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Abstract: The neural or mental simulation of actions is a powerful tool for allowing cognitive
agents to develop Prospection Capabilities that are crucial for learning and memorizing key aspects
of challenging skills. In previous studies, we developed an approach based on the animation of the
redundant human body schema, based on the Passive Motion Paradigm (PMP). In this paper, we
show that this approach can be easily extended to hyper-redundant serpentine robots as well as to
hybrid configurations where the serpentine robot is functionally integrated with a traditional skeletal
infrastructure. A simulation model is analyzed in detail, showing that it incorporates spatio-temporal
features discovered in the biomechanical studies of biological hydrostats, such as the elephant trunk
or octopus tentacles. It is proposed that such a generative internal model could be the basis for a
cognitive architecture appropriate for serpentine robots, independent of the underlying design and
control technologies. Although robotic hydrostats have received a lot of attention in recent decades,
the great majority of research activities have been focused on the actuation/sensorial/material
technologies that can support the design of hyper-redundant soft/serpentine robots, as well as the
related control methodologies. The cognitive level of analysis has been limited to motion planning,
without addressing synergy formation and mental time travel. This is what this paper is focused on.

Keywords: cognitive robotics; biomimetic robotics; hydrostat; neural simulation of action; prospection;
passive motion paradigm; generative body schema; degrees of freedom problem

1. Introduction

Evolutionary pressure is behind the increase in and expansion of motor redundancy,
which is needed in many species to improve their manipulation abilities and creativity.
Such bodily evolution has been accompanied by the emergence of specialized brain regions
with a dual computational function: control of overt (real) actions and the generation
of covert (imagined) actions that allow cognitive agents to reason in a proactive way, in
agreement with the fundamental cognitive function of prospection [1].

In the human species, two action categories require the coordination of a very large
number of Degrees of Freedom (DoFs): manipulation and phonation. In the former case, the
main effector is the hand; in the latter case, it is the vocal tract, which includes the tongue,
namely a hydrostat characterized, in principle, by an infinite number of DoFs. In other
species that have not developed anything similar to the opposing thumb, a comparable
degree of manipulatory ability could be achieved by various types of hydrostats like the
elephant trunk [2] or the octopus tentacle [3,4]. Remarkably, with its soft structure and
hyper-redundant kinematics, the proboscis can be used for delicate tasks in cluttered
and/or unstructured environments, and this feature has quickly captured the interest
of robot designers [5,6] in many directions and applications areas [7-9]. In particular, a
short review of continuum robots [6] clarified the range of architectures, from discrete
(nonredundant or mildly redundant) systems to serpentine (hyper-redundant) robots and
continuum hydrostats.

The physiology and the biomechanics of elephant trunks [2] and octopus tentacles [3]
have been investigated in detail, showing that both species have evolved strategies that
reduce the biomechanical complexity of their hydrostat from a functional point of view:
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elephants and octopuses appear to use strategies similar to vertebrates for transferring an
object from one place to another, are also able to reconfigure temporarily the kinematics of
the hydrostat into a stiffened, articulated, quasi-jointed structure, and the kinematics of the
end effector are consistent with the invariant features of biological motion.

As stated by Nikolai Bernstein [10], the underlying fundamental problem faced by the
human brain is the “degrees of freedom problem”, namely the fact that the highly redundant
nature of the body requires a synergy formation process, bridging the biomechanical
abundance of the body with the cognitive frugal elegance of the brain. In the human
species, this process has been described by Marc Jeannerod [11] as the Neural Simulation
of Action, and we propose to extend this approach to serpentine robots like the elephant’s
trunk.

From the robotic point of view, a lot of research has been devoted to the actua-
tion/sensorial /material technologies that can support the design of hyper-redundant
soft robots. For example, concentric tube robots can adapt to external stimuli and maneuver
in complex shapes such as the continuum robot design, which has rolling joints and surface
contact joints [12]; tendon/cable mechanisms, where the tension in the cables, when pulled,
actuates the intertwining rod skeletons over long distances, are characterized by a relative
ease of control and maximization of the propelling force [13]; and origami-inspired contin-
uum robots have attracted great interest in recent years [14], as well as magnetic continuum
robots based on an intramolecular polymer complex [15]. The issue of variable stiffness actu-
ators is also important for different approaches, e.g., mechanisms based on S-shaped springs
and pneumatic mechanisms [16]. In any case, this is just a small sample of the plethora
of recent papers inspired by the snake/serpentine robotic system, with hundreds of them
listed in a recent review [17]. As a matter of fact, some systems have gone beyond the proof-
of-concept stage and more or less reached the market: for example, the BionicMotion Robot
and the BionicSoft Arm by Festo (https://www.festo.com/us/en/e/about-festo/research-
and-development/bionic-learning-network /highlights-from-2015-to-2017 /bionicsoftarm-
id_68209/ (accessed on 3 July 2024)); the FLEX robotic system by Novus (https://novusarge.
com (accessed on 3 July 2024)); the i2Snake Robotic Platform for Endoscopic Surgery [18];
the NASA'’s EELS architecture [19]; and the OctArm robot [20]. However, the underlying
technologies are still evolving, with the main focus being on implementation and low-level
control.

In any case, the potential benefits of robotic hydrostats, including hybrid robotic
hydrostats (i.e., robots that combine a traditional multi-link manipulator with a hyper-
redundant serpentine end effector), are such that the further development of this kind of
technology is likely to occur. On the other hand, the integration of this kind of technology
with cognitive capabilities, according to the general requirements of the cyber-physical
systems envisioned for the 4th and 5th Industrial revolution [21,22], is still limited and
overshadowed by implementation/technical issues. In our opinion, the solution may
not come from the adoption of the current Artificial Intelligence methodologies, mainly
based on deep/large neural networks, but on an Artificial Cognition formulation, based
on an embodied cognition approach [23]. In summary, the aim of this paper is to outline
a roadmap for the development of the cognitive capabilities of serpentine robots. In
particular, the purpose is to show how prospective capabilities for serpentine robots can
be achieved, like the elephant-like robotic architecture depicted in Figure 1. The specific
contribution provided by this work consists of extending an approach developed for
traditional humanoid robots, namely the Generative Body Schema, based on the Passive
Motion Paradigm (PMP) [24,25], with a focus on prospective capabilities.

Prospection is indeed the crucial function required to cognitively master the physical
interaction with the environment. This function has also been characterized as “Mental
Time Travel” [26], thus emphasizing the extended role of memory in purposive actions,
namely episodic memory and procedural memory, combined in a goal-oriented manner;
here, future scenarios are imagined and alternative courses of action are evaluated on the
basis of previous experience. The emergence of mental time travel in evolution is probably a
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crucial step towards the success of the human species, and there is evidence for its presence
in other species [26].

Figure 1. Example of hybrid serpentine robots, with elephant-like robotic architecture that combines a
traditional multi-link manipulator (6 DoFs) with a hyper-redundant serpentine end effector (24 DoFs).

The PMP model of synergy formation is a computational implementation of the Neural
Simulation Theory [11]; it is based on a force-field approach applied to kinematic networks,
namely the idea that multi-joint motor coordination is the consequence of virtual force
fields applied to an internal representation of the body, or generative body schema. In
the following sections of the paper, it is shown how this model can be extended in a
simple, natural way from a conventional skeletal body to a hydrostatic body or a hybrid
combination of the two.

2. The Generative Extended Body Schema

As suggested in previous papers [27-30], the basic computational module required for
a cognitive agent to achieve prospection is an internal representation of the body or body
schema, supported by a unifying simulation/emulation theory of action [31-33]. Different
from the notion of body image that is mainly a passive representation, the body schema
is an active, generative internal model capable of producing spatio-temporal patterns for
both real or imagined actions that are consistent with the kinematic-figural invariants that
characterize biological motion in humans, primates, as well as elephants. Such invariants
are mainly related to the spatio-temporal features of the end effectors rather than joint
coordination, suggesting that the brain’s representation of action is more skill-oriented than
purely movement/muscle-oriented [34].

The basic idea of the PMP model [24,25] is that the coordination of the redundant
DoFs of a kinematic chain can be obtained without using ill-posed versions of inverse
kinematics but with a series of well-posed transformations: (1) a transformation (via the
transpose Jacobian matrix of the kinematic chain) that maps a virtual attractive force field
applied to the end effector into the corresponding torque field applied to all the redundant
DoFs of the kinematic chain; (2) a transformation that maps the torque field into a vector of
joint rotation speeds (via a compliance matrix); and (3) a transformation (via the Jacobian
matrix) that maps the joint rotation speeds into the corresponding velocity vector of the
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end effector. Such a basic PMP model, which is independent of the number of DoFs in
the kinematic chain, was later extended [35-37] in two directions: (1) a mechanism for
protecting the RoM (Range of Motion) of all the joints of the kinematic chain and (2) a
mechanism for composing complex gestures from simple primitive gestures in such a
way that the kinematic—figural invariance of biological motion is incorporated. As shown
in Figure 2, both mechanisms are force-based rather than motion-based, consistent with
the principle that in a generative body model, generalized forces are additive whereas
generalized motions are not.

PG Composer

- )
Py ----
ri® —| PG, ﬁl,/ N
= ) EXTENDED BODY SCHEMA
o I,
1 [N dt
r : o
(0 — PG, % Fy p P
P; — + c, 2 Jdt - RoM
. : — O g Prot:ction
. 5__» : : Krom
: E Tfoc T TRoM
Pn—l - an \_/
r.—| PG

Fgy(t)

P L@l

\_ P® p®) J

Figure 2. The PMP-based extended body schema.

In particular, the heart of the body schema is the Jacobian matrix of the end effector J,
and the compliance matrix of the body C;. The intended motion of the end effector is coded
by a force field F, aimed at a moving target p; mapped into the corresponding torque field
Tfc by the (transpose) J. matrix and then into the joint speed rotation vector q through the
body compliance Cy; finally, the joint rotation vector is mapped into the motion of the end
effector via the J, matrix, thus closing the loop. Such a basic body schema is extended by
combining the focal torque field 77, which attracts the end effector to the current target,
with a protective RoM field g,y that repulses the joint rotation angles from the joint limits.

The input to the extended body model is the virtual trajectory p, of the end effector
generated by a composition of Primitive Generators (PGs). As shown in the figure, each
PG generates an elastic force field that is characterized by the following parameters: (1) a
target point P; (2) an initial position P; (3) the intensity of the elastic force field, modulated
by k¢; and (4) a non-linear gating command T'(t) that is specified by the initial time ¢y and
a prescribed duration T. By integrating the gated force field over time, a virtual moving
target p(f) that reaches equilibrium at the prescribed time f =t + T and has a bell-shaped
velocity profile is generated. The mathematical expression of the activation function I'(t)
used in this study is shown in the Appendix A: it has a sharply growing profile and is
capable of forcing the moving target p(t) to reach equilibrium in the prescribed finite time,
thus implementing “terminal attractor” dynamics [38]. The activation command also resets
the local integrator to a value P that identifies the starting point of the PG.
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For generating the complex smooth trajectory of the end effector, it is necessary to
instantiate a sequence of PGs, each of them associated with a target point P;, a starting
point P;_4, and an activation command T;(i): the starting point of a PG must coincide with
the target point of the previous PG. As shown in Figure 2, the force fields generated by
the sequence of PGs (Fg;(t)) are linearly combined by the PG composer module, producing
a combined force field F¢(t) and then the reference trajectory of the end effector pg(t). In
a smooth, continuous gesture, the activation functions of subsequent PGs are partially
overlapped and the remarkable result is that the spatio-temporal features of the combined
gestures intrinsically incorporate the figural-kinematic invariance of biological motion.
Thus, the PMP model can tame the abundance of degrees of freedom of the human body
by using a small number of primitive force fields: the diffusion of such fields throughout
the kinematic network of the internal body model distributes the activity to all the DoFs,
with the attractor neurodynamics driven by the instantiated force fields.

In this paper, we show that the PMP-based generative body schema can be extended
from the mildly redundant case, typical of the human body, to the hyper-redundant case
that includes a trunk-like end effector. Such an extension is simple and quite natural for
the intrinsic structure of the PMP-based generative body schema. The heart of the body
schema is the Jacobian matrix of the end effector, whose dimensionality can increase as
needed without problem. Although the elephant’s trunk is a continuum with an infinite
number of DoFs, the practical serpentine implementation will be composed of a large
number of equal modules, characterized by a large but finite number of DoFs. As shown
in the Appendix A, the overall Jacobian matrix of the elephant’s body includes both the
multi-link, mildly redundant part of the body and the hyper-redundant part of the trunk.
The primitive generators, the composer and the extended body schema of Figure 2 are
formally unchanged by adopting a hydrostatic end effector.

From a computational point of view, the simulation model is an explicit system of
first-order differential equations of high dimensionality. The simulation is carried out using
Matlab® (MathWorks, Matlab R2023b), adopting the forward Euler method or the 4th order
Runge-Kutta method for integrating the differential equation system, with a time step of
0.1 ms. The simulations illustrated in the next section refer to a planar skeleton with 6 DoFs
and a planar trunk with 24 DoFs; the complex gesture is composed of nine PGs.

3. Results

Figure 3 shows the simulation of a complex gesture performed by the pure trunk-like
model, detached from the body skeleton. The planar trunk model has 24 equal modules,
each with a 10 cm length and an angular RoM (Range of Motion) of +30 deg. The simulated
gesture is composed of nine PGs: the target point of each PG is marked in the figure by a
small, black, open circle; the duration of each PG is 1 s and there is a 50% overlap between
subsequent PGs, for a total duration of 5 s. Panel A shows the initial and the final posture,
together with the trajectory of the end effector. Panel B also shows the same simulation,
with intermediate postures corresponding to instants exhibiting the minimum curvature of
the produced trajectory. Both panels were generated with a constant value of 1 for all the
24 elements of the body compliance (Cp). Panel C is different because it is meant to clarify
how the cognitive system can manage the predicted presence of an obstacle, depicted as a
green filled circle, while attempting to produce the same nine PGs’ gesture with the end
effector. The solution is to “freeze” a subset of DoFs, crucial for avoiding the impact with
the obstacle, and leave the other DoFs free to rotate inside the specified RoM. This goal
is achieved by freezing the compliance if the initial eight DoFs (C,(i) = 0;i =1...8) and
setting to 1 the compliance of the remainng DoFs (Cp(i) = 1;i = 9...24). The picture also
suggests that if the obstacle is further shifted down, the gesture would probably need to
be aborted.
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Figure 3. The simulated gesture is composed of nine PGs: the target point of each PG is marked
by a small, black, open circle with a 50% overlap between the activation commands of subsequent
PGs. Panel (A) shows the initial and the final posture, together with the trajectory of the end effector
(in red). Panel (B) also shows the intermediate postures corresponding to instants exhibiting the
minimum curvature of the produced trajectory. Both panels were generated with a constant value of 1
for all the elements of the body compliance (Cp). Panel (C) is meant to clarify how the cognitive system
can manage the predicted presence of an obstacle, depicted as a green filled circle, while attempting
to produce the same nine PGs’ gesture with the end effector. In this panel, a subset of eight DoFs
is “frozen”, simply by setting the corresponding compliance equal to 0; the remaining compliance
elements are set equally to 1. In the three panels, the measurement units on both axes are m.

Figure 4 illustrates the spatio-temporal structure of the trunk motion, corresponding
to the nine PGs’ gesture shown in Figure 3. In particular, Panels A and B of Figure 4
correspond to the movement of panel A of Figure 3 where all the elements of the trunk-
like kinematic chain have the same unitary compliant value. Panels C and D of Figure 4
correspond to the movement of panel C in Figure 3 where the first eight elements of the
trunk-like kinematic chain are frozen. For both the simulated movements, one panel (A and
C of Figure 4) shows the wave-like rotation patterns of all the 24 elements of the trunk-like
structure: this graph shows that all the rotations are constrained within the prescribed RoM
that for this simulation was set to a £30 deg interval. The satisfaction of the constraint
about the RoM is provided by the Trop torque field generated by the RoM protection
module of Figure 2. Moreover, comparing panels A and C emphasizes that the rotation
patterns of the trunk-like structure are quite different, although the spatio-temporal features
of the end effectors are characterized by a kinematic—figural invariance. Such invariance is
clarified also in panels B and D of Figure 4, which plot the spatio-temporal patterns of the
trajectory depicted by the end effector, namely the speed and the curvature profiles; in both
cases, the figure shows that there is a strong inverse correlation between the two profiles
that is characteristic of biological motion in humans [28] and in elephants [2]. Remarkably,
the figural-kinematic invariance is independent of the number of DoFs recruited for the
given gesture. For example, in panel A of Figure 3, all the 24 DoFs of the trunk model are
recruited with the same gain, whereas in panel C of Figure 4, the DoFs are frozen: in both
cases, the end effector produces the same spatio-temporal patterns.

Figure 5 illustrates the extension of the PMP-based Generative Body Schema to a
hybrid model of the elephant body that combines 6 DoFs of the body skeleton and 24 DoFs
of the trunk. In panel A, the compliance of the body skeleton is frozen (all the C elements
are set to 0) while the C elements of the trunk are equally set to 1. In panel B, the C elements
of the body skeleton are mildly unfrozen with growing values from the ankle to the head:
C =10.02 0.04 0.06 0.08 0.10 0.12]. The values of the C elements of the trunk are all set to 1.
Both simulations are generated with the same set of PGs that produce a large size gesture,
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spanning more than one meter vertically. The simulation shows that the coordination of
the DoFs of the body skeleton with the DoFs of the trunk improves the smoothness of the
gesture.
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Figure 4. Spatio-temporal structure of the trunk motion for two movements generated by the same

set of nine PGs: panels (A,B) refer to the movement, depicted in Figure 3A, where the compliance

elements of all the DoFs of the trunk model are equal; panels (C,D) refer to the movement, depicted

in Figure 3C, where the compliance elements of all the first eight DoFs of the trunk model are frozen
(set to 0). Panels (A,C) show the time plot of the rotation angles of the 24 elements of the trunk
model; the two horizontal red lines (at 30 deg) identify the predefined range of motion of the trunk

elements. Panels (B,D) show the time plot of the speed (in blue: m/s) of the trajectory generated by

the end effector and the corresponding curvature (in red: 1/m). For both the simulated movements,

the wave-like rotation patterns of the 24 elements of the trunk model are constrained within the

prescribed RoM, although the rotation patterns are quite different while the spatio-temporal features

of the end effector are invariant.
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Figure 5. Application of the PMP-based Generative Body Schema to a hybrid model of the elephant
body that combines 6 DoFs of the body skeleton and 24 DoFs of the trunk model. In panel (A), the
compliance of the body skeleton is frozen (all the C elements are set to 0). In panel (B), the C elements
are mildly unfrozen with growing values from the ankle to the head: C = [0.02 0.04 0.06 0.08 0.10 0.12].
The values of the C elements of the trunk are all set to 1. Both simulations are generated with the
same set of PGs.

4. Discussion

Animal species that have succeeded in developing hydrostatic manipulators, like
elephants and octopuses, exhibit manipulatory dexterity comparable to that of primates, in-
cluding humans. Such dexterity is necessarily associated with a high degree of intelligence
or better well-developed cognitive capabilities that provide the animal with prospective
abilities, crucial for mental simulation and mental replay. Such computational capability
is considered a crucial component in human learning, in the framework of the neural
simulation theory of action that posits mental play/replay as the basic building block of
motor cognition, independent of motor control.

Soft robots and traditional hard robots use different mechanisms to enable dexterous
mobility: in the former case, there are distributed deformations with a theoretically infinite
number of DoFs, leading to a hyper-redundant configuration space wherein the robot
tip can attain every point in the three-dimensional workspace with an infinite number of
shapes or configurations. However, continuum deformability is not functionally critical:
for example, trunk-like manipulators have been built by using highly redundant rigid
structures and electric motors with cable tendons for actuation [39,40].

Although trunk-like soft arms are in principle highly dexterous and adaptable, their
performance in terms of payload and spatial movements is limited and requires a very
careful design, balancing the influence of key design parameters [41]. This also includes
the development and use of architectured structures that indeed are changing the means
by which soft robots are designed and fabricated, exploiting material properties, in terms
of topology and geometry, that allow their physical and mechanical structural properties to
be controlled [42]. In any case, the hyper-redundancy of soft robots implies a sensitivity to
the modification of the material properties of the structure, the actuators and the sensors,
and this is a critical process of adaptation that can be solved, for example, by means of
continual learning techniques [43].
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Thus, if soft robotics intends to overcome the proof-of-concept stage, it needs to
integrate the actuation—sensing—control level with a cognitive level that allows the robot
to “travel in the future” alone or in cooperation with human partners. This aspect of soft
robotics has not been investigated so far in a thorough manner, with the exception of
different approaches that we may collect under the label of motion planning: approaches
based on different forms of inverse kinematic analysis [44,45]; approaches formulated as
a least-square optimization problem [46]; approaches related to graph analysis, such as
Dijkstra’s algorithm [47], trajectory tracking using an adaptive bounding box [48], or
modeling the path planning problem in terms of a rapidly exploring random tree [49]; and
approaches based on learning from demonstration using machine learning algorithms [50]
or the use of the Actor—Critic method [51].

In conclusion, this paper proposes that the cognitive level of soft/serpentine robots
can be formulated as an internal computational model, in terms of a Generative Body
Schema based on the Passive Motion Paradigm. This approach does not require inverse
transformations and/or explicit optimization processes, whose robustness is difficult to
evaluate. Since it is fundamentally based on the combination of force fields, its rationality
is based on the equilibrium point hypothesis [52]. As a consequence, the proposed compu-
tational model is not limited to motion planning but it covers the more general function of
synergy formation that includes the spatio-temporal invariants characteristic of biological
motion.
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Department, in relation with the iCog Initiative, and by the Italian Ministry of Foreign Affairs and
International Cooperation, project DESTRO grant n. PGR02061.
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Appendix A
Appendix A.1. The Jacobian Matrix

The Jacobian matrix used in this paper is related to a planar, hybrid kinematic chain
that includes a skeletal part with 6 DoFs and a serpentine part with 24 DoFs, for a total
np =30 DoFs. Thus, the Jacobian matrix | = aa—q" isa2 x np matrix where g = [q1 42 ... qnp |
is the whole set of DoFs and p,, function of g, is the position of the end effector, at the end
of a kinematic chain that has np joints and np links. The position of the end effector can be
computed recursively from the position p; of the first joint, assumed as the origin of the
coordinate system, to the next one, up to the joint np + 1:

-l

C:
piv1 = pi+ L {Sl}
1

C
Pe = Pnp + Lnp- [SZZ]

C; = cos (Z};Zl qk)

S; = sin ():;(:1 qk)
body model.

By applying the definition above, the np columns of the Jacobian matrix can be
computed recursively backward from the last to the first one as follows:

where and L;, i = 1...np are the lengths of the links of the hybrid
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-5
et

_S.
Ji = Jix1 + Li- L_C’i]

Ji=J2+ Ly L_(S:j

Appendix A.2. The Activation Function of the Primitive Generators (PGs)

Each PG generates an attractive force field to a target that is modulated by a non-linear
activation function, i.e., the I'-function. This function is characterized by an activation
time (fp) and a duration (T); its profile I' = I'(t) is highly non-linear, starting with zero and
diverging to infinity at the final time. Such modulation of the force field allows an attracted
virtual point to reach the target in the prescribed time independent of its initial position
and distance from the target, with a smooth bell-shaped speed profile.

T= b for0<t—ty<T
=0 fort—tg<O0and t—ty>T

where £(t) = 6 4% — 15 9* +10 93 is a smooth 0 — 1 transition and v is the normalized
. t—t
time: ¥ = 2.

Appendix A.3. The RoM Protection Module

Each DoF of the kinematic chain, both the DoFs of the skeletal model and the DoFs
of the trunk model, has an associated RoM, i.e., an interval between a minimum and
maximum value (§y,in — Gmax) that should not be overcome during the simulation of a
gesture. The RoM protection module generates a torque vector Tryy where each element
is computed according to the following strategy: if the DoF angle is near the middle of
the RoM the produced torque vanishes, whereas it diverges quickly as soon as the angle
approaches the angular limit on each side of the interval, repulsing the angle away from
its limits.

A simple implementation of the function, applied in the simulations, is defined below:

(§—qmax) @min—=1
TRoM(q)ZKRoM<€ AT —e A )

The parameter A is a portion of the extent of the safe interval: A = Tuexuin,
measures the sharpness of the repulsion at the limit of the interval. In the simulations we
used the following value (k = 50).

Table Al. Biometric parameters.

q Joint RoM Min (deg) Joint RoM Max (deg) L (cm) Joint Name
1 0 +180 23 Foot

2 —45 +45 51 Ankle

3 —45 +45 43 Knee

4 —45 +45 57 Hip

5 —120 0 50 Neck

6 -90 0 49 Head

7 —30 +30 5 Trunk-base

8-245 -30 +30 5 Trunk-segment

246 -30 +30 5 Trunk-tip
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Table A2. Control parameters.

Kg Cg K. Kiom Cb
[N/m] [rad /Nms] [N/m] [Nm] [rad /Nms]
1 1 100 100 1
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