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Abstract: Biomimetic gels are synthetic materials designed to mimic the properties and functions
of natural biological systems, such as tissues and cellular environments. This manuscript explores
the advancements and future directions of injectable biomimetic gels in biomedical applications and
highlights the significant potential of hydrogels in wound healing, tissue regeneration, and controlled
drug delivery due to their enhanced biocompatibility, multifunctionality, and mechanical properties.
Despite these advancements, challenges such as mechanical resilience, controlled degradation rates,
and scalable manufacturing remain. This manuscript discusses ongoing research to optimize these
properties, develop cost-effective production techniques, and integrate emerging technologies like
3D bioprinting and nanotechnology. Addressing these challenges through collaborative efforts is
essential for unlocking the full potential of injectable biomimetic gels in tissue engineering and
regenerative medicine.

Keywords: injectable hydrogels; tissue regeneration; biomimetic materials; controlled drug delivery;
biocompatibility

1. Introduction

Injectable biomimetic gels are a rapidly emerging class of materials designed to mimic
the natural extracellular matrix (ECM) and facilitate tissue regeneration and repair. These
hydrogels are engineered for minimally invasive delivery and in situ gelation, forming
supportive scaffolds that promote cell growth, differentiation, and tissue integration. Their
ability to conform to complex tissue geometries and provide localized, sustained release of
therapeutic agents makes them highly versatile for various medical applications, including
wound healing, drug delivery, and tissue engineering.

Despite their potential, injectable biomimetic gels face several challenges and limita-
tions in biomedical research, necessitating ongoing research and development. A significant
challenge is to enhance their adhesive and mechanical properties while ensuring biocom-
patibility and non-toxicity. Multifunctional gels need to exhibit sufficient bonding strength,
self-healing capacity, and responsive adhesive abilities for effective wound closure and
tissue repair [1–5]. These properties are crucial for the practical application of injectable
gels in medical treatments.

One promising approach to address these challenges is the incorporation of protein-
polysaccharide blends, inspired by the ECM, which benefit from the adhesive properties
of proteins and the enhanced hydration and stiffness provided by polysaccharides. For
instance, gelatin injectable hydrogels have shown improved mechanical properties when
mixed with hyaluronic acid, enhancing the Young’s modulus and allowing tunable gelation
times to meet specific surgical requirements [6]. Additionally, polysaccharide-based hy-
drogels, such as those combining calcium alginate with dextran methacrylate derivatives,
have demonstrated synergistic mechanical behavior, which can be tailored for specific
biomedical applications [7].

Achieving proper injectability and rapid gelation in situ is another essential require-
ment. Injectable hydrogels must maintain sufficient intrinsic adhesion and mechanical
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properties to support tissue regeneration. The ability to inject these materials easily and
have them form gels quickly is vital for their use in minimally invasive procedures. Stimuli-
sensitive injectable polymeric hydrogels, which can switch from sol-to-gel in response
to various stimuli, offer promising solutions for controlled release and ease of handling,
enhancing their applicability in drug delivery and tissue engineering [8–11].

Ensuring bioactivity and biocompatibility while maintaining mechanical integrity is
fundamental for the success of injectable gels. Natural biopolymer-based hydrogels must
support cell delivery, in situ biomineralization, and balance biological compatibility with
mechanical performance [12–15]. These characteristics are necessary to mimic the natural
environment of tissues and promote effective healing and regeneration. For example, 3D
bioprinted scaffolds of natural-based hydrogels, incorporating proteins and polysaccha-
rides, provide an excellent framework for cartilage tissue engineering by mimicking ECM
structures and guiding cell growth [16].

Developing hydrogels that mimic natural cell environments and support vascular
growth, bone regeneration, and tissue repair is a primary focus in this field. Hydrogels
need to enhance structural and functional outcomes in regenerated tissues [17–20]. This
includes creating materials that can closely replicate the properties of the tissues they are
intended to replace or support. The creation of innovative composite materials that provide
mechanical support and promote osteogenesis is another critical area of development.
These materials need to be tough, injectable, and suitable for applications such as bone
tissue engineering and osteoporotic fracture repair [21–23]. The ability to create materials
that can support and encourage new bone growth while being easily applied via injection
is crucial for their effectiveness.

Addressing advanced functionalities such as wound healing, antibacterial properties,
and controlled drug delivery is also necessary. Hydrogels must be multifunctional, offering
properties like self-healing, antimicrobial activity, and responsive delivery of therapeutic
agents [24–28]. Polysaccharide-based bio-adhesives, particularly those using oxidized
dextran and chitosan with dopamine for enhanced adhesion, exemplify advancements in
creating injectable and sticky hydrogels suitable for tissue repair [29]. These functionalities
are essential for the broad applicability of injectable gels in various medical treatments.

The field faces significant challenges related to enhancing adhesive and mechanical
properties, achieving proper injectability and gelation, ensuring bioactivity and biocom-
patibility, supporting tissue regeneration and repair, developing innovative composite
materials, and addressing advanced functionalities for specific medical applications. These
collective concerns drive ongoing research and development to improve the efficacy and
safety of injectable biomimetic gels.

2. Injectable Biomimetic Hydrogels

This section details different crosslinking methods used to enhance the properties and
functionalities of these hydrogels. It also highlights specific types of hydrogels, including
those based on gelatin, chitosan, alginate, hyaluronic acid, silk, collagen, and poly(ethylene
glycol), describing their unique characteristics and applications in tissue engineering,
regenerative medicine, and drug delivery.

Natural and synthetic-based hydrogels are increasingly being used in biomedical
engineering, designed to mimic the natural healing processes of human tissues by being
able to repair themselves after damage. Various crosslinking methods are employed to
create these hydrogels, each contributing to their unique properties and functionalities.
Key mechanisms include dynamic Schiff base reactions, which allow for reversible bonding
and self-repair, and the use of aldehyde-terminated polymers that form stable networks.
Additionally, borate and boronic ester bonds, as well as metal coordination and ionic
crosslinking, provide adaptability and responsiveness to environmental changes. Physical
crosslinking methods, such as hydrogen bonding and ion complexation, and chimerical
crosslinking techniques also play a crucial role in enhancing the hydrogels’ structural
integrity and responsiveness. Hydrophobic associations, used in thermoresponsive gels,
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and chain aggregation of polysaccharides and gums further contribute to the mechan-
ical strength and flexibility of these materials. These methods collectively enhance the
hydrogels’ integrity and mechanical properties and ability to release therapeutic agents
in a controlled manner, making them highly effective for pharmaceutical and biomedical
applications [30–34].

Gelatin-Based Hydrogels: Gelatin-based hydrogels are widely appreciated for their
natural origin, biocompatibility, and ability to form gels at physiological temperatures,
making them inherently biomimetic. These hydrogels provide a supportive environment
similar to natural tissues, essential for cell growth and differentiation.

One advancement in this area has been the synthesis of a multifunctional injectable
temperature-sensitive gelatin-based adhesive double-network hydrogel. This hydrogel
combines strong adhesive properties with temperature sensitivity, making it suitable for
applications requiring robust mechanical support and easy application through injection [1].
Similarly, dual crosslinking hydrogels engineered to mimic the ECM enhance cellular inter-
actions and tissue regeneration, providing an ideal scaffold for regenerative therapies [12].

Innovative fabrication techniques have led to the development of EDC-crosslinked
gelatin/nanohydroxyapatite injectable microspheres, which improve osteoconductivity,
essential for bone tissue engineering [35]. Additionally, reinforcing gelatin-methacryloyl
hydrogels with nanohydroxyapatite and nanosilicates enhances mechanical properties and
bioactivity, making them versatile for various biomedical applications [9]. Bioinspired self-
healing injectable nanocomposite hydrogels based on oxidized dextran and gelatin offer self-
repair capabilities, crucial for maintaining long-term functionality in tissue engineering [14].

Chitosan-Based Hydrogels: Chitosan-based hydrogels, derived from chitin, are no-
table for their biocompatibility, biodegradability, and ability to form hydrogels with de-
sirable properties for biomedical applications. These hydrogels can be easily injected,
ensuring minimal invasiveness while providing a biomimetic environment conducive to
tissue regeneration.

Engineered injectable cell-laden chitin/chitosan hydrogels support cell growth and
tissue repair, making them valuable in regenerative medicine [36]. Thermosensitive
chitosan-polygalacturonic acid polyelectrolyte complex hydrogels exhibit unique ther-
mal responsiveness, adapting to body temperatures for effective in vivo applications [21].
The programmed release of VEGF and exosomes from chitosan nanofibrous microsphere-
based PLGA-PEG-PLGA hydrogels showcases their potential in targeted and sustained
therapeutic delivery [20].

Chitosan-based hydrogels also demonstrate enhanced mechanical strength and os-
teogenesis when incorporating nanoyarns for bone regeneration [37]. Genipin crosslinked
bioactive collagen/chitosan/hyaluronic acid injectable hydrogels with silica particles com-
bine multiple bioactive components, promoting tissue healing and regeneration [38].
Furthermore, self-healing properties in hydrogels based on oxidized alginate-hybrid-
hydroxyapatite nanoparticles and carboxymethyl chitosan provide durability and efficient
tissue repair [39].

Alginate-Based Hydrogels: Alginate-based hydrogels are derived from natural polysac-
charides and are known for their biocompatibility and ability to form hydrogels under
mild conditions, making them excellent biomimetic materials. These hydrogels can be
injected into the body, providing a minimally invasive solution for tissue engineering and
therapeutic applications.

The synthesis of bioconjugates by post-modification of alginate has led to advance-
ments in bone tissue engineering, offering structural and functional support [13]. Bioin-
spired injectable self-healing hydrogel sealants based on alginate provide effective sealing
and self-repair capabilities, ideal for wound management and surgical applications [2]. Ad-
ditionally, mussel-inspired dual-functionalized alginate hydrogels exhibit strong adhesive
properties, enhancing their versatility in medical applications [4].

Alginate-based hydrogels have also been developed for cartilage tissue engineer-
ing, where self-crosslinking and injectable properties ensure optimal performance and
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tissue integration [40]. The inclusion of functional components like nanocomposite mate-
rials, poly(L-glutamic acid), and alginate further enhances the mechanical and biological
properties of these hydrogels, making them suitable for a wide range of therapeutic appli-
cations [41].

Hyaluronic Acid-Based Hydrogels: Hyaluronic acid-based hydrogels are particularly
effective in cartilage and bone tissue engineering due to their natural biocompatibility and
ability to mimic the ECM. These hydrogels are injectable, providing an easy and minimally
invasive method for delivering therapeutic materials to target sites.

The fabrication of porous hyaluronic acid hydrogels allows for cell migration and
nutrient exchange, which are essential for effective tissue regeneration [42]. Incorporating
biphasic calcium phosphate microparticles into these hydrogels enhances their mechanical
stability and osteoconductivity, making them ideal for bone repair [43]. Additionally, the
development of self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin
hydrogels provides an optimal environment for cartilage tissue engineering [44].

Silk-Based Hydrogels: Silk-based hydrogels, derived from silk fibroin, are known
for their mechanical strength and biodegradability. These hydrogels are injectable and can
be engineered to provide various biophysical and biochemical cues, making them highly
versatile for biomedical applications.

Injectable hydrogels from silk fibroin and angiogenic peptides promote vascularization
and tissue regeneration, making them suitable for wound healing and tissue engineer-
ing [17]. Autonomous self-healing silk fibroin hydrogels offer durability and long-term
functionality, crucial for sustained therapeutic effects [45]. Additionally, the integration of
silk fibroin with hydroxyapatite enhances their applicability in bone tissue engineering,
providing necessary mechanical support and bioactivity [46].

Collagen-Based Hydrogels: Collagen-based hydrogels leverage the natural properties
of collagen to support cell attachment and proliferation, making them ideal for soft tissue
and bone regeneration. These hydrogels are injectable, allowing for minimally invasive
delivery and easy application.

Injectable hydrogels incorporating nanoyarn structures demonstrate enhanced me-
chanical properties and support for bone regeneration [37]. Bifunctional hydrogels with
photothermal effects offer innovative solutions for combined tumor therapy and bone
regeneration, showcasing their versatility [47]. Furthermore, collagen-based hydrogels
have been developed for specific applications like alveolar ridge preservation, providing
tailored solutions for dental and orthopedic needs [48].

Poly(ethylene glycol)-Based Hydrogels: Poly(ethylene glycol) (PEG)-based hydrogels
are known for their tunable properties and excellent biocompatibility. These hydrogels
are injectable, making them suitable for various biomedical applications where minimally
invasive methods are preferred.

Injectable biodegradable PEG/RGD peptide hybrid hydrogels facilitate in vitro chon-
drogenesis of human mesenchymal stem cells, highlighting their potential in cartilage
repair [49]. The incorporation of lysozyme amyloid fibrils into PEG hydrogels improves an-
tiswelling and antibacterial capabilities, expanding their utility in medical applications [28].
Additionally, PEG-based hydrogels have been developed for specific therapeutic applica-
tions, such as cardiomyocyte survival and maturation, showcasing their adaptability and
functional benefits [50].

The diverse array of polymers used in the development of injectable biomimetic
hydrogels underscores their versatility and potential in biomedical applications. Each type
of hydrogel offers unique properties and advantages, making them suitable for specific
applications ranging from tissue engineering and regenerative medicine to drug delivery
and wound healing. Scheme 1 visualizes the structure–property relationship for the most
common injectable biomimetic gels.
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3. General Regenerative Medicine

This section discusses various advancements in regenerative medicine, focusing on the
development and application of innovative hydrogels. These hydrogels exhibit properties
such as temperature sensitivity, mechanical flexibility, self-healing, antibacterial effects,
and biocompatibility. Specific examples include gelatin-based adhesives, ECM-mimicking
hydrogels, alginate bioconjugates, porous hyaluronic acid gels, and silk fibroin-peptide
composites. Each type of hydrogel demonstrates unique advantages, such as promot-
ing vascularization, supporting bone tissue engineering, and enhancing wound healing,
making them valuable for diverse medical applications.

A gelatin-based adhesive double-network hydrogel has been developed utilizing
catechol-Fe3+ and NIPAAm-methacryloyl, applied through a dual-syringe method. This
DNGel exhibits significant temperature sensitivity, mechanical flexibility, strong adhe-
sive strength, self-healing capabilities, antibacterial properties, and hemostasis promo-
tion. These features are stabilized by molecular interactions between components in the
DNGel [1].

Hydrogels mimicking the extracellular matrix (ECM) have been formulated using
chondroitin sulfate and gelatin, with dual crosslinking via borate ester bonds and either
Michael-addition or photopolymerization with thiol-containing PEG. This dual crosslinking
strategy yields hydrogels with excellent injectability, mechanical resilience, and biocom-
patibility. The hydrogels feature tunable stiffness, resilience to compression, and effective
energy dissipation, supporting cell encapsulation and 3D cell culture [12].

An alginate bioconjugate hydrogel incorporating poly(epsilon-caprolactone-co-lactide)-b-
poly(ethylene glycol)-b-poly(epsilon-caprolactone-co-lactide) and O-phosphorylethanolamine
has been studied for in situ gel formation, biomineralization, and sustained release of BMP-
2 in vivo for bone tissue engineering. These alginate bioconjugate sols form stable gels at
physiological temperatures, promote hydroxyapatite growth, and support BMP-2-loaded
in situ biomineralization [13].

Porous hyaluronic acid (HA) hydrogels have been developed through an in situ bubble
self-generation and entrapment process using cystamine dihydrochloride and EDC/NHS.
The effects of concentration and viscosity on the hydrogel properties were investigated,
revealing favorable biocompatibility. These HA hydrogels, formed via an amide reaction
generating CO2 bubbles entrapped during gelation, showed a high elastic modulus and
a porous structure. In vitro and in vivo studies demonstrated their biocompatibility and
favorable cell behaviors [42].

A hydrogel composed of silk fibroin and the self-assembling peptide NapFFSVVYGLR
has been described, which promotes endothelial cell adhesion, growth, and migration. The
cooperative assembly of silk fibroin and NapFFSVVYGLR enhances vascularization and
epidermal repair in mouse skin models. This SV-SF hydrogel exhibits good stability and
induces endothelial cell adhesion, growth, and migration, thereby promoting vasculariza-
tion and epidermal repair when implanted in mouse skin defects [17]. Figure 1 depicts the
vascular regeneration and wound healing in vivo.

In another study, injectable and photo-curable hydrogels based on polymeric back-
bones modified for intrinsic adhesion and hybrid cross-linking were introduced. This
bioinspired design strategy resulted in strong adhesive contact and a wide range of physic-
ochemical properties. The adhesive networks, created via hybrid cross-linking, achieve
a controlled synergy between interfacial chemistry and mechanical properties, making
them suitable for applications such as tissue adhesives, surgical sealants, and injectable
scaffolds [8].

Hypoxia preconditioned serum-fibrin (HPS-fibrin) hydrogels, incubated under hy-
poxic conditions to enhance their angiogenic potential, have been characterized for con-
trolled growth factor delivery and the modulation of angiogenic responses. Hypoxic
incubation increases the angiogenic potential of HPS; the fibrin hydrogels effectively retain
and release HPS factors in a dose-dependent manner, thereby mimicking physiological
wound healing processes [51].
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Figure 1. In vivo vascularization and degradation properties of the SV-SF hydrogel after subcutaneous
injection into the dorsal side of mice. (A) External images and inside view of volume changes of the SV-
SF and NapFF-SF hydrogels, and regenerated blood vessels within implanted gels and surrounding
tissues on days 3, 7, and 14 after injection. (B) Summarized data about the relative number of new
blood vessels regenerated within implanted gels and surrounding tissues on the dorsal side of mice
within 14 days. (C) Summarized data about volume changes of the implanted SV-SF and NapFF-SF
hydrogels on the dorsal side of mice within 28 days (*, p < 0.05, **, p < 0.01, ***, p < 0.001); adopted
with permission [17].

4. Self-Healing and Responsive Hydrogels

This section highlights the development of self-healing and responsive hydrogels
designed for advanced medical applications. These hydrogels exhibit properties such
as injectability, self-healing, strong adhesion, antibacterial activity, and biocompatibility.
Examples include hydrogels cross-linked through Schiff base bonds, dopamine-modified
nanocomposites, catechol- and aldehyde-functionalized materials, and phenolic-chitosan
composites. Each hydrogel type is evaluated for its mechanical properties, biodegradability,
cytocompatibility, and effectiveness in wound healing, tissue adhesion, and cell develop-
ment, demonstrating significant potential in medical treatments and tissue engineering.

A hydrogel composed of sodium alginate, gelatin, protocatechualdehyde, and ferric
ions was cross-linked via Schiff base bonds, catechol-Fe coordination bonds, and strong
interactions between gelatin and sodium alginate. This hydrogel was evaluated for its
potential in sutureless post-wound closure, injectability, self-healing capacity, repeated
tissue adhesion, and its effectiveness in closing incisions in vivo. The hydrogel, stabilized
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through dynamic bonds, demonstrated excellent injectability, self-healing properties, re-
peated adhesion, photothermal antibacterial activity, and biocompatibility. It significantly
promoted incision closure and wound healing in vivo (Figure 2) [2].
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Figure 2. In vivo wound closure and healing evaluation. (a) Images of the incisions closed by suture,
biomedical glue, adhesive hydrogel, and the wound without treatment (set as control). (b) The tensile
strength of the healed skin tissues on day 21. (c) Images of H&E staining and Masson’s trichrome
staining of the skin tissues after healing for 7 and 21 days. * p < 0.05. Adopted with permission [2].

An injectable nanocomposite hydrogel was formed by combining dopamine-modified
four-armed poly(ethylene glycol) with laponite. This hydrogel was assessed for its en-
hanced mechanical and adhesive properties. When implanted subcutaneously in rats, it
exhibited minimal inflammatory response and improved cellular infiltration. The inclusion
of up to 2 wt. % nanosilicate Laponite reduced the cure time and enhanced the mechanical
and adhesive properties without altering the degradation rate or cytocompatibility, and
resulted in improved bioactivity and mechanical properties [3].

A hydrogel prepared by grafting dopamine to aldehyde-modified alginate and crosslink-
ing it with hydrazide-modified poly(l-glutamic acid) (PLGA-ADH) and dual-functionalized
alginate (catechol- and aldehyde-modified alginate, ALG-CHO-catechol), was investigated
for its mechanical properties, self-healing ability, adhesion, and hemostatic capability. This
hydrogel was produced via a Schiff base reaction. The PLGA/ALG-CHO-catechol hydrogel
exhibited enhanced mechanical properties, a reasonable gelation time, self-healing behav-
ior, and superior hemostatic performance compared to its oxidized counterparts. It also
demonstrated cytocompatibility [4].

A dynamic crosslinked hydrogel (DACS hydrogel) was created by mixing dopamine-
grafted hyaluronic acid with carboxymethyl chitosan. This hydrogel was evaluated for
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its self-healing ability, biodegradation, biocompatibility, and wet tissue adhesion strength,
making it a potential multifunctional tissue adhesive material. The gelation process was
controlled by the degree of catechol substitution and the concentration of raw materials.
The hydrogel exhibited rapid self-healing ability and a four-fold enhancement in wet tissue
adhesion strength compared to commercial fibrin glue [5].

A phenolic-chitosan self-healing hydrogel was formed using N-[3-(4-hydroxyphenyl)
propanamido] chitosan and a Pluronic-F127. This hydrogel, which developed hierarchical
micelle architectures, was tested for thermoresponsiveness, adhesion to artificial skin,
and the ability to embed mesenchymal stem cells for cell development. It demonstrated
fast gelation within 30 s, thermoresponsiveness, strong adhesion to artificial skin, and
supported the embedding and spheroid development of mesenchymal stem cells. The
hierarchical micellar structures enhanced its overall functionality [52].

Chitosan grafted and crosslinked using l-glutamic acid, 1-ethyl-3-[3-dimethylaminopro
pyl]carbodiimide, and benzaldehyde-terminated four-arm poly(ethylene glycol) formed a
hydrogel. This hydrogel was tested for biodegradability and cytocompatibility with the
fibroblast cell line WI-38. It formed gel within 60 s, had a tunable compressive modulus,
was degradable in PBS, and demonstrated cytocompatibility with fibroblast cells [53].

A hydrophobic-association hydrogel was formed by combining silk fibroin and stearyl
methacrylate via reversible hydrophobic interactions. This hydrogel was tested for its
self-healing properties, mechanical strength, degradability, biomimetic mineralization, and
biocompatibility with mouse osteoblasts in vivo. The hydrophobic interactions served as
sacrificial bonds that enhanced the mechanical properties and allowed self-recovery after
injection. The hydrogel promoted a controlled degradation rate in a protease solution,
supported biomimetic mineralization, and exhibited biocompatibility in vivo [45].

A gelatin hydrogel incorporating rod-shaped cellulose nanocrystals coated with mag-
netic nanoparticles, polydopamine, and poly(ethylene glycol) was tested under uniform
low magnetic fields. The study evaluated its directional microstructure, anisotropic me-
chanical properties, and cellular performance with adipose tissue-derived human stem
cells. Under magnetic fields, the nanoparticles within the gelatin hydrogels aligned to
create directional microstructures and anisotropic mechanical properties. This alignment
resulted in high cell viability and directional growth of the encapsulated adipose-derived
human stem cells [18].

Hydrogels formed from zwitterionic copolymers (PMB) with benzoxaborole and zwit-
terionic glycopolymers (PMG) with varied sugar groups were created via benzoxaborole–
sugar interactions. These hydrogels were assessed for their mechanical properties, self-
healing capability, injectability, pH and sugar responsiveness, and biocompatibility. Rhe-
ological measurements and cytotoxicity tests confirmed that PMBG hydrogels, formed
through dynamic interactions, had mechanical properties that could be tuned by varying
the sugar content and pH. They demonstrated self-healing, injectability, and biocompatibil-
ity, as confirmed through in vitro cytotoxicity tests on both normal and cancer cells [54].

5. Bone Tissue Engineering

This section focuses on various natural polymers utilized in bone tissue engineering,
such as hyaluronic acid, chitosan, gelatin, silk, and collagen. It details the development and
evaluation of hydrogels based on these polymers, highlighting their composite formula-
tions, mechanical properties, biodegradability, and effects on cell viability and osteogenesis.
The hydrogels are tested both in vitro and in vivo, demonstrating their potential for applica-
tions like bone defect repair, angiogenesis, and bone regeneration. Additionally, differences
in crosslinking methods and bioactive component integration are discussed to showcase
their diverse functionalities and therapeutic potentials in bone tissue engineering
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5.1. Natural Polymers: Hyaluronic Acid, Chitosan, Gelatin, Silk, Collagen
5.1.1. Hyaluronic Acid-Based Hydrogels

A hyaluronic acid-g-chitosan-g-poly(N-isopropylacrylamide) hydrogel, integrated
with biphasic calcium phosphate microparticles, has been characterized using X-ray diffrac-
tion and thermogravimetric analysis among other methods. This hydrogel was evaluated
for its effects on cell viability, proliferation, gene expression, and osteoblastic differenti-
ation utilizing human fetal osteoblast cells both in vitro and in vivo in nude mice. The
HA-CPN/BCP hydrogel composite demonstrated an enhanced proliferation rate, increased
alkaline phosphatase activity, and elevated gene expression in osteoblasts. Additionally, it
successfully facilitated ectopic bone tissue formation when implanted subcutaneously in
nude mice [43].

Hyaluronic acid/hydroxyapatite composite hydrogels were prepared using a Schiff
base reaction with carboxymethyl chitosan. These hydrogels were assessed for their in-
jectability, self-healing properties, cytocompatibility, and their ability to support cell ad-
hesion and proliferation, making them suitable for bone defect repair. The inclusion of
oxidized Hya/hydroxyapatite hybrid particles (OHAHs) in these hydrogels enhanced their
mechanical properties and cytocompatibility, provided excellent cell adhesion, and sup-
ported proliferation in a 3D culture environment, confirming their suitability for injectable
bone repair applications [55].

A hyaluronan-based hydrogel loaded with nano-hydroxyapatite crystals and bone
morphogenetic protein-2 (BMP-2) was evaluated for its osteoinductive effects, particu-
larly in enhancing bone density and architecture in the distal femur of both normal and
ovariectomized New Zealand white rabbits. The Hya/HA composite hydrogel significantly
improved bone architecture in both normal and ovariectomized rabbits, demonstrating
strong osteoinductive effects and potential for enhancing bone density in osteoporosis [19].

5.1.2. Chitosan-Based Hydrogels

A dual-drug releasing hydrogel composed of chitosan nanofibrous microspheres
and poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide)
(PLGA-PEG-PLGA), loaded with vascular endothelial growth factor (VEGF) and dental
pulp stem cell-derived exosomes, was developed to promote angiogenesis and osteoge-
nesis. This hydrogel was tested in vitro and in vivo for bone formation in calvarial bone
defects. The dual-drug releasing hydrogel demonstrated rapid VEGF release, promoting
angiogenesis, and sustained exosome release, supporting osteogenesis. This significantly
enhanced bone regeneration in calvarial bone defects [20].

An injectable chitin/chitosan hydrogel, cross-linked with acylhydrazone bonds and
imine bonds, was combined with rat bone marrow mesenchymal stem cells (rBMSCs)
for evaluation. The hydrogel’s mechanical strength, injectability, biodegradability, and
ability to induce osteogenesis and support bone reconstruction in calvarial defects were
assessed. This hydrogel, featuring dynamic imine and acylhydrazone bonds, exhibited
robust mechanical strength, biodegradability, and self-healing properties. It supported
rBMSC osteogenesis and effectively repaired bone defects over an eight-week period [36].

Chitosan and polygalacturonic acid polyelectrolyte complexes, integrated with beta-
glycerophosphate and hydroxyapatite to form a thermosensitive hydrogel, were investi-
gated for their biocompatibility, mechanical stability, osteogenic differentiation, and cellular
responses using MG63 cells. These hydrogels, enhanced with gelatin and hydrothermally
treated PEC fibers, demonstrated improved biocompatibility, compressive stiffness, and
osteogenic activity, thereby supporting applications in bone tissue engineering [21].

Oxidized alginate hybrid hydroxyapatite nanoparticles and carboxymethyl chitosan
hydrogel, prepared via a Schiff base reaction, were tested for their self-healing proper-
ties, cytocompatibility, and tunable gelling properties. These injectable hydrogels showed
promising characteristics for bone tissue engineering applications, exhibiting self-healing
capabilities, tunable gelation, and cytocompatibility. The hydrogels had a porous struc-
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ture and well-distributed hydroxyapatite nanoparticles, making them suitable for bone
repair [39].

5.1.3. Gelatin-Based Hydrogels

Gelatin/nanohydroxyapatite composite microspheres crosslinked with 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide have been characterized for their morphology, physic-
ochemical properties, and cellular behavior. The EDC-crosslinked Gel-HA microspheres
(ECM) demonstrated enhanced adhesion and growth of MG63 cells and showed sustain-
able bone regenerative effects in vivo. The Gel/n-HA composite microspheres exhibited
promising morphology and physicochemical properties, along with effective bone repair
in vivo, suggesting their potential as injectable microscaffolds for bone regeneration [35].

A gelatin-methacryloyl (GelMA) hydrogel loaded with mesenchymal stem cells (MSCs)
and incorporating nanohydroxyapatite and nanosilicate was investigated for its osteogenic
capacity both in vitro and in vivo. This hydrogel demonstrated enhanced cellular viability,
proliferation, and bone regeneration in rat calvaria defects. The GelMA-HAP-SN hydrogel
promoted MSC viability, proliferation, and osteogenic differentiation, resulting in signifi-
cant bone regeneration in vivo, indicating its potential as an alternative to autologous bone
grafts [9].

A composite of calcium phosphate cement (CPC) and gelatin methacryloyl (GelMA),
combined with N-hydroxyethyl acrylamide (PHEAA), was formed through UV photo-
initiation to create a GelMA-PHEAA hydrogel. This hydrogel was evaluated for its os-
teogenic potential, mechanical performance, and bioactivity in osteoporotic fracture healing.
The GelMA-PHEAA and CPC composite hydrogels showed fast polymerization, enhanced
mechanical properties, and significant osteogenic potential, making them promising candi-
dates for clinical applications in osteoporotic fracture management [23].

A dopamine-modified gelatin (Gel-DA) and oxidized dextran (ODex) hydrogel con-
taining polydopamine-functionalized nanohydroxyapatite (PHA) and cod peptides (CPs),
all together termed as GO-PHA-CPs, was evaluated for its osteogenic activity, adhesion,
and the spreading of MC3T3-E1 cells. This nanocomposite hydrogel supported the adhe-
sion, spreading, and osteogenic differentiation of MC3T3-E1 cells, and it demonstrated
enhanced bone regeneration in a rat femoral defect model [14]. Figure 3 demonstrates the
in vivo evaluation of bone regeneration.

5.1.4. Silk-Based Hydrogels

Injectable hydrogels made of silk nanofibers and hydroxyapatite nanoparticles, loaded
with deferoxamine (DFO) and bone morphogenetic protein-2 (BMP-2), were assessed
for their ability to promote angiogenesis and osteogenesis. These hydrogels regulated
the delivery of DFO and BMP-2 and showed enhanced angiogenesis and osteogenesis,
accelerating vascularized bone regeneration in cranial defects, achieving a composition and
structure similar to natural bones [56].

Silk nanofiber hydrogels incorporating water-dispersible silk-hydroxyapatite nanopar-
ticles were tested for their osteogenic properties, mechanical strength, and ability to heal
bone defects in vivo. These composite hydrogels, with a high hydroxyapatite content (60%
w/w) and a modulus of approximately 21 kPa, induced osteodifferentiation and demon-
strated improved osteogenesis compared to silk nanofiber hydrogels, effectively healing
bone defects in vivo [46].

Dense collagen hydrogels with silk sericin were prepared by aspirating and ejecting
highly hydrated collagen gels and incorporating silk-extracted sericin, along with nega-
tively charged protein rich in acidic amino acids (Asp and Glu). These hydrogels were
investigated for hydroxyapatite deposition in simulated body fluid, and the proliferation
and osteogenesis of mesenchymal stem cells (MSCs) in vitro. The incorporation of silk
sericin in the dense collagen gels increased hydroxyapatite deposition and osteogenic
markers in MSCs, accelerating cell-induced mineralization, suggesting their potential for
bone tissue engineering applications [57].
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Figure 3. In vivo evaluation of bone regeneration. (a) Schematic representation of a rat femoral
defect implanted with hydrogel. (b) Representative micro-CT images of the rat femoral bone de-
fects at 5 weeks post-implantation. (c) Morphometric analysis of bone volume/tissue volume and
(d) analysis of trabecular bone number. Adopted with permission [14].

5.1.5. Collagen-Based Hydrogels

Hydrogels based on collagen, chitosan, and hyaluronic acid crosslinked with genipin
were tested for their mechanical properties, degradation rate, wettability, and biocompatibil-
ity. These hydrogels supported the proliferation and adhesion of MG-63 cells, making them
promising candidates for bone regeneration applications. They exhibited good mechanical
properties, prolonged degradation, and biocompatibility, supporting cell proliferation and
adhesion [58].

Collagen/chitosan/hyaluronic acid-based hydrogels incorporating amino-functionalized
silica particles and crosslinked with genipin were evaluated under simulated body fluid
conditions and in vitro cell culture. These hydrogels demonstrated bioactivity and biocom-
patibility, supporting the adhesion of MG-63 cells, proliferation, and alkaline phosphatase
(ALP) expression. The covalently attached amino-functionalized silica particles enhanced
the bioactivity and biocompatibility of the biopolymeric network [38].

Poly(L-lactide-co-epsilon-caprolactone) nanoyarns were suspended in a type I collagen
hydrogel to enhance its mechanical properties. This composite supported the proliferation
of human mesenchymal stem cells (hMSCs) and showed higher alkaline phosphatase activ-
ity and osteocalcin expression, indicating osteogenic differentiation. The incorporation of
P(LLA-CL) nanoyarns improved the mechanical properties and injectability of the collagen
hydrogel, effectively supporting hMSC proliferation and osteogenic differentiation [37].

A collagen-hyaluronic acid hydrogel embedded with calcium sulfate nanorods was
evaluated for its self-biomineralization capabilities, cell adhesion, and proliferation. This
composite hydrohel CSN@Col-HA facilitated self-biomineralization, quickly forming bone-
like hydroxyapatite and stimulating preosteoblast differentiation. The hydrogel promoted
in situ bone growth and hydroxyapatite formation in bone defects, suggesting its potential
for minimally invasive bone regeneration [59].

5.2. Synthetic Polymers and Composites

A triblock copolymer hydrogel composed of PEG-PCL-PEG, collagen, and nano-
hydroxyapatite was characterized for its microstructure, thermo-responsiveness, biocom-
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patibility, and biodegradability. This composite hydrogel (PECE/Collagen/n-HA) was
evaluated for guided bone regeneration in cranial defects of rabbits in vivo. It exhibited
an interconnected porous structure, good thermo-sensitivity, and biodegradability. In vivo
studies confirmed its biocompatibility and enhanced osteogenic capacity in cranial defects
of rabbits over periods of 4, 12, and 20 weeks [60].

Injectable hydrogels composed of MgO/MgCO3@PLGA formed porous scaffolds with
controllable magnesium ion release. These hydrogels were tested for their injectability,
osteogenic differentiation, biomineral deposition, and bone regeneration in rat calvarial de-
fects. The PMM hydrogels transformed into porous scaffolds in situ, filled irregular defects,
and sustainably released Mg2+, enhancing cell proliferation, osteogenic differentiation, and
biomineral deposition. This effectively stimulated in situ bone regeneration, increasing
bone volume fraction and shape adaptability [61].

A composite hydrogel (EPH) consisting of enzyme-catalyzed amorphous biomineral
nanoparticles, fibrins, and platelets was evaluated for its biocompatibility, osteogenic
differentiation capabilities in rat bone marrow stem cells in vitro, and its effectiveness in
promoting bone regeneration in vivo. This hydrogel demonstrated high biocompatibility
and superior bioactivity in promoting osteogenic differentiation of rBMSCs. In vivo studies
indicated that the EPH hydrogel significantly enhanced new collagen and vessel formation,
accelerating bone defect regeneration within two weeks [62].

5.3. PMMA and Functionalized Hydrogels

A poly(methyl methacrylate) (PMMA) composite integrated with chitosan-
glycerophosphate thermosensitive hydrogel, nano-hydroxyapatite, and gentamicin was
developed to improve PMMA performance for bone tissue applications. This composite
exhibited open pores, reduced polymerization temperature, enhanced antibacterial activ-
ity, and improved mineralization capacity, facilitating better bone tissue ingrowth. The
CS-GP hydrogel augmented PMMA cement by providing superior bone tissue integration,
lowering polymerization temperatures, and offering appropriate mechanical properties.
Additionally, it increased mineralization capacity and demonstrated enhanced antibacterial
properties [63].

A functionalized PMMA cement combined either with nano-hydroxyapatite, silver
ions, or a combination of both, also incorporating chitosan-poly(vinyl alcohol) (CS-PVA)
hydrogel, was tested for its physicochemical properties, antibacterial activity, biomineraliza-
tion ability, and mechanical strength. This composite p-PMMA/CS-PVA/Nano-HA/Ag+

showed promising results for bone reconstruction applications, with improved mechanical
properties, enhanced mineralization, and increased antibacterial activity. The functional-
ized PMMA cement demonstrated potential as an injectable, multi-functional bone cement
for clinical use [22].

5.4. Miscellaneous Hydrogels with Unique Compositions

Methylcellulose hydrogels incorporating calcium phosphate (CaP) or calcium phos-
phate modified with graphene oxide (CaPGO) formed thermo-responsive biocomposites.
These hydrogels were evaluated for their injectability, mineralization in simulated body
fluid, cell adhesion, proliferation, and osteogenic differentiation, with characterization by
X-ray diffraction and nuclear magnetic resonance. The hydrogels with CaP and CaPGO
retained their injectability, promoted in vitro mineralization, and enhanced cell growth
and osteogenic differentiation. The biomimetic phase comprised both crystalline hydrox-
yapatite and amorphous calcium phosphate, indicating their potential for bone tissue
engineering [10].

An injectable nanocomposite hydrogel composed of gelatin, alginate, and laponite,
loaded with rat bone marrow mesenchymal stem cells (rBMSCs), was found to promote cell
proliferation in vitro and significantly enhance bone healing in critical-size rat calvarial de-
fects in vivo. This nanocomposite hydrogel mimicked the extracellular matrix architecture,
supported rBMSC survival and proliferation, and significantly enhanced bone regeneration
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in vivo, making it a promising candidate for clinical orthopedic applications [64]. A hy-
brid hydrogel composed of laponite and calcium phosphate incorporated into gelatin (LC
hydrogel) was designed with a controlled degradation rate. This hydrogel was assessed
for its osteoinduction, osteoconduction, angiogenesis, and ability to transform into new
bone, supporting ligament graft osseointegration in vivo. The LC hydrogel demonstrated a
degradation rate compatible with bone regeneration, promoting osteoinduction, osteocon-
duction, and angiogenesis. This facilitated functional bone regeneration and skeletal muscle
repair, highlighting its suitability for minimally invasive therapeutic applications [65].

An injectable hydrogel crosslinked via a Schiff base reaction between the aldehyde
groups on oxidized sodium alginate and amino groups on chitosan, containing cisplatin
and polydopamine-decorated nano-hydroxyapatite, was evaluated for tumor therapy and
bone regeneration. This hydrogel demonstrated photothermal effects, sustained drug
release, and promoted bone mesenchymal stem cell adhesion and proliferation. It exhibited
effective tumor cell ablation through photothermal effects and enhanced bone regeneration
by supporting BMSC proliferation and adhesion [47].

5.5. Similarities and Differences between Gels Used in Bone Tissue Engineering

The methodologies for developing injectable biomimetic gels in bone tissue engi-
neering share several commonalities. Firstly, they often employ natural polymers like
hyaluronic acid, chitosan, and gelatin due to their biocompatibility and ability to support
cell proliferation and differentiation. For instance, hyaluronic acid-based hydrogels have
been combined with biphasic calcium phosphate microparticles to enhance osteogenic
differentiation and ectopic bone tissue formation [43]. Similarly, chitosan-based hydrogels
are utilized for their biodegradability and osteogenic capabilities [20,36]. Most studies
incorporate bioactive components such as hydroxyapatite, bone morphogenetic proteins
(BMPs), and vascular endothelial growth factor (VEGF) to promote bone regeneration
and angiogenesis [19,20,56]. These hydrogels are often evaluated for their mechanical
properties, injectability, biodegradability, and cell-supportive characteristics in both in vitro
and in vivo settings [14,55].

For each hydrogel composition, however similar, the methodologies, specific poly-
mer combinations, and crosslinking strategies used can differ. For instance, while some
hyaluronic acid-based hydrogels use a Schiff base reaction with carboxymethyl chitosan to en-
hance mechanical properties and cytocompatibility [55], others integrate nano-hydroxyapatite
and BMP-2 for their osteoinductive effects [19]. Chitosan-based hydrogels also exhibit
variations; some use acylhydrazone bonds and imine bonds for crosslinking to achieve
self-healing properties [36], whereas others incorporate polygalacturonic acid and beta-
glycerophosphate to form thermosensitive hydrogels [21]. Gelatin-based hydrogels differ
in their crosslinking agents and additional components, such as methacryloyl modifi-
cations and incorporation of nanosilicate or calcium phosphate to enhance osteogenic
capacity [9,23]. Synthetic polymers and composites, like the triblock copolymer PEG-PCL-
PEG, introduce thermo-responsiveness and biodegradability, distinguishing them from
natural polymer-based hydrogels [60]. Furthermore, some methodologies focus on multi-
functional approaches, incorporating antibacterial and photothermal therapy capabilities
in addition to bone regeneration [22,47].

6. Cartilage Tissue Engineering

Thise section discusses various hydrogels and their potential for cartilage regenera-
tion. It highlights different hydrogel types, including alginate-based, methacrylate-based,
hyaluronic acid-based, chondroitin sulfate-based, and silk-based hydrogels. These hydro-
gels are evaluated for their biocompatibility, mechanical properties, degradation rates, and
ability to support chondrocyte attachment, proliferation, and chondrogenesis. The studies
demonstrate the hydrogels’ potential for pharmaceutical delivery, 3D bioprinting, injectable
cartilage repair, and cartilage tissue engineering applications, showcasing their adaptability
and effectiveness in promoting cartilage formation and repair.
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6.1. Alginate-Based Hydrogels

An oxidized alginate/gelatin hydrogel self-crosslinked with borax was evaluated
for its potential in cartilage tissue engineering. This hydrogel, which formed within 20 s,
demonstrated excellent adhesive properties and negligible inflammatory responses. It
supported the attachment, proliferation, and maintenance of the phenotype of primary
murine chondrocytes. The hydrogel also exhibited tunable glycosaminoglycan (GAG)
deposition and DNA content, indicating its potential for neo-cartilage formation [40].

A hydrogel composed of poly(L-glutamic acid) (PLGA) and alginate, crosslinked via
the self-crosslinking of hydrazide-modified PLGA and aldehyde-modified alginate, was
investigated for its gelation time, swelling behavior, mechanical properties, degradation
rate, cell viability, and in vivo cartilage formation capabilities. The PLGA/ALG hydrogels
demonstrated good biocompatibility and mechanical stability, supporting the viability of
encapsulated chondrocytes, rapid gel formation in vivo, and promoting cell ingrowth and
cartilage formation. These properties suggest its suitability for pharmaceutical delivery
and tissue engineering applications [41].

6.2. Methacrylate-Based Hydrogels

A methacrylated cartilage extracellular matrix-based hydrogel (cECM-MA) pho-
tocrosslinked with UV light was characterized for its rheological properties, suitability for
bioprinting, and chondrogenesis. Bioinks loaded with bone marrow-derived mesenchymal
stem cells (BM-MSCs) generated 3D constructs that supported cell viability and chondroge-
nesis. The cECM-MA bioinks exhibited shear-thinning properties, were photocrosslinkable,
and maintained BM-MSC viability and chondrogenesis post-printing, indicating their
potential for 3D bioprinting and injectable cartilage tissue engineering [66].

A hydrogel composed of gelatin methacrylate (GELMA) and poly(ethylene glycol)
diacrylate (PEGDA), light-cured with UV light and modified with kartogenin (KGN), was
tested for its mechanical properties, degradation rate, and ability to repair cartilage in
full-thickness osteochondral defects. The GELMA/PEGDA + KGN scaffolds demonstrated
increased mechanical properties, prolonged degradation, and induced differentiation of en-
dogenous stem cells into chondrocytes, effectively repairing cartilage defects and restoring
cartilage to hyaline cartilage [67].

A locust bean gum-methacrylate (LBG-MA) hydrogel, photocrosslinked via UV irradi-
ation, was evaluated for its degradation rate, mechanical properties, biocompatibility, chon-
drogenic differentiation, and cartilage healing in vivo. The LBG-MA hydrogels exhibited
controllable degradation, improved mechanical properties, and excellent biocompatibility.
They significantly induced the chondrogenic differentiation of bone mesenchymal stem
cells (BMSCs) and promoted cartilage regeneration after 8 weeks of therapy [68].

A photo-crosslinkable sericin methacryloyl (SerMA) hydrogel that formed pure sericin
hydrogel (SMH) was evaluated for its biocompatibility, chondrocyte adhesion and prolif-
eration, mechanical properties, degradation rate, and cartilage repair in vivo. The SMH
hydrogels demonstrated excellent biocompatibility, supported chondrocyte adhesion and
proliferation, and had tunable mechanical properties and degradation rates. They ef-
fectively formed artificial cartilages in vivo after 8 weeks, suggesting their potential for
cartilage tissue engineering (Figure 4) [69].
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Figure 4. Artificial cartilage formation in vivo. (A) The experimental procedure for injectable SMHs
for forming cartilage in vivo. (B) Histochemical staining of chondrocyte-embedded SMH-2 and
Matrigel implanted subcutaneously in nude mice. Top, hematoxylin and eosin (H&E) staining;
middle, safranin O staining; bottom, collagen II staining. The black line dotted boxes in the upper
panel were enlarged in the lower panel. Scale bars, 50 µm. (C) The Young’s moduli of formed artificial
cartilages. (D,E) The GAG (D) and collagen II (E) content in chondrocytes cultured within SMH-2
and Matrigel after 6, 8, 10, and 12 weeks. (F–H) The relative mRNA levels of Sox9 (F), Col2α1 (G),
and Aggrecan (H) in chondrocytes from SMHs after a 12 week implantation in vivo. (I) The protein
expression of chondrogenic genes (SOX-9, Col2α1, and Aggrecan) in chondrocytes from SMHs during
a 12 week implantation in vivo. * p < 0.05, ** p < 0.01, *** p < 0.001; n = 3 per group per condition.
Adopted with permission [69].
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6.3. Hyaluronic Acid-Based Hydrogels

Hyaluronic acid-adipic dihydrazide and oligopeptide G(4)RGDS-grafted oxidized
pectin hydrogel, crosslinked via hydrazone bonds, was evaluated for its physicochemical
properties, chondrocyte behavior, and tissue compatibility using a mouse subcutaneous
implantation model. This hydrogel supported the phenotype of chondrocytes and facili-
tated chondrogenesis, demonstrating their potential as biomaterial scaffolds for cartilage
regeneration [44].

A hydrogel created by grafting hyaluronic acid with a dextran-tyramine conjugate
and enzymatically crosslinked with horseradish peroxidase and hydrogen peroxide was
assessed for gelation, swelling, mechanical properties, chondrocyte viability, proliferation,
and matrix production. The HA-g-Dex-TA hydrogels formed rapidly and supported
chondrocyte viability, proliferation, and matrix production, indicating their suitability as
injectable scaffolds for cartilage tissue engineering [70].

Hyaluronic acid-based hydrogels incorporating calcium or phosphate components
and alginate, forming interpenetrating networks, were evaluated for their stress relaxation,
mechanical properties, biphasic chondrogenesis, and cartilage regeneration in vivo. These
HA-based hydrogels with calcium or phosphate components demonstrated stress relax-
ation, self-healing, and shear-thinning properties, promoting biphasic chondrogenesis and
showing potential for mimicking natural cartilage [71].

A di-self-crosslinking hyaluronan-based hydrogel combined with type I collagen,
crosslinked via thiol/maleimide click chemistry and thiol oxidation, was investigated for
its injectability, mechanical properties, chondrocyte adhesion, proliferation, and cartilage
formation in vivo. The HSMSSA/Col I hydrogels exhibited improved mechanical proper-
ties, enhanced chondrocyte adhesion and proliferation, and promoted cartilaginous tissue
formation in vivo, suggesting their potential as injectable fillers for cartilage repair [72].

6.4. Chondroitin Sulfate-Based Hydrogels

Hydrogels composed of carboxymethylated pullulan-tyramine and chondroitin sulfate-
tyramine, enzymatically crosslinked with horseradish peroxidase and hydrogen peroxide,
were evaluated for their mechanical stability, cytocompatibility, chondrogenesis, and tissue
compatibility using porcine auricular chondrocytes and a mouse subcutaneous implan-
tation model. The CMP-TA/CS-TA composite hydrogels demonstrated good physico-
chemical properties, supported chondrocyte proliferation and extracellular matrix (ECM)
deposition, and exhibited acceptable tissue compatibility in a mouse subcutaneous implan-
tation model, indicating their potential for cartilage regeneration [73].

A hydrogel combining chondroitin sulfate with hyperbranched multifunctional poly
(ethylene glycol) (HB-PEG), crosslinked via thiol-ene reaction, was evaluated for mechanical
properties, degradation, and chondrogenesis using rat adipose-derived mesenchymal stem
cells. The CS-SH/HB-PEG hydrogels demonstrated rapid gelation, excellent mechanical
properties, prolonged degradation, and supported the viability and chondrogenesis of
adipose-derived mesenchymal stem cells with a reduced inflammatory response, making
them promising for cartilage tissue engineering [74].

A hydrogel functionalized with chondroitin sulfate, adipic dihydrazide, and oxidized
pullulan, crosslinked via hydrazone bonds, was investigated for gelation time, swelling
behavior, degradation, mechanical properties, and chondrogenesis using rabbit articular
chondrocytes. The CS-ADH/oxPL hydrogels exhibited good gelation, swelling, degra-
dation behavior, and mechanical properties, supporting chondrocyte encapsulation and
cartilaginous ECM deposition, indicating their potential as injectable scaffolds for cartilage
tissue engineering [75].

A hydrogel formed by combining collagen type II and activated chondroitin sul-
fate (sNHS) was investigated for its gelation time, water absorption, mechanical prop-
erties, chondrocyte survival, proliferation, and ECM remodeling. The collagen type II
and CS-sNHS hydrogels formed fibrous structures that supported chondrocyte viability,
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proliferation, and ECM remodeling, demonstrating their potential as injectable carriers for
chondrocyte delivery in cartilage tissue engineering [76].

A bilayer scaffold was developed using collagen-carbonyl hydrazide (COL-CDH)
and oxidized chondroitin sulfate (OCS) with poly(ethylene glycol) diacrylate (PEGDA)
functioning as a cartilage layer, and zinc-doped hydroxyapatite for the subchondral bone
layer. This scaffold was investigated for its ability to support adipose mesenchymal stem
cell differentiation, glycosaminoglycan secretion, calcium deposition, and regeneration of
cartilage and subchondral bone in vivo. The bilayer hydrogel scaffold demonstrated strong
interface binding, supported stem cell differentiation, and enhanced glycosaminoglycan
and calcium deposition, thereby improving osteochondral repair [77].

6.5. Silk-Based Hydrogels

A silk fibroin hydrogel combined with sulfated-carboxymethyl cellulose (s-CMC)
and tyraminated-carboxymethyl cellulose (t-CMC) was crosslinked using horseradish
peroxidase and hydrogen peroxide. This hydrogel was designed to mimic the extracellular
matrix (ECM) by providing gradual stiffening and presenting growth factors. The s-
CMC/t-CMC/silk IPN hydrogels promoted chondrogenic differentiation of stem cells and
supported cartilage ECM deposition, effectively mimicking the natural ECM [78].

Methacrylate-modified silk fibroin hydrogels embedded with kartogenin (SilMA/KGN)
were evaluated for their biohistocompatibility, ability to promote cartilage differentiation,
and potential for superficial cartilage repair in vivo. These hydrogels exhibited good bio-
histocompatibility, enhanced cartilage differentiation, and supported cell adhesion and
proliferation. Significant superficial cartilage repair was observed in vivo, indicating their
potential for cartilage tissue engineering [79].

6.6. Other Hydrogels

A hybrid hydrogel composed of poly(ethylene glycol) (PEG) and arginine-glycine-
aspartic peptide (RGD) was crosslinked via Michael addition and assessed for cell viability,
chondrogenesis, and type II collagen expression using human mesenchymal stem cells
(hMSCs). The PEG-RGD hydrogels with a concentration of 1.0 mM RGD and TGF-beta3
showed significantly higher expression of type II collagen and positive staining for aggrecan
and type II collagen, making them promising scaffolds for delivering hMSCs for cartilage
repair [49].

A chitosan-based hydrogel incorporating articular cartilage stem cells (ACSCs) and
mesoporous silica nanoparticles loaded with anhydroicaritin (AHI) was investigated for
its sustained release properties, ACSC proliferation and differentiation, ECM production,
and cartilage regeneration in vivo. This injectable nanocomposite hydrogel with sustained
release of AHI improved ACSC chondrogenesis and cartilage regeneration, functioning
effectively as a 3D biomimetic extracellular matrix [80].

A hydrogel composed of polyamidoamine dendrimer G3, mesoporous silica nanopar-
ticles, and dendrimer-templated silver nanoparticles was crosslinked with poly(ethylene
glycol) diglycidyl ether. This hydrogel was tested for its elasticity, mechanical properties,
dual drug release (isoniazid and rifampicin), injectability, swelling capacity, structural
stability, and cytocompatibility. This multifunctional hydrogel (MBGs with G3, MSN-NH2,
and G3-Ag) demonstrated enhanced mechanical properties, dual drug release capabilities,
and cytocompatibility, indicating its potential as an injectable gel graft for cartilage defect
repair and antibiotic delivery [81].

Glycopolypeptide hydrogels were synthesized from poly(gamma-propargyl-L-glutamate)
conjugated with azido-modified mannose and 3-(4-hydroxyphenyl) propanamide using click
chemistry. Injectable hydrogels were developed using this glycopolypeptide through
an enzymatic crosslinking reaction with horseradish peroxidase (HRP) and hydrogen
peroxide (H2O2). These hydrogels were evaluated for their physicochemical properties,
biocompatibility, chondrocyte viability, proliferation, and cartilage matrix production.
The glycopolypeptide hydrogels exhibited controlled physicochemical properties, good
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cytocompatibility, and enhanced production of glycosaminoglycans (GAG) and type II
collagen, maintaining the chondrocyte phenotype in subcutaneous models, suggesting
their potential as scaffolds for cartilage tissue engineering [82].

6.7. Similarities and Differences between Gels Used in Cartilage Tissue Engineering

Various research studies on injectable biomimetic gels for cartilage tissue engineer-
ing have revealed several similarities in their methodologies. A common approach in-
volves using naturally derived or synthetic polymers to form hydrogels, often modified
to improve their biocompatibility, mechanical properties, and degradation rates. For
instance, alginate-based hydrogels are crosslinked with various agents like borax [40]
or hydrazide-modified PLGA [41], while methacrylate-based hydrogels utilize UV light
for photocrosslinking [66–69]. Hyaluronic acid-based hydrogels also employ crosslinking
strategies such as enzymatic crosslinking with horseradish peroxidase and hydrogen per-
oxide [70]. Across these studies, hydrogels are assessed for their chondrocyte viability,
proliferation, and ability to support chondrogenesis, indicating a standardized approach
towards evaluating the potential of these materials in cartilage regeneration.

There are similarities and notable differences that exist in the methodologies of these
studies. The types of polymers and crosslinking methods vary significantly. For ex-
ample, alginate-based hydrogels often use self-crosslinking techniques [40,41], whereas
methacrylate-based hydrogels rely on photoinitiated crosslinking [66–69]. Hyaluronic
acid-based hydrogels differ further by incorporating components like calcium or phos-
phate to form interpenetrating networks [71], and chondroitin sulfate-based hydrogels
use enzymatic or chemical crosslinking [73–77]. Additionally, the evaluation metrics dif-
fer; some studies focus on mechanical properties and degradation rates [67,69,72], while
others emphasize biological responses such as cell viability and chondrogenic differentia-
tion [40,66,68,70].

7. Soft Tissue Engineering, Meniscus, and Myocardial Applications

The section delves into various hydrogel applications in soft tissue engineering, menis-
cus repair, and myocardial tissue regeneration. It details the composition and evaluation
of different hydrogels, such as PIC hydrogels with growth factors for abdominal wound
healing, SF/HA hydrogels for cartilage regeneration, and glycopeptide hydrogels for
vascularization. Additionally, it discusses PVA and silk fibroin hydrogels for meniscus en-
gineering and PHEMA-based hydrogels for myocardial applications. The overarching goal
of these studies is to create biomimetic scaffolds that enhance tissue repair by improving
mechanical properties, cell viability, and integration.

A polyisocyanide (PIC) hydrogel functionalized with basic fibroblast growth factor,
beta-estradiol, and adipose-derived stem cells was evaluated in an abdominal wound
healing model in rabbits. The study assessed parameters such as tensile strength, col-
lagen increase, new tissue growth, and immune response. The results showed that the
PIC hydrogels with growth factors and stem cells promoted connective tissue healing in
rabbit abdominal wounds. This was evidenced by increased tissue stiffness and collagen
deposition. This hydrogel system demonstrates potential application in pelvic organ pro-
lapse (POP) surgery to improve surgical outcomes by enhancing connective tissue repair
(Figure 5) [83].

A silk fibroin and hyaluronic acid hydrogel crosslinked via Schiff base formation
resulted in a pore diameter of approximately 100 µm. The porous structure supported soft
tissue regeneration. This SF/HA hydrogel loaded with methylprednisolone demonstrated
controlled release of methylprednisolone, compatibility with angiogenesis in ovo, and
effective gel formation in vivo in mice. These findings suggest its potential as an effective
scaffold for cartilage regeneration, providing valuable insights for treating articular cartilage
injuries [84].
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Figure 5. Schematic illustrations and histological images of a regenerative strategy with the use of
polyisocyanide (PIC) hydrogel for application in abdominal connective tissue. (A) The application of
the hydrogel to the abdominal wound site. (B) PIC-bFGF and PIC-E2, immobilization via azide and
the DBCO-linker for the delivery of biomolecules to the tissues. (C) A schematic illustration showing
the interaction between the factors and tissue that should trigger regeneration. (D) A histology image
of H&E stains confirming the presence of PIC gel between the first (superficial, external oblique) and
second (intermediate, internal oblique) muscle layers. (E) A higher magnification of histology images
of hydrogel morphology showing a void surrounded by a lining of cells on day 14 and new tissue
growth (black arrows) between hydrogel structures (*) on day 42. Adopted with permission [83].
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A glycopeptide hydrogel containing a tyrosine phosphate group and deferoxamine,
which self-assembles and crosslinks through the action of alkaline phosphatase, was eval-
uated for endothelial cell adhesion, capillary morphogenesis, and in vivo blood capillary
generation in mice. The glycopeptide hydrogel formed nanofilament structures that en-
hanced endothelial cell functions and sustained deferoxamine release, resulting in effective
neovascular growth following subcutaneous injection in mice. This suggests its potential
use as a scaffold for vascularization in tissue regeneration [85].

A polyvinyl alcohol and silk fibroin hydrogel modified with glycidyl methacrylate
and crosslinked using lithium phenyl (2,4,6-trimethylbenzoyl)phosphinate under UV light
was analyzed for its mechanical properties, biodegradability, and chondrocyte cell viability
for meniscus tissue engineering. The PVA-g-GMA/SF-g-GMA hydrogels exhibited an
adjustable compressive modulus, controllable degradation rates, and high chondrocyte
viability. These properties make them suitable as biomimetic biphasic injectable hydrogels
for meniscus scaffold applications [86].

A hydrogel composed of poly(2-hydroxyethyl methacrylate) (PHEMA), carbon nanofibers
(CNFs), and rosette nanotubes (RNTs), assembled in aqueous solution, was studied for its
suitability in myocardial applications. This hydrogel was evaluated for cardiomyocyte
adhesion and proliferation, electrical conductivity, and mechanical properties. The incor-
poration of CNFs and RNTs in the hydrogel increased cardiomyocyte density, improved
conductivity, and enhanced surface roughness. These enhancements suggest the promising
use of this hydrogel for myocardial tissue engineering due to its improved cell functions
and material properties [87].

A hydrogel containing stromal-derived factor-1 (SDF-1) and Ac-SDKP peptides was
examined for its effects on left ventricle function, angiogenesis, infarct size, and wall
thickness improvement in a chronic myocardial infarction model. The study found that
the hydrogels with SDF-1 and Ac-SDKP significantly improved cardiac function, enhanced
angiogenesis, and reduced infarct size in the chronic MI model. These results demonstrate
the synergistic effects of these peptides in promoting cardiac repair and regeneration,
indicating their potential for treating chronic heart failure [88].

Similarities and Differences between Gels Used in Soft Tissue Engineering, Meniscus, and
Myocardial Applications

Research on injectable biomimetic gels across soft tissue, meniscus, and myocardial
tissue engineering share several methodological similarities. All studies involve the devel-
opment of hydrogels designed to mimic the natural extracellular matrix to support cell
growth, tissue regeneration, and functional recovery. For instance, hydrogels in soft tissue
engineering (such as the PIC hydrogel functionalized with growth factors and stem cells)
and myocardial applications (like the PHEMA/CNF/RNT composite) both incorporate
bioactive molecules to enhance tissue repair and regeneration [83,87]. Additionally, these
studies commonly evaluate parameters such as mechanical properties, cell viability, and tis-
sue integration, highlighting the importance of biomechanical compatibility and biological
response in the success of these hydrogels [84,86].

Despite the overarching similarities, the methodologies diverge significantly based on
the specific tissue applications. In soft tissue engineering, emphasis is placed on enhancing
connective tissue repair, as seen with the PIC hydrogel which focuses on tensile strength and
collagen deposition [83]. In contrast, meniscus tissue engineering prioritizes mechanical
properties such as compressive modulus and degradation rates, essential for supporting
the load-bearing function of the meniscus. This is evident in the PVA-g-GMA/SF-g-GMA
hydrogel study [86]. Meanwhile, myocardial tissue engineering methodologies often
center on electrical conductivity and cardiomyocyte functions, as demonstrated by the
PHEMA/CNF/RNT hydrogel, which aims to improve cardiac function through enhanced
electrical properties and cell interactions [87].
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8. Wound Healing and Infection Management

Thise section delves into the development and evaluation of various hydrogels de-
signed for efficient wound healing and infection control. It highlights different types
of hydrogels, such as chitosan-based, PEG-based, and gelatin-based, emphasizing their
injectability, biodegradability, antibacterial properties, and effectiveness in promoting tis-
sue regeneration. Specific hydrogels, including GC/DP, CQCS@gel, and Cur-hydrogel,
among others, are discussed in terms of their composition, crosslinking methods, and
in vivo performance, showcasing significant advancements in medical biomaterials aimed
at enhancing wound care.

8.1. Chitosan-Based Hydrogels

A hydrogel composed of glycol chitosan and dibenzaldehyde-terminated poly(ethylene
glycol), crosslinked via Schiff base formation, was investigated for its injectability, biodegrad-
ability, and antibacterial properties. This hydrogel, referred to as GC/DP, was tested in vivo
using zebrafish embryos for wound healing. The results demonstrated that the GC/DP
hydrogel exhibited significant antibacterial activity against Escherichia coli, Pseudomonas
aeruginosa, and Staphylococcus aureus. Additionally, it achieved 93.4% wound contraction
at 30 days post-wounding, indicating its potential for efficient wound healing with inherent
bacteriostatic properties [24].

Formed by crosslinking, a catechol-functionalized quaternized chitosan and
dibenzaldehyde-terminated poly(ethylene glycol) hydrogel was developed and named
CQCS@gel. This hydrogel was tested for its hemostatic capabilities and effectiveness
in healing infected wounds, including the promotion of collagen deposition, hair folli-
cle regeneration, and angiogenesis. The CQCS@gel hydrogel exhibited rapid gelation,
strong tissue adhesiveness, contact-active bacterial killing properties, and self-healing and
pH-responsive drug release capabilities. It effectively stopped bleeding in acute injuries
and promoted the healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected
wounds through enhanced collagen deposition and angiogenesis [89].

A nanocomposite hydrogel incorporating graphene oxide, calcium carbonate, and
silica into a carrageenan/chitosan matrix was characterized for its blood clotting properties
and antibacterial efficacy. The GO/CaCO3/SiO2 nanocomposite hydrogel demonstrated
enhanced blood clotting properties, effective antibacterial activity, and biocompatibility.
These features suggest the potential of this hydrogel for addressing hemorrhage and
promoting wound healing [90].

A hydrogel composed of phenylazo-terminated Pluronic F127, quaternized chitosan-
graft-cyclodextrin, and polydopamine-coated tunicate cellulose nanocrystals was inves-
tigated for its self-healing properties, antibacterial activity, drug release capabilities, and
wound healing efficacy in a full-thickness skin defect model. This curcumin-loaded hydro-
gel (Cur-hydrogel) showed responsiveness to light, pH, and temperature for controlled
drug release. It also demonstrated inherent antibacterial properties, self-healing ability, and
excellent hemostatic performance, effectively promoting wound healing in a full-thickness
skin defect model [25].

Recombinant human collagen type III and chitosan hydrogel was studied for its
gelation properties, cell proliferation support, antibacterial efficacy, and wound healing
capabilities in a full-thickness skin defect model. The rhCol III-CS hydrogel exhibited
rapid gelation and complete wound coverage. It facilitated cell proliferation and migra-
tion, showed potent antibacterial efficacy, increased collagen deposition, and accelerated
full-thickness wound healing, making it a promising multifunctional dressing for skin
regeneration [26].

8.2. Poly(ethylene glycol) (PEG)-Based Hydrogels

A copolymer hydrogel composed of poly(ethylene glycol) and poly(sulfamethazine
ester urethane) (PEG-PSMEU) was developed to form pH- and temperature-sensitive
hydrogels. This hydrogel was evaluated for its DNA delivery potential, adhesion to skin,
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and wound healing capabilities in Sprague-Dawley rats. The PEG-PSMEU copolymer sols
transformed into stable gels under body conditions, exhibiting excellent skin adhesion,
controlled DNA release over ten days, and accelerated wound healing in rats. It effectively
sealed ruptured skin and promoted morphogenesis [27].

A composite hydrogel consisting of poly(ethylene glycol) (PEG) crosslinked with
lysozyme amyloid fibrils (LZMF) was assessed for its antibacterial activity, biocompati-
bility, antiswelling properties, and tissue-adhesive ability both in vitro and in vivo. The
PEG-LZMF hydrogel demonstrated superior antibacterial capabilities, inhibition of volume
expansion, and good biocompatibility. It also showed strong tissue adhesion, protecting
wounds and suppressing pathogen infection through a biomimetic antibacterial mecha-
nism [28].

8.3. Gelatin-Based Hydrogels

Dopamine-modified methacrylate gelatin (GMDA) hydrogel, crosslinked with
horseradish peroxidase (HRP)/hydrogen peroxide (H2O2) and ultraviolet (UV) light, was
tested for its tissue adhesiveness, antibacterial properties, hemostatic capability, and skin
regeneration efficacy in vivo. This GMDA hydrogel demonstrated strong adhesion, tunable
elasticity, and superior hemostasis under high blood pressure conditions. Additionally, it
exhibited significant antibacterial properties and promoted skin regeneration, especially
when combined with epidermal growth factor (EGF) in in vivo studies [91].

An injectable hydrogel adhesive inspired by mussel foot proteins, composed of gelatin
modified with thiourea-catechol (Gel-TU-Cat), was evaluated for its tissue adhesion, matrix
ductility, and cytocompatibility. This Gel-TU-Cat hydrogel demonstrated rapid curing,
strong tissue adhesion, and good cytocompatibility, making it ideal for minimally invasive
therapeutic agent delivery and providing local physical barriers for tissue repair [92].

A composite hydrogel made from oxidized sodium alginate and carbohydrazide-
modified methacrylated gelatin, embedded with gold/metal-organic framework nanocom-
posites (Au@ZIF-8), was evaluated for its antibacterial activity and wound healing efficacy
under visible light actuation in bacterial and wound models. This composite hydrogel
showed enhanced reactive oxygen species (ROS) generation under visible light, remarkable
bactericidal activity against Escherichia coli and Staphylococcus aureus, and significantly
accelerated wound healing with optimal safety in in vivo studies, effectively combining
antibacterial and pro-healing capabilities [93].

8.4. Other Polymer-Based Hydrogels

A hydrogel comprising poly(gamma-glutamic acid), amino-functionalized PEGylated
poly(glycerol sebacate), and gallic acid-modified chitosan was evaluated for its mechanical
resilience, energy dissipation, and wound healing capabilities in a rat skin incision model.
The gamma-PGA/PEGS-NH2 hydrogel exhibited strong moist adhesion, high mechanical
resilience, and efficient energy dissipation, outperforming fibrin glue in adhesion tests
and demonstrating effective wound healing in a full-thickness rat skin incision model
(Figure 6) [94].

A G-quadruplex hydrogel composed of guanosine, 4-formylphenylboronic acid, and
cytosine-functionalized nucleopeptide was investigated for its antibacterial activity and
cytocompatibility in MCF-7 and HEK 293T cell lines. This multicomponent hydrogel
exhibited excellent antibacterial activity against a broad range of bacteria and confirmed
good in vitro cytocompatibility in both MCF-7 and HEK 293T cell lines, highlighting its
promise for preventing localized bacterial infections [95].

Formed from methylacrylyl hydroxypropyl chitosan and Laponite, a self-assembled
and photo-crosslinked nanofibrillar hydrogel was tested for its mechanical properties,
biocompatibility, and wound healing efficacy in studies involving fibroblast migration
and blood vessel formation. The nanocomposite hydrogels exhibited low stiffness, high
compressive strength, and anti-swelling properties. They were processed as 3D printable
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microgels and significantly accelerated wound healing with high biocompatibility and
biodegradability [96].
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Figure 6. In vivo wound closure and healing performance of the γ-PGA/P-N/CG15 hydrogels in
moist and dynamic physiological environment. (A) Schematic representation of the full-thickness
rat skin incision models that were created on the relatively dynamic nape, in addition to the static
dorsum. (B) Relative tensile strengths of the healed nape and dorsum skins on the 7th and 14th
days post-surgery. All results were normalized to the untreated nape and dorsum skins, respectively.
(C) Photographs of the full-thickness rat skin incision region on day 0 and the 14th day post-surgery.
The red arrows indicate traces of sutures, the red ellipses indicate the unhealed regions of the incisional
wounds, and the green lines indicate the healed regions of the incisional wounds. (D) H&E and
Masson trichrome staining images of the healed skins on the 14th day post-surgery. Values represent
the mean and error bars represent the standard deviation (n = 5). Adopted with permission [94].

A hydrogel composed of quaternized hydroxyethyl cellulose and mesocellular silica
foam (QHM1) was evaluated for its hemostatic properties, antibacterial activities, and



Biomimetics 2024, 9, 418 25 of 44

wound healing efficacy in a lethal rabbit liver defect model. The QHM1 hydrogel demon-
strated instant water-triggered expansion, superabsorbent capacity, reduced plasma clotting
time to 59 ± 4% in vitro, and decreased blood loss in the rabbit liver defect model. Addi-
tionally, it exhibited remarkable antibacterial activity and promoted wound healing in a
full-thickness skin defect model [97].

A multiresponsive injectable hydrogel matrix (MICH) based on catechol-Fe3+ coor-
dination, containing vitamin E and extracellular matrix components, was evaluated for
its oxidative stress defense, wound integration, and skin regeneration capabilities in burn-
wound treatment in vivo. The MICH matrix demonstrated precise scavenging of ROS,
reduced tissue ROS production, suppressed inflammation, and enhanced skin regeneration,
resulting in low collagen deposition and normal dermal collagen architecture in burn
wound healing [98].

Gelatin microspheres (GMs) loaded with platelet-rich plasma (PRP) were investigated
for their wound healing rate, vessel density, and inflammation in a rat wound-healing
model, utilizing histological and molecular analyses. The GM+PRP formulation demon-
strated continuous high release of interleukin-10 and metalloproteinase-3, accelerating
wound healing, enhancing angiogenesis, and shortening the healing period compared to
PRP alone in the rat wound-healing model [99].

8.5. Similarities and Differences between Gels Used in Wound Healing and Infection Management

Various injectable biomimetic gels designed for wound healing and infection man-
agement exhibit several common methodological approaches. Primarily, they all focus on
incorporating biocompatible and biodegradable materials to enhance wound healing. For
instance, both chitosan-based and PEG-based hydrogels utilize natural polymers and their
derivatives to promote biocompatibility and facilitate tissue regeneration [24,26–28,89]. An-
other similarity is the emphasis on antibacterial properties; many of these gels incorporate
substances with inherent antibacterial activities, such as chitosan and lysozyme, to prevent
infections at the wound site [24,25,28,93]. Additionally, rapid gelation and tissue adhesion
are key properties frequently evaluated across these studies, ensuring the hydrogels can be
easily applied and remain in place during the healing process [89,91,92].

The methods of crosslinking and stabilization vary considerably. Chitosan-based
hydrogels often use Schiff base formation or catechol-functionalized quaternized chitosan
for crosslinking [24,89], while PEG-based hydrogels might utilize poly(sulfamethazine ester
urethane) for its pH- and temperature-sensitive properties [27]. Additionally, the types of
additives and functional groups incorporated differ widely, with some gels integrating ad-
vanced materials like graphene oxide, calcium carbonate, and silica to enhance mechanical
and antibacterial properties [90], and others using gold/metal-organic frameworks for en-
hanced reactive oxygen species generation and bactericidal activity [93]. Furthermore, the
specific in vivo models used for testing also vary, ranging from zebrafish embryos to rat skin
defect models, reflecting different focuses on either small or large animal models [24–27].

9. Stem Cell Delivery and Osteoarthritis Treatment

This section discusses various advanced hydrogel-based approaches for stem cell
delivery and osteoarthritis treatment. It highlights the development and evaluation of dif-
ferent hydrogels, including GelMA microspheres coated with DMA-MPC polymer, sodium
alginate combined with Type I collagen, and amnion membrane with adipose-derived stem
cells, among others. These hydrogels have shown promise in improving lubrication, sus-
taining drug release, reducing inflammation, and promoting tissue regeneration in various
animal models. The research underscores the potential of these innovative materials to en-
hance therapeutic outcomes in osteoarthritis and other regenerative medicine applications.

Methacrylate gelatin (GelMA) hydrogel microspheres, coated with DMA-MPC
(dopamine methacrylamide and 2-methacryloyloxyethyl phosphorylcholine) polymer,
synthesized by free radical copolymerization and encapsulating diclofenac sodium (DS),
were assessed for their lubrication properties, sustained drug release, and therapeutic
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effects in a rat osteoarthritis model. These GelMA@DMA-MPC microspheres exhibited
enhanced lubrication and sustained drug release, resulting in significant therapeutic effects
against osteoarthritis. This included reduced cartilage damage and inflammatory response,
as demonstrated by various biological tests and imaging assays (Figure 7) [100].
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Figure 7. A schematic illustration showing (a) the fabrication of GelMA microspheres by microfluidic
technology, the synthesis of DMA-MPC polymer by free radical copolymerization, and the design of
lubricated GelMA@DMA-MPC microspheres via the dip coating method and (b) a treatment option
for osteoarthritis by intra-articular injection of the drug-loaded and lubricated GelMA@DMA-MPC
microspheres based on the synergistical intervention of enhanced lubrication and sustained drug
release. Adopted with permission [100].

An injectable hydrogel composed of sodium alginate and Type I collagen was de-
veloped to create a better growth microenvironment for mesenchymal stem cells (MSCs),
preventing apoptosis and promoting proliferation. The Coll/SA hydrogel displayed a
shorter gelation time, biomimetic properties, and significantly improved MSC proliferation
and survival. This indicated its potential as a stem cell scaffold for tissue regeneration and
organ repair [101].

A hydrogel composed of amnion membrane (AM) combined with adipose-derived
stem cells (ADSCs) was evaluated for its potential in reducing inflammation and promoting
cartilage regeneration in a collagenase-induced osteoarthritis rat model. The AM hydrogel
demonstrated anti-inflammatory and chondroprotective properties, fostering cartilage
regeneration. It showed a synergistic effect with ADSCs in reducing inflammation-mediated
damage to the articular cartilage in osteoarthritic joints [102].

Hyaluronic acid crosslinked with 1,4-butanediol diglycidyl ether (BDDE) formed
hyaluronic acid hydrogels (HAGs), which were evaluated for their viscoelastic properties,
swelling behavior, morphology, and rheological properties. These HAGs were tested
for cartilage and dentin-pulp complex regeneration. The hydrogels displayed excellent
water absorption, pore interconnectivity, and viscoelastic behaviors similar to those of the
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epidermis, dermis, articular cartilage, and tooth germ. This demonstrated their feasibility
as injectable scaffolds for tissue regeneration in a subcutaneous microenvironment [103].

An injectable woven bone-like hydrogel (IWBLH), composed of amorphous calcium
phosphate, mineralized collagen fibril, and alginate, was tested in a rat tooth extraction
model for alveolar ridge preservation. The IWBLH demonstrated easy handling and
effective function in preventing alveolar bone resorption, achieving complete remodeling
within four weeks. This indicated its promise as a bone substitute for alveolar ridge
preservation [48].

Protein-poly(ethylene glycol) (PEG) hybrid hydrogels (MITCH-PEG), formed from C7
protein and PEG conjugated with proline-rich peptides, were used for the co-delivery of
induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs) and growth factors
in a mouse hindlimb ischemia model. The MITCH-PEG hydrogels exhibited reversible
shear-thinning, self-healing properties, and tunable storage moduli. They effectively co-
delivered hiPSC-ECs and VEGF, reduced inflammation, and promoted tissue regeneration,
demonstrating protection from cell damage during injection and sustained growth factor
release [104].

Pluronic hydrogels, injected as substitutes for the nucleus pulposus, were studied for
their stability under fluid flows. In vivo tests in dogs post-discectomy, with a three-month
follow-up, indicated that the gels remained present and maintained disc space. Rapid flow
rates stabilized the pluronic gels against dissolution, making them viable alternatives for
nucleus pulposus replacement. The in vivo tests showed that the gels remained stable and
effective in preventing disc space compression in dogs for at least three months [105].

An injectable hydrogel scaffold, derived from decellularized human lipoaspirate
and retaining peptides and glycosaminoglycans, was studied for adipose tissue engineer-
ing. This hydrogel supported the growth and survival of adipose-derived stem cells
(ADSCs) in vitro. The decellularized matrix retained peptides and glycosaminoglycans,
self-assembled upon injection, and supported ADSCs, representing a minimally invasive
option for adipose tissue engineering and aesthetic improvements [106].

Similarities and Differences between Gels Used in Stem Cell Delivery and Osteoarthritis Treatment

The methodologies used in injectable biomimetic gels for stem cell delivery and os-
teoarthritis treatment share several common features. Primarily, the use of natural or
synthetic polymers such as methacrylate gelatin (GelMA), sodium alginate, Type I collagen,
and hyaluronic acid is prevalent. These materials provide a conducive environment for
cell encapsulation and proliferation due to their biocompatibility and biomimetic proper-
ties [100–103]. Moreover, many studies emphasize the importance of hydrogel physical
properties, such as gelation time, viscoelasticity, and pore interconnectivity, which are
critical for mimicking the extracellular matrix and supporting tissue regeneration [103,104].
Another commonality is the incorporation of bioactive agents or drugs, such as diclofenac
sodium or growth factors, which aid in reducing inflammation and promoting tissue re-
pair [100,104]. Lastly, most methodologies involve in vivo testing in animal models to
evaluate the therapeutic efficacy and biocompatibility of the hydrogels [100,102,105].

The specific approaches and materials used for these hydrogels, despite their simi-
larities, have been shown to be different. For example, GelMA microspheres coated with
DMA-MPC polymer were specifically designed for enhanced lubrication and sustained
drug release in osteoarthritis treatment, highlighting their unique application in joint ther-
apy [100]. In contrast, sodium alginate and Type I collagen hydrogels focused on creating
a microenvironment that supports mesenchymal stem cell proliferation and survival for
broader tissue regeneration applications [101]. The use of amnion membrane combined
with adipose-derived stem cells represents another distinct approach aimed at reducing
inflammation and promoting cartilage regeneration, which differs significantly from the
drug-focused methodology of GelMA microspheres [102]. Additionally, the hydrogel com-
posed of hyaluronic acid crosslinked with BDDE was specifically tested for both cartilage
and dentin-pulp complex regeneration, showcasing its versatile application in different
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tissue types [103]. Another unique example is the injectable woven bone-like hydrogel
(IWBLH) designed for alveolar ridge preservation, focusing on preventing bone resorption
post-tooth extraction [48].

10. Neural Tissue Engineering

Hydrogels in neural tissue engineering, based on materials like gelatin, collagen, and
synthetic polymers, demonstrate enhanced electrical conductivity, improved mechanical
properties, and excellent biocompatibility. They support neural cell growth and differenti-
ation, making them promising candidates for minimally invasive neurological therapies,
neural tissue repair, and regenerative medicine applications.

Electroconductive injectable hydrogels based on gelatin and poly(3,4-ethylenedioxythi
ophene)-poly(styrenesulfonate) (PEDOT) have been evaluated for their potential in neural
tissue regeneration. These hydrogels have demonstrated enhanced electrical conductivity,
improved shear modulus, reduced gelation time, and decreased swelling ability. Addi-
tionally, they have been shown to support the growth of primary rat cortical astrocytes.
The tunable properties of these hydrogels make them promising candidates for minimally
invasive neurological therapies and brain tissue repair [107].

Hydrogels made of collagen, laminin, hyaluronic acid, and chondroitin sulfate pro-
teoglycan, without the use of external crosslinking agents, have been assessed for their
effectiveness in neural stem cell (NSC) delivery. These hydrogels exhibited excellent in-
jectability, maintained gel integrity, and promoted the survival and differentiation of NSCs.
The cellular binding to the hydrogels through surface integrins facilitated neurite out-
growth, indicating their utility in neural tissue engineering and regenerative medicine.
These properties suggest that such hydrogels can be effectively used for neural tissue repair
and the delivery of stem cells [108].

Injectable hydrogels composed of various biodegradable polymers that mimic the
extracellular matrix (ECM) have been evaluated for central nervous system (CNS) tissue
engineering. These hydrogels provide a three-dimensional scaffold that supports CNS
regeneration by mimicking the properties of the ECM, promoting extracellular matrix
remodeling, and facilitating neural tissue regeneration with minimal invasiveness. This
approach highlights the potential of these hydrogels for CNS repair and regeneration [109].

Glycosaminoglycan analogues based on sulphonate-containing polymers were de-
veloped for nucleus pulposus repair. These hydrogels were tested for their fixed charge
density, hydration, and osmotic responsiveness in vitro, and underwent preliminary biome-
chanical tests in a degenerate explant model. The hydrogels exhibited appropriate fixed
charge density, hydration, and osmotic responsiveness, restoring stiffness and function in
degenerate disc models by mimicking the role of glycosaminoglycans in vivo [110].

Similarities and Differences between Gels Used in Neural Tissue Engineering

They all aim to mimic the extracellular matrix (ECM) to support neural cell growth,
differentiation, and tissue regeneration. These gels exhibit excellent injectability, biocom-
patibility, and mechanical properties suitable for minimally invasive therapies [107–109].
Additionally, they promote cellular interactions through surface integrins, enhancing neu-
rite outgrowth and tissue repair. However, there are notable differences among these
hydrogels. The electroconductive hydrogels based on gelatin and PEDOT focus on electri-
cal conductivity and reduced gelation time [107], while the hydrogels made of collagen,
laminin, hyaluronic acid, and chondroitin sulfate proteoglycan prioritize injectability and
NSC delivery without external crosslinking agents [108]. In contrast, the biodegradable
polymer-based hydrogels emphasize mimicking ECM properties and promoting extracellu-
lar matrix remodeling for CNS regeneration [109].

11. Specialized Applications

This section discusses various specialized applications of injectable hydrogel systems
in medical treatments and tissue engineering. It highlights the development and evaluation
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of different hydrogel formulations designed to mimic the extracellular matrix (ECM),
support cell growth, and promote tissue regeneration. These hydrogels are engineered for
specific medical applications, such as retinal neovascularization, mandibular osteomyelitis,
cartilage repair, and cardiac tissue engineering. The studies emphasize the importance
of tunable physical and biochemical properties to create optimal environments for cell
proliferation and differentiation, showcasing the potential of these hydrogels in minimally
invasive treatments.

An injectable hydrogel system using aminated hyaluronic acid and aldehyde-
functionalized Pluronic 127 has been evaluated for its potential in treating retinal neo-
vascularization (RNV). This system, named HP@Ran, demonstrated excellent injectability,
self-healing properties, and sustained release of ranibizumab for over seven weeks. The
results showed a significant reduction in vascular leakage and neovascularization in a
rabbit RNV model, indicating its potential for effective RNV treatment [111].

Injectable gentamicin-collagen hydrogels (GNT-COLL) and nanohydroxyapatite-
loaded hydrogels (GNT-COLL/nHA) were tested in a rabbit model of mandibular os-
teomyelitis for local treatment efficacy, bone preservation, and infection suppression. The
results indicated that these hydrogels were more effective in suppressing osteomyelitis and
preserving bone than systemic gentamicin, with no recurrence for up to 12 weeks. This
supports the use of composite hydrogels for the treatment of osteomyelitis [112].

Bioinspired injectable hydrogels made from Bombyx mori silk fibroin, carboxymethyl
cellulose, and gelatin were designed for cartilage tissue engineering. These hydrogels
facilitated dynamic stiffening and contraction, mimicking the natural development of
cartilage. They promoted chondrogenesis and demonstrated potential for cartilage repair,
highlighting their application in regenerative medicine [113].

Blended hydrogels composed of mulberry silk (Bombyx mori) and non-mulberry
silk (Antheraea assama), loaded with interleukin-4 and dexamethasone, were evaluated
for their impact on islet viability, insulin secretion, endothelial cell maintenance, and
M2 macrophage polarization. These hydrogels supported sustained release of IL-4 and
dexamethasone, promoting M2 macrophage polarization and preserving islet physiology,
showing promise for type 1 diabetes treatment [114].

Injectable anisotropic nanocomposite hydrogels, based on hydrazone cross-linked
poly(oligoethylene glycol methacrylate) and magnetically aligned cellulose nanocrystals
(CNCs), promoted the differentiation of skeletal muscle myoblasts into oriented myotubes.
The CNC alignment during gelation was maintained, providing mechanical properties
and directing myotube alignment, representing a significant advancement in anisotropic
biomimetic scaffolds for muscle tissue engineering [115].

An injectable, near-infrared (NIR) and pH-responsive nanocomposite hydrogel us-
ing sodium alginate-graft-dopamine and polydopamine-Fe(III)-doxorubicin nanoparticles
was developed for melanoma treatment and skin regeneration. This hydrogel provided
photothermal therapy, chemotherapy, and nanozyme synergetic therapy. It delivered
anti-cancer agents precisely, converted light into heat to kill cancer cells, and released
doxorubicin continuously, promoting skin regeneration by scavenging reactive oxygen
species and killing bacteria [116].

Needle-injectable cryogel scaffolds, hybridized with calcium peroxide microparticles
to produce hydrogen peroxide, were synthesized using polyvinyl alcohol and gelatin.
These microcomposite cryogels exhibited antimicrobial properties against MRSA and
Pseudomonas aeruginosa, showed negligible cytotoxicity toward murine fibroblasts, and
prevented activation of dendritic cells. They were evaluated for tissue integration, biodegra-
dation, and minimal host inflammatory response in vivo, indicating their potential for
antimicrobial applications and tissue repair [117].

A dual-crosslinked hydrogel system based on chitosan functionalized with methacry-
loyl and tricine moieties was found to be processable at physiological pH and was assessed
for its cytocompatibility with MC3T3-E1 pre-osteoblasts. The CHTMA-tricine hydrogels
demonstrated significant toughness, cell viability, and potential for 3D bioprinting applica-
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tions. This hydrogel system promises advancements in tissue engineering and regenerative
medicine [118].

The MAX8B injectable peptide hydrogel system was developed for bioengineering
a three-dimensional trabecular meshwork scaffold. This scaffold was assessed for its
mechanical and bio-instructive properties, shear-thinning ability, and biocompatibility for
human trabecular meshwork (hTM) growth. The engineered scaffold facilitated proper
hTM growth and proliferation, and mimicked the physiological response to dexamethasone
treatment, suggesting its potential as an injectable trabecular meshwork implant [119].

Peptide-polyurea hybrids, using poly(epsilon-carbobenzyloxy-L-lysine)-b-PEG-b-poly
(epsilon-carbobenzyloxy-L-lysine) and poly(beta-benzyl-L-aspartate)-b-PEG-b-poly(beta-
benzyl-L-aspartate), were examined for their hydrogelation, microstructure, rheological
properties, and injection recovery. These hybrids exhibited solid-like properties and ther-
mal stability, with the peptide segment length dictating gel strength and resistance to
deformation. The hydrogels showed unique softening transitions at specific temperatures,
indicating their potential for various biomedical applications [120].

A disc-derived extracellular matrix (ECM) injectable hydrogel functionalized with
chondroitin sulfate was evaluated for intervertebral disc regeneration. The hydrogel pro-
moted matrix deposition by nasal chondrocytes, increasing sGAG production and the
synthesis of collagen type II. The inclusion of chondroitin sulfate enhanced sGAG produc-
tion and collagen type II synthesis, promoting nucleus pulposus-like matrix deposition by
nasal chondrocytes, and demonstrating potential for intervertebral disc regeneration [121].

Poly(l-glutamic acid)-based injectable hydrogel decorated with RGD was developed
for tunable bioactivity and cell adhesion. This hydrogel was evaluated for cell-matrix
interaction, cell adhesion, and proliferation, with controllable RGD density via disulfide
bonds for dynamic regulation of cell behaviors. The RGD conjugation allowed precise
control over hydrogel bioactivity, providing a strategy to develop ECM-mimicking scaffolds
for dynamically regulating cell adhesion [122].

An injectable reverse thermal gel (RTG) was developed for minimally invasive cov-
erage of myelomeningocele (MMC) defects. This gel was tested in vitro for stability in
amniotic fluid and in vivo in a mouse MMC model for defect coverage and inflammation
response. The RTG maintained stability in amniotic fluid for six months and successfully
formed a stable gel over MMC defects in mice, demonstrating more than 50% coverage
and no inflammation. This indicates its potential for minimally invasive prenatal MMC
repair [123].

A reverse thermal injectable gel functionalized with carbon nanotubes (RTG-CNT)
was developed for cardiac tissue engineering. This system promoted cardiomyocyte
survival, alignment, proliferation, and function, transitioning from a solution at room
temperature to a gel at body temperature. The RTG-CNT system supports long-term
cardiomyocyte survival, promotes alignment and proliferation, and improves cardiac
function, representing a minimally invasive tool for cardiac tissue engineering [50].

Similarities and Differences between Gels Used in Specialized Tissue Engineering Applications

All studies focused on developing hydrogels that mimic the extracellular matrix
(ECM) to support cell growth and tissue regeneration. These hydrogels are designed
to be injectable, providing minimally invasive treatment options that enhance patient
recovery and reduce surgical risks [107–109,115,119,123]. These formulations emphasize
the importance of tunable physical and biochemical properties, such as gelation time,
mechanical strength, and bioactivity, to create an optimal environment for cell proliferation
and differentiation [107,111,113,116,118]. Many of these studies highlighted the use of
natural polymers like gelatin, hyaluronic acid, and collagen, which are known for their
biocompatibility and ability to support cellular functions [107,108,110,113,117].

The types of polymers and crosslinking mechanisms vary widely. Some studies use
synthetic polymers like poly(3,4-ethylenedioxythiophene) (PEDOT) for enhanced electrical
conductivity [107], while others use natural polymers such as silk fibroin for dynamic
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stiffening and contraction [113]. The intended applications also differ significantly, ranging
from neural tissue engineering [107–109] to specialized applications like retinal neovascu-
larization treatment [111], mandibular osteomyelitis [112], and melanoma treatment [116].
Furthermore, the specific functional additives and their roles differ, as some studies in-
corporate growth factors or drugs for sustained release and targeted therapy [111,112],
while others focus on mechanical properties and cell alignment using components like
magnetically aligned cellulose nanocrystals [115] or carbon nanotubes [50].

12. Innovative Drug Delivery Systems

This section explores innovative drug delivery systems designed to improve thera-
peutic efficacy and reduce toxicity. These systems include hydrogels and nanoparticles
that enhance drug solubility, stability, and controlled release. They demonstrate potential
for localized and sustained cancer treatments, incorporating features like self-healing, in-
jectability, and responsiveness to environmental triggers, thus offering advanced solutions
for targeted therapy and regenerative medicine applications.

A multi-level drug release platform incorporating curcumin-loaded liposomes, chi-
tooligosaccharides, phospholipids, and a thiolated chitosan hydrogel was evaluated for
its water solubility, encapsulation efficiency, stability, cellular intake, and bioactivity. This
platform significantly improved the solubility, encapsulation efficiency, and stability of
curcumin, enhancing its inhibitory effect on MCF-7 cells compared to conventional formu-
lations. The hydrogel component facilitated local immobilization and sustained release of
curcumin, demonstrating its potential for more effective localized cancer treatment [124].

A hydrogel comprising reactive oxygen species (ROS)-sensitive tegafur (TF)-
protoporphyrin IX (PpIX) heterodimers encapsulated in temperature-sensitive chitosan
and silk sericin was evaluated for its synergistic chemotherapy and photodynamic ther-
apy potential in breast cancer. The hydrogel enabled “on-demand” drug release when
exposed to 630 nm laser irradiation, enhancing drug effectiveness while reducing toxicity.
In both in vivo and in vitro studies, the hydrogel significantly increased ROS produc-
tion, controlled drug release, and improved tumor-cell-killing capabilities, demonstrating
substantial improvements in breast cancer treatment outcomes [125].

Self-healable, injectable eutectogel based on deep eutectic solvents and poly(vinyl alco-
hol) was assessed for its hydrogen bonding interactions, morphology, mechanical strength,
thixotropic behavior, phase transition, and drug delivery potential. This multifunctional
eutectogel exhibited self-healing, adhesive, and moldable properties along with high drug
absorptivity and stability. It efficiently delivered the anticancer drugs 5-fluorouracil and
curcumin, showing promising chemotherapeutic activity against MCF-07 human breast
cancer cell lines [126].

A hyaluronic acid-based organo-hydrogel influenced by click chemistry was evaluated
for its biocompatibility, eco-friendliness, self-healing properties, and pharmaceutical po-
tential. This biomimetic, injectable hydrogel demonstrated excellent biocompatibility and
eco-friendliness, making it suitable for various low-toxicity therapeutic applications. The
incorporation of click chemistry highlighted its importance in enhancing pharmaceutical
formulations and bioavailability [127].

Hydrogels based on paclitaxel-loaded bovine serum albumin (BSA) nanoparticles
cross-linked with o-phthalaldehyde-terminated 4-armed poly(ethylene glycol) (4aPEG-
OPA) were evaluated for sustained drug release, tumor adhesion, and inhibition of colon
and breast cancer cells. When injected peritumorally in mice, these nanocomposite hy-
drogels showed enhanced antitumor efficacy and prolonged survival with low systemic
toxicity. The hydrogels sustained paclitaxel release over 30 days, demonstrated notable can-
cer cell inhibition, and adhered firmly to tissues, thus enhancing localized tumor therapy
in animal models [128].

A firefly luciferin-inspired hydrogel with redox-triggering capability, using protected
macromers, was evaluated for gelation onset, kinetics, and cytocompatibility. This system
enabled precise control over gelation, making it suitable as an injectable cell-encapsulating
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hydrogel. The redox-triggerable nature of this hydrogel allowed fine-tuning of gelation
onset and kinetics, expanding its application range for 3D cell culture and other biomedical
uses, and demonstrating its potential for advanced therapeutic and regenerative medicine
applications [129].

Similarities and Differences between Gels Used in Innovative Drug Delivery Systems

All of these hydrogel systems aim to improve drug solubility, stability, and controlled
release, enhancing therapeutic efficacy and reducing toxicity. They also demonstrate ad-
vanced properties like injectability, biocompatibility, and responsiveness to environmental
triggers, making them suitable for localized and sustained treatment applications [124–129].
On the other hand, the multi-level drug release platform focuses on enhanced solubility
and sustained release of curcumin for localized cancer treatment [124], while the ROS-
sensitive tegafur-protoporphyrin IX heterodimers target synergistic chemotherapy and
photodynamic therapy with temperature-sensitive release [125]. The self-healable eutec-
togel highlights its moldable and adhesive properties for efficient drug delivery [126],
whereas the hyaluronic acid-based organo-hydrogel emphasizes eco-friendliness and low-
toxicity therapeutic applications [127]. The paclitaxel-loaded BSA nanoparticles prioritize
sustained drug release and tumor adhesion for prolonged cancer treatment [128], and
the firefly luciferin-inspired hydrogel focuses on precise control over gelation for 3D cell
culture and regenerative medicine [129].

13. Miscellaneous Applications

This section explores various advanced hydrogel formulations and their diverse
biomedical applications. It discusses how different types of hydrogels, including GelMA/
SerMA, hyaluronic acid, polyisocyanopeptide, and others, are designed and evaluated for
specific medical purposes. Applications range from endometrial regeneration, controlled
drug delivery, T cell therapy, diabetes treatment, neural regeneration, to tissue engineering.
Each hydrogel’s unique properties, such as self-healing, injectability, biocompatibility,
and targeted delivery, highlight their potential in improving therapeutic outcomes and
advancing regenerative medicine.

A methacrylate gelatin (GelMA) and methacrylate sericin (SerMA) hydrogel loaded
with human umbilical cord mesenchymal stem cells (HUMSC) was evaluated for its po-
tential in endometrial regeneration and fertility restoration. In vivo experiments demon-
strated that this hydrogel significantly increased endometrial thickness, improved inter-
stitial fibrosis, and enhanced embryo transfer receptivity. These findings indicate that the
GelMA/SerMA@HUMSC hydrogel has significant potential for repairing or regenerating
damaged endometrium, thereby improving fertility outcomes [130].

A hyaluronic acid hydrogel modified by adamantane and cyclodextrin through a
proteolytically degradable peptide tether was assessed for its formation, proteolytic degra-
dation, shear-thinning, and self-healing properties, and potential for in vivo subcutaneous
injection. The hydrogel demonstrated shear-thinning and self-healing abilities, with se-
lective degradation by collagenases or MMP-2. These properties facilitated therapeutic
delivery and bioresponsive degradation both in vitro and in vivo, highlighting its potential
for controlled drug delivery applications [131].

Polyisocyanopeptide hydrogels with azide-terminated monomers were explored for
their potential in T cell expansion and delivery. In vitro T cell culture and in vivo subcuta-
neous injection studies revealed that these hydrogels enhanced cell survival, expansion,
and migration without inducing inflammation. These findings indicate that PIC hydro-
gels could improve adoptive T cell therapy strategies by facilitating T cell survival and
expansion in a non-immunogenic manner [132].

A poly(N-isopropylacrylamide-co-dextran-maleic acid-co-3-acrylamidophenylboronic
acid) hydrogel was evaluated for its glucose and thermo-responsive behavior, biocompati-
bility, and ability to regulate blood glucose levels in real-time. This hydrogel demonstrated
glucose-dependent insulin release and successfully restored blood glucose levels in diabetic
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rats without causing an inflammatory response. These results present a promising strategy
for diabetes treatment through real-time glycaemic regulation [133].

A hydrogel grafted with dihydroxyphenylalanine on chitosan and incorporating
designer peptides was developed for neural regeneration following spinal cord injury. It
was evaluated for its injectability, self-healing capabilities, tissue adhesion, and functional
recovery outcomes. The hydrogel significantly enhanced motor and sensory function
recovery, bladder repair, and neural regeneration by promoting synapse formation and
myelin regeneration, showing substantial promise for spinal cord injury repair and other
tissue regeneration applications [134].

Injectable, pore-forming double-network hydrogels, fabricated via stepwise gelation
and phase separation, were evaluated for their permeability, toughness, cell encapsulation,
and delivery capabilities. These hydrogels maintained their integrity under prolonged
high-frequency biomechanical stimulations, making them suitable for dynamic tissue repair.
They also supported cell proliferation and spreading, indicating their potential for various
tissue engineering and biomedical applications [135].

Co-spheroids composed of neural stem cells (NSCs) and endothelial cells (ECs), en-
capsulated in a gelatin-based hydrogel, were assessed for their angiogenic potential and
neurovascular network formation capabilities. The encapsulation in gelatin-based hydrogel
enhanced the viability of the cells and promoted the formation of tube-like structures,
indicative of angiogenesis and neurovascular network formation. These results suggest
that NSC/EC co-spheroids in a gelatin-based hydrogel could be used to build biomimetic
neurovascular constructs for neuroregeneration [136].

Similarities and Differences between Gels Used Drug Delivery Applications

Many methodologies used in developing injectable biomimetic gels for drug delivery
share common features, including the incorporation of hydrogels to facilitate drug encap-
sulation and sustained release. Thiolated chitosan hydrogel was utilized to improve the
solubility, encapsulation efficiency, and stability of curcumin, enhancing its therapeutic
effects against MCF-7 cells [124]. Similarly, a temperature-sensitive chitosan and silk sericin
hydrogel enabled controlled release and synergistic chemotherapy and photodynamic ther-
apy for breast cancer [125]. These hydrogels also frequently exhibit self-healing properties,
as demonstrated by a eutectogel based on deep eutectic solvents and polyvinyl alcohol that
efficiently delivered anticancer drugs while maintaining structural integrity [126]. Further-
more, the use of natural polymers like hyaluronic acid and chitosan is a recurring theme,
providing biocompatibility and eco-friendliness essential for biomedical applications [127].

Despite many commonalities, there are distinct differences in the specific design and
application of these hydrogels. The incorporation of ROS-sensitive tegafur-protoporphyrin
IX heterodimers in a chitosan and silk sericin hydrogel highlights a unique approach
leveraging laser irradiation to trigger drug release, enhancing chemotherapy and photo-
dynamic therapy outcomes [125]. In contrast, a methacrylate gelatin and sericin hydrogel
was designed to support stem cell delivery for endometrial regeneration, demonstrating
improvements in endometrial thickness and fertility restoration [130]. Additionally, a
polyisocyanopeptide hydrogel tailored for T cell expansion and delivery demonstrated
enhanced cell survival and migration without inducing inflammation, showcasing its po-
tential for adoptive T cell therapy [132]. These variations reflect the diverse therapeutic
targets and functional requirements driving the customization of hydrogel formulations.

14. Key Factors in Selecting an Injectable Biomimetic Gel for a Specific Application

Selecting an injectable biomimetic gel for tissue engineering and regenerative medicine
involves several critical factors. These considerations ensure the gel’s effectiveness and
safety across diverse applications, ranging from bone and cartilage repair to soft tissue
regeneration and wound healing. The key factors include biocompatibility, mechanical
properties, biodegradability, bioactive components, injectability, and practical considera-
tions related to clinical use and production.
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Biocompatibility is the foremost consideration when choosing an injectable biomimetic
gel. The gel must support cell viability and proliferation without triggering an adverse
immune response. Ensuring biocompatibility allows the gel to integrate seamlessly with
the host tissue, whether it is for bone, cartilage, soft tissue, or wound healing. Hyaluronic
acid-based hydrogels, for instance, are renowned for their excellent biocompatibility and
low toxicity, making them suitable for a variety of therapeutic applications [127].

The mechanical properties of the gel, including compressive strength, elasticity, vis-
coelasticity, and gelation time, must be tailored to match the requirements of the target
tissue. For bone tissue engineering, the gel needs to have adequate compressive strength
and elasticity to support the biomechanical environment of the bone [21,36]. For carti-
lage or myocardial tissue engineering, the gel must offer sufficient mechanical stability to
support chondrocytes or cardiomyocytes while facilitating natural tissue functions [41,87].
Additionally, properties such as self-healing and maintaining structural integrity under
physiological conditions are particularly important for dynamic tissues [34,126].

The rate of biodegradation of the gel must align with the rate of new tissue formation.
This balance ensures that the gel provides temporary support and degrades as the new
tissue forms, preventing premature degradation that could compromise tissue regeneration
or excessive persistence that might interfere with the natural healing process [65,107,108].
Gels must be designed to degrade safely without eliciting adverse reactions, which is
crucial for applications like wound healing and infection management [24,26–28].

Incorporating bioactive components into the gel can significantly enhance its ther-
apeutic potential. For bone tissue engineering, components like hydroxyapatite, BMPs,
or growth factors improve osteoinductive and osteoconductive properties [19,56]. Simi-
larly, in cartilage tissue engineering, bioactive molecules such as kartogenin or factors like
anhydroicaritin in chitosan-based hydrogels can promote chondrocyte proliferation and
matrix production [67,80]. The ability to deliver bioactive molecules, such as growth factors
and drugs, is also essential for promoting tissue regeneration and healing across various
applications [111,114,116].

The injectability and ease of use of gels are crucial for clinical applications, particularly
for minimally invasive procedures. Gels should be easy to handle, form rapidly in situ,
and provide a stable scaffold for tissue regeneration [10,55,111,119,123]. This is important
across various applications, from bone and cartilage repair to soft tissue engineering and
wound healing [70,72,89,91,92,137].

Practical considerations for clinical use include the gel’s potential for large-scale
production and consistency in quality. Ensuring scalability and quality consistency is
vital for translating these biomaterials from the laboratory to clinical settings, addressing
challenges such as variability in stem cell quality, and ensuring consistent therapeutic
outcomes [105,106]. Additionally, the gel’s ability to encapsulate and sustain the release
of therapeutic agents or stem cells directly impacts its effectiveness in promoting tissue
regeneration [100,104].

While the above factors are generally applicable, specific applications may require
additional considerations. For instance, in neural tissue engineering, the gel must offer elec-
trical conductivity and dynamic stiffening properties to support neural functions [107,113].
For diabetic treatments, glucose-responsive hydrogels designed for real-time blood glu-
cose regulation have shown promise [133]. In neurovascular applications, co-spheroids of
neural stem cells and endothelial cells encapsulated in a gelatin-based hydrogel illustrate
the potential for tailored regenerative medicine solutions [136]. Furthermore, self-healing
hydrogels demonstrate significant potential in wound management, offering accelerated
wound closure, tissue regeneration, and adaptable mechanical properties suitable for
diverse clinical applications [34].

15. Tests and Assessments

When developing an injectable biomimetic gel, various tests need to be conducted to
ensure its efficacy, safety, and functionality. These tests can be broadly categorized into
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physical and chemical properties, in vitro, in vivo, and in silico assessments. Below is is an
overview outlining the essential tests under each category.

15.1. Physical and Chemical Properties

Injectability: To evaluate the ease with which the gel can be injected through a
syringe, tests should measure the force required to expel the gel at different temperatures
and flow rates. This includes rheological assessments to determine viscosity and flow
behavior [1,2,8,12,36,37,53–55,59,61].

Mechanical Properties Assessments of the gel’s mechanical properties are crucial.
These include tests for strength, flexibility, extensibility, and toughness. Methods such as
tensile testing, compression testing, and cyclic loading can provide insights into the gel’s
mechanical robustness and durability [1,3–5,8,9,12,14,18,19,21,36–39,43,45,51–54,57–63].

15.2. Self-Healing and Adhesive Properties

Self-Healing: The self-healing capability of the gel can be evaluated by making
incisions or punctures and observing the time and effectiveness of the gel’s healing process.
Techniques such as optical microscopy and mechanical testing can be employed to monitor
and quantify the healing efficiency [1,2,4,5,14,39,45,52–55].

Adhesive Properties: The adhesive strength of the gel to various biological and
synthetic surfaces can be tested using lap shear and peel tests. These tests determine the
gel’s ability to adhere and maintain contact under different conditions [2–5,8,14,40,52].

15.3. Biocompatibility and Cytocompatibility

Biocompatibility: Biocompatibility tests ensure that the gel does not induce any
adverse immune responses when introduced to biological systems. These tests involve
the use of animal models and human cells to evaluate inflammatory responses, tissue
integration, and overall biocompatibility [2,5,12,14,15,21,38,41–43,45,54,68,69,82].

Cytocompatibility: Cytocompatibility tests assess the gel’s compatibility with various
cell types, ensuring that it supports cell viability and proliferation. This can be evaluated
using assays like MTT, live/dead staining, and flow cytometry [3,4,39,53,55,75,81,82].

15.4. Wound Healing and Hemostasis

Wound Healing Promotion: Tests to determine the gel’s ability to promote wound
healing involve both in vitro scratch assays and in vivo wound models. These tests measure
the rate of wound closure, re-epithelialization, and collagen deposition [1,2,17,24,51,83,93].

Hemostasis and Antihemorrhagic Properties: To evaluate the gel’s hemostatic prop-
erties, tests such as coagulation assays and bleeding time measurements in animal models
are conducted. These tests measure the gel’s ability to stop bleeding and facilitate clot
formation [1,2,4,89].

15.5. Angiogenesis and Osteogenesis

Angiogenesis: The ability of the gel to promote new blood vessel formation is assessed
using in vitro tube formation assays and in vivo models of revascularization. These tests
measure the extent and functionality of new blood vessels formed in response to the
gel [17,20,51,56,65].

Osteogenesis: Osteogenesis tests determine the gel’s capability to support bone
formation and mineralization. In vitro tests with osteoblasts and in vivo bone defect models
are used to evaluate bone integration and the formation of mineralized tissue [9,14,15,19–
21,23,36,43,46,56,57,60–62].

15.6. Cellular Interaction and Behavior

Cell Adhesion and Proliferation: Tests to measure cell adhesion and proliferation
involve culturing various cell types on the gel and using assays like cell counting, prolifera-
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tion markers, and imaging techniques to assess how well cells adhere to and proliferate on
the gel surface [3,9,12,14,15,17,21,35–39,42,43,45,53–55,57–64].

Stem Cell Encapsulation and Culture: These tests evaluate the gel’s ability to encapsu-
late and support the growth and differentiation of stem cells. Techniques such as encapsu-
lation efficiency, viability assays, and differentiation markers are used [9,12,37,45,52,59,61].

15.7. Antibacterial and Antioxidant Properties

Antibacterial Activity: The antibacterial properties of the gel can be assessed using
standard microbiological assays against common pathogens. This includes measuring the
zone of inhibition, bacterial adhesion, and growth kinetics [1,2,63].

Antioxidant Properties: Antioxidant assays evaluate the gel’s ability to neutralize
reactive oxygen species (ROS). Methods such as DPPH and ABTS assays can be used to
quantify the gel’s antioxidant capacity [14].

15.8. Drug Delivery and Therapeutic Effects

Sustained Drug Release: Tests for sustained drug release involve loading the gel with
a therapeutic agent and measuring the release profile over time using methods like HPLC
and UV spectrophotometry. These tests ensure controlled and prolonged release of the
drug [13,47].

Therapeutic Effects: Evaluating therapeutic effects involves testing the gel in relevant
disease models, such as tumor ablation or growth suppression in cancer models. This
includes assessing the gel’s efficacy in delivering therapeutic agents and its impact on
disease progression [47,125].

15.9. In Vivo and In Vitro Testing

In Vivo Testing: In vivo tests involve the application of the gel in animal models
to assess biocompatibility, biodegradability, and therapeutic efficacy. Parameters such as
immune response, tissue integration, and functional outcomes are measured [1–3,9,13–
15,17,19–21,35–37,43,45–47,51,55–64].

In Vitro Testing: In vitro testing involves a series of cell culture assays to evaluate cell
viability, proliferation, differentiation, and function in the presence of the gel. These tests
provide preliminary data on biocompatibility and biological performance [1,9,15,18,21,35,
37–39,42,43,46,47,51,52,54–60,62–64].

Conducting these comprehensive tests will provide a robust evaluation of the injectable
biomimetic gel’s properties and potential applications, ensuring its safety and efficacy for
clinical use.

16. Overall Outcomes

Injectable biomimetic gels have shown substantial progress across various biomedical
fields due to their enhanced biocompatibility, multifunctional properties, and efficacy in
controlled delivery systems. These hydrogels integrate well with tissues and demonstrate
a variety of beneficial functionalities, including improved wound healing, antihemorrhagic
properties, and support for cellular activities such as proliferation and differentiation.
Specific examples include ECM-mimetic hydrogels that promote tissue integration post-
injection [12] and thermoresponsive hydrogels aiding bone formation [43].

The multifunctional nature of these hydrogels also includes self-healing capabilities
and thixotropic properties that support tissue regeneration, such as self-healing bioinspired
hydrogels for wound closure [2] and silk-hydroxyapatite hydrogels that promote osteogen-
esis [46]. Furthermore, bifunctional hydrogels with photothermal effects are being explored
for applications in tumor therapy and bone regeneration [47].

Controlled delivery systems in hydrogels are another area of significant advancement.
For instance, hypoxia preconditioned serum-fibrin hydrogels enhance angiogenesis by
delivering growth factors [51], and alginate bioconjugate hydrogels sustain BMP-2 release
for bone engineering [13]. Hydrogels like these offer targeted delivery that enhances tissue
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regeneration and repair, including silk fibroin/hyaluronic acid hydrogels for cartilage
repair [84].

In broader tissue regeneration, a variety of hydrogels are being utilized to support
vascularization, chondrogenesis, and bone regeneration. Examples include MSC-laden
GelMA-HAP-SN hydrogels that excel in bone regeneration [9] and myocardial hydrogels
that improve heart function and angiogenesis [88]. Injectable hydrogels are also being used
for neural tissue engineering and osteoarthritis treatments, where they promote neural
stem cell survival [108] and reduce inflammation [102].

Hydrogels with specialized applications, such as electroconductive hydrogels for neu-
ral tissue regeneration [107] and hydrogels for retinal neovascularization treatment [111],
illustrate the versatility and potential of these materials in various therapeutic areas. Multi-
level drug release platforms and biomimetic eutectogels are further extending the capabili-
ties of hydrogels in delivering therapeutic agents effectively [124,126].

17. Limitations

Despite these advancements, hydrogels face several limitations that need to be ad-
dressed for broader clinical application. One significant challenge is enhancing the me-
chanical resilience of hydrogels to withstand physiological stresses. For example, dopamine-
modified PEG nanocomposite hydrogels require improved long-term stability and strength [3],
and calcium phosphate cement-based hydrogels need optimization for osteoporotic frac-
tures [23].

Another critical issue is aligning the degradation rates of hydrogels with tissue re-
generation timelines. Mussel-inspired injectable hydrogels, for example, need precise
degradation control to be effective [5]. Similarly, hydrogels designed for bone regeneration
must have carefully controlled degradation rates to match the regeneration process [65].

The complexity of hydrogel synthesis also presents a barrier to large-scale produc-
tion and clinical use. Dual crosslinking mechanisms and complex formulations, such as
nanoyarn-enhanced collagen hydrogels, pose scalability challenges. Ensuring that these so-
phisticated materials can be produced consistently and at scale remains a significant hurdle.

The targeted delivery and controlled release of therapeutic agents within hydrogels
continue to be areas needing improvement. HPS-fibrin hydrogels, for instance, require
enhanced specificity for effective therapeutic delivery [51]. Hydrogels used in myocardial
applications with SDF-1 and angiogenic peptides also need improved targeting to maximize
their therapeutic potential [88].

18. Future Directions

Future research should focus on optimizing the mechanical properties of hydrogels
to better mimic native tissue characteristics and enhance their performance in dynamic
physiological environments. Combining different materials to create composite hydrogels,
such as chitosan nanofibrous microspheres with PLGA-PEG-PLGA hydrogels, can provide
enhanced mechanical stability and functionality [20,22,63,86,113,135].

Tailoring the degradation rates of hydrogels to precisely match the tissue regener-
ation process is crucial. This can be achieved through advanced crosslinking strategies
and incorporating responsive elements that degrade under specific physiological con-
ditions. Innovations in biodegradable polymers and crosslinking techniques, such as
phenolic-chitosan self-healing hydrogels, may further be evaluated to achieve controlled
and predictable degradation [52,65,81,118].

Developing scalable and cost-effective manufacturing techniques is essential for the
clinical translation of injectable hydrogels. This includes simplifying synthesis processes
and ensuring consistent quality control. Collaborative efforts between academia and indus-
try can facilitate the development of standardized protocols and regulatory frameworks for
the production of these advanced materials [37,80,95].

Incorporating targeting moieties and responsive elements into hydrogels can improve
the specificity and efficiency of therapeutic delivery. This includes the use of smart materials
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that respond to environmental cues such as pH, temperature, or specific biomolecules.
Research into novel delivery systems, like magnetically responsive hydrogels, can provide
new avenues for targeted and controlled release applications in tissue engineering and
regenerative medicine [18,47,88,129].

Combining injectable hydrogels with emerging technologies such as 3D bioprinting
and nanotechnology can open new possibilities for creating complex tissue structures and
enhancing regenerative outcomes. The development of bioinspired self-healing nanocom-
posite hydrogels, leveraging nanomaterials for improved mechanical properties and bioac-
tivity, represents a promising direction for future research. Innovations like injectable
biomimetic porous hydrogels with Mg2+ release and enhanced osteogenic differentiation,
and nanoengineered hydrogels with chitosan, ACSCs, and mesoporous SiO2 nanoparti-
cles, demonstrate the potential of integrating advanced materials science with biomedical
engineering [14,61,80,115].

19. Conclusions

Injectable biomimetic gels have significantly advanced biomedical applications through
their enhanced biocompatibility, multifunctionality, and controlled delivery efficacy. De-
spite these achievements, challenges related to mechanical resilience, degradation control,
scalability, and targeted delivery remain. Future research should focus on optimizing
mechanical properties, refining biodegradation rates, developing scalable manufacturing
techniques, and enhancing targeted delivery systems. Integrating emerging technologies
such as 3D bioprinting and nanotechnology will further enhance their therapeutic poten-
tial. Collaborative efforts between academia and industry are crucial to standardizing
production and ensuring clinical translation. These strategies promise to address current
limitations and unlock the full potential of injectable hydrogels in tissue engineering and
regenerative medicine.
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