi-dimensional considerations
such as user requirements, functional design, principal constraints, behavioral simulation,
and structural implementation, which in turn supports the iterative design process of the
knee exoskeleton. The simulation results show that the proposed model can effectively
simulate the biomechanical behavior of the knee joint, further optimize the structural
design of the knee exoskeleton, and play a key role in reducing the burden on the knee
joint and assisting rehabilitation training. Compared with existing studies, this study
examines the problem of knowledge representation in the design process from a new
perspective, highlights the importance of integrating multidimensional models in the
design of complex systems, and proposes new guiding principles for combining theory
with practical applications. Future work will focus on further validation and optimization
of the model, especially deepening the effectiveness of the model in practical rehabilitation
training, and continuous iterative improvement through user feedback.
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