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Abstract: Artificial intelligence (AI) systems are already being used in various healthcare areas.
Similarly, they can offer many advantages in hospital emergency services. The objective of this
work is to demonstrate that through the novel use of AI, a trained system can be developed to
detect patients at potential risk of infection in a new pandemic more quickly than standardized
triage systems. This identification would occur in the emergency department, thus allowing for
the early implementation of organizational preventive measures to block the chain of transmission.
Materials and Methods: In this study, we propose the use of a machine learning system in emergency
department triage during pandemics to detect patients at the highest risk of death and infection
using the COVID-19 era as an example, where rapid decision making and comprehensive support
have becoming increasingly crucial. All patients who consecutively presented to the emergency
department were included, and more than 89 variables were automatically analyzed using the
extreme gradient boosting (XGB) algorithm. Results: The XGB system demonstrated the highest
balanced accuracy at 91.61%. Additionally, it obtained results more quickly than traditional triage
systems. The variables that most influenced mortality prediction were procalcitonin level, age, and
oxygen saturation, followed by lactate dehydrogenase (LDH) level, C-reactive protein, the presence
of interstitial infiltrates on chest X-ray, and D-dimer. Our system also identified the importance of
oxygen therapy in these patients. Conclusions: These results highlight that XGB is a useful and novel
tool in triage systems for guiding the care pathway in future pandemics, thus following the example
set by the well-known COVID-19 pandemic.

Keywords: emergency; predictive value of tests; hospital mortality; machine learning; pandemics

1. Introduction

Artificial intelligence (AI) is currently revolutionizing many fields, including medicine
and especially emergency services, by enhancing human diagnostic capabilities, thus
optimizing resource allocation and ultimately improving patient outcomes. In recent years,
AI technologies have shown significant advancements, particularly in speeding up and
improving decision-making processes, which can be crucial in emergency settings where
precise decisions can significantly impact patient survival and subsequent recovery [1,2].

In the specific case of COVID-19, it is a respiratory disease caused by a coronavirus
popularly known as SARS-CoV-2, which was declared a public health emergency of inter-
national concern by the World Health Organization (WHO) in January 2020 [3]. Since that
moment, our efforts have been directed towards discovering the variables associated with
severe disease, thus identifying all comorbidities to select the best therapy [4–7], developing
effective treatments [8–13], and creating classifications to quickly assess potentially severe

Biomimetics 2024, 9, 440. https://doi.org/10.3390/biomimetics9070440 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9070440
https://doi.org/10.3390/biomimetics9070440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://doi.org/10.3390/biomimetics9070440
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9070440?type=check_update&version=2


Biomimetics 2024, 9, 440 2 of 20

patients. For example, the National Early Warning Score (NEWS) was created in emergency
services as a good predictor of ICU admission within 7 days [14], as well as the Rapid
Emergency Medicine Score (REMS) to predict death within 7 days [15]. At some point
during the pandemic, these scales were used to prioritize the most critical patients for
transfer to another center with more specific care [16].

After this experience, it has become evident that during a pandemic, the burden on
hospitals worldwide increases while resources are limited. To reduce transmission, direct
contact with many patients is limited as much as possible, and in this context, AI systems
can help triage according to severity to determine, for example, which patient mandatorily
needs a heart transplant [17].

Additionally, the COVID-19 era has been leveraged to attempt to compare the risk
factors and clinical characteristics of this virus with others, such as influenza [18], or
to establish a degree of need for healthcare based on laboratory data [19], although the
prognostic value of many of these factors remains uncertain.

Delving deeper, these AI systems are becoming increasingly complex and have begun
to be applied during the COVID-19 era to provide faster initial diagnostic impressions from
various imaging tests commonly used in medicine. They have been utilized by different
ophthalmology services to diagnose age-related macular degeneration, many refractive
errors, glaucoma, and even diabetic retinopathy [20].

Another development was the study of applying these AI techniques to chest X-ray
and computed tomography (CT) images in emergency services to obtain automated and
accurate solutions for COVID-19 detection [21–24]. All this aims to enhance the physician’s
capacity, thus making the possibilities for the introduction of this technology in medicine
limitless [25].

This capability will be very important in the coming years, as the increase in life
expectancy in Europe and most developed countries will lead to a progressive rise in
hospital visits. This will result in increased frailty, multimorbidity, and consequently, the
risk of serious illness and mortality, with emergency services being the first to be impacted.
In line with this, countries like the United States will be required to develop new models
for the early detection of clinical deterioration, as the average mortality rate of hospitalized
patients is around 2%, and recent studies suggest that some deaths resulting from such
deterioration could have been prevented [26,27], especially in a new pandemic situation.

For the early detection of critical patients, vital signs such as pulse, blood pressure,
heart rate, respiratory rate, body temperature, oxygen saturation, and the Glasgow Coma
Scale remain fundamental in healthcare. These indicators are routinely collected during
emergency admission processes, and despite being used on the front line for initial patient
assessments and having been known in clinical practice for over a century, their effec-
tiveness in various clinical scenarios has not been thoroughly evaluated. Recent research
has confirmed that changes in vital signs often precede fatal outcomes by several hours.
Currently, the measurement of vital signs plays a crucial role in identifying patients at
risk of deterioration in emergency services. However, this deterioration can sometimes go
unnoticed or is not detected until it is too late to intervene [28,29].

In critical patient care, as provided in an emergency service, it is imperative to act
as quickly as possible, especially in a situation of overload due to a pandemic. In this
context, the rapid identification and early isolation of infected patients can help block the
spread of the disease to hospital staff and the community at large, thus making it even more
important to have technology that speeds up the process [30,31]. Additionally, as previously
mentioned, early intervention by the physician significantly improves patients’ survival
prospects. In the case of severe infectious diseases, early treatment can also prevent future
complications. Here, artificial intelligence could also prove beneficial. Another important
point is to act swiftly to identify and quarantine individuals who have been in close
contact with previously infected patients, thereby breaking the chain of transmission and
controlling the spread of the virus [26,27].
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Given that resources are limited (hospital beds, medical equipment, and personnel), a
rapid response allows for more efficient management of these resources, thus ensuring that
their allocation aligns with patients’ needs. In a situation of overload due to a pandemic,
having AI systems that assist in a preliminary assessment of the patient’s severity for
initial resource allocation would greatly optimize medical care. Furthermore, it is crucial to
communicate the epidemiological situation to the public, along with preventive measures
and behavior guidelines, to reduce anxiety and foster community cooperation in containing
the pandemic. All this rapid action starts in emergency services, thus ultimately aiming
to limit mortality and control the spread of the microorganism. Therefore, it is the perfect
scenario in which the use of artificial intelligence tools can significantly improve disease
detection, response, and management capabilities, thereby contributing to saving lives and
reducing the impact of future health crises [2,32].

Moreover, there is increasing research into the possible causes of revisits to emergency
services using artificial intelligence methods [2,33]. Machine learning, a branch of artificial
intelligence, encompasses tools that examine datasets to detect patterns, thus continuously
improving their capabilities as more data become available. Ultimately, these technologies
are faster and more effective than traditional methods. In this way, several learning
algorithms have been developed to address a wide range of challenges. Consequently,
learning algorithms, particularly deep learning, are now used to identify individuals at risk.
As highlighted by Agam Bansal, these advanced learning techniques have already been
integrated into the fight against COVID-19, and they will undoubtedly regain significant
importance in combating a new health crisis [34–38]. There are studies that could be
attempted to apply for solving the COVID-19 equation that can be used to approximate its
solutions using numerical methods [39–42].

The objective of this work is to demonstrate the utility of machine learning (ML)
algorithms for patients attending hospital emergency services in immediately determining
their vital prognosis. As a result, it has been validated as a reliable approach for identifying
patterns in other medical conditions, such as systemic lupus erythematosus, coagulopathy
induced by traumatic brain injuries, epilepsy, diabetes, Alzheimer’s disease, HIV, and
various types of cancer. Thus, we used machine learning techniques to determine the most
influential variables in predicting mortality in emergency services during the COVID-19
era, a period in which the population lacked herd immunity, and no prior vaccination
existed. The analytical power, speed of obtaining results, and high accuracy indicate that
this computational tool should be used in any emergency service to anticipate outcomes in
future pandemics. The proposed system allows for the analysis of large epidemiological
datasets to identify patterns associated with the disease and risk factors.

2. Materials and Methods
Materials

This study was conducted in the emergency department of the Virgen de la Luz
Hospital, as well as the reference hospital in the metropolitan area of Cuenca in the Castilla-
La Mancha region. All consecutive patients who attended the emergency department
between 2 March and 30 April 2020 were included. The cases were selected from patients
over 18 years of age who presented with any symptoms associated with acute COVID-19
infection and tested positive for the SARS-CoV-2 polymerase chain reaction (PCR) test from
a nasopharyngeal swab in the emergency department.

Patients who presented to the emergency department outside the study period, those
under 18 years of age, individuals presenting with nonrespiratory symptoms, and patients
for whom PCR testing could not be performed due to reasons such as patient refusal,
anatomical abnormalities affecting nasopharyngeal sampling, leaving against medical
advice, voluntary discharge, or discharge before testing were excluded.

Variable Selection: This single-center, observational, cross-sectional study involved
obtaining data by reviewing the patients’ emergency medical records. An individual
external to the research team tabulated and anonymized the data for all these patients.
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A total of 89 variables were collected: registration number; three demographic vari-
ables (gender, nationality, and age); personal history (hypertension, diabetes mellitus,
COPD, severe asthma, chronic kidney disease, obesity, pregnancy, dyslipidemia, liver
disease, thromboembolic disease, active cancer, smoking, pharmacological immunosup-
pression, institutionalized, vascular disease, duration of illness); emergency department
symptoms (cough, fever, dyspnea, chest pain, myalgia, headache, odynophagia, anosmia,
ageusia, diarrhea, asthenia, Glasgow Coma Scale, asthenia, odynophagia, quick Sequential
Organ Failure Assessment (qSOFA) score); hemodynamic variables (heart rate, baseline
oxygen saturation, systolic and diastolic blood pressure, respiratory rate, temperature,
fraction of inspired oxygen (FiO2)); date and duration of hospitalization; hospitalization
outcome (discharge or death); 8 variables related to hospital treatment (oxygen therapy,
antibiotics, hydroxychloroquine, low molecular weight heparin (LMWH); corticosteroids—
methylprednisolone or dexamethasone; immunomodulators—anakinra, cyclosporine,
tocilizumab, baricitinib; antivirals—lopinavir/ritonavir, emtricitabine/tenofovir disoproxil,
darunavir/cobicistat, bronchodilators); 5 variables related to treatment after discharge
(LMWH, methylprednisolone and dosage, dexamethasone and dosage); laboratory find-
ings (hemoglobin, leukocytes, platelets, lymphocytes, D-dimer, prothrombin time (PT),
creatinine, alanine transaminase, troponin, albumin, total proteins, ferritin, lactate dehydro-
genase (LDH), C-reactive protein (CRP), procalcitonin); gasometric variables (pH, partial
pressure of carbon dioxide (PCO2), partial pressure of oxygen (PO2), PO2/FiO2 ratio); 2
findings on emergency department radiography (unilateral infiltrate, bilateral infiltrate);
and whether a chest computed tomography (CT) scan was performed.

Ethical Aspects: The study protocol was approved by the Clinical Research Ethics
Committee of the Virgen de la Luz Hospital. We adhered to all principles of the Decla-
ration of Helsinki and Law 15/99 on Data Protection, thus strictly maintaining patient
anonymization. The physicians who collected the data were entirely separate from those
who conducted the subsequent analysis.

3. Model Development

XGB is a predictive algorithm based on supervised learning. Technically, XGB employs
boosting, iteratively correcting errors to capture complex interactions, offers robust L1 and
L2 regularization to prevent overfitting, efficiently handles missing data, and is highly
efficient in terms of computation. XGB adapts well to imbalanced data thanks to its
ability to assign weights to observations and provides a clear mechanism for evaluating
feature importance. The choice of XGB was based on its inherent technical advantages
and its demonstrated empirical performance, thus offering an optimal balance between
precision, efficiency, and the ability to handle complex data [43–45]. Owing to these
characteristics, XGB was chosen to develop a classification system for COVID-19 patients
in the emergency department. When presented with a dataset S = {xj, yj}, the proposes
model was devised as follows:

ŷj = ϕ(xj) =
P

∑
p=1

tp(xj). (1)

In this context, yj represents the input consisting of m temporal variables, P denotes
the total number of trees, ŷj represents the predicted output, xj signifies the output, and tp
stands for a tree with leaf weight wp and structure up, where j ranges from 1 to n.

The regularization target function for the suggested approach is detailed in Equation (2).
Unlike standard Ensemble methods, this method employs a second-order Taylor expansion to
approximate the XGB target function, thereby enhancing prediction accuracy [43–45].

R(ϕ) = ∑
j

r(ŷj, yj) + ∑
p

Ψ(tp), (2)
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Ψ(tp) = λ fp +
1
2

γ
∥∥wp

∥∥2. (3)

In order to regulate the complexity (Ψ()) of the method and prevent overfitting, a
regularization term, indicated by the weights, acts as a monitoring mechanism. As shown
in Equation (3), fp represents tree pruning, which controls overfitting by indicating the
number of leaves in the tree. The learning rate is denoted by λ, while w signifies the vector
of scores assigned to the leaves. The function R() quantifies the disparity between the
target output yj and the predicted output ŷj, thereby penalizing the method’s complexity.
The parameter γ is used to adjust the weight of the system’s complexity [43–45]. This study
aimed to enhance performance by minimizing Equation (2).

The tree set model incorporates the functionalities described in Equation (2). Therefore,
optimization methods in Euclidean space cannot be used to optimize Equation (2). Instead,
the model must be trained incrementally. In this study, ŷj represents the estimate of the jth
sample in the sth iteration. The goal is to find an additive function Cs (representing the sth
tree in the ensemble) that minimizes R(s):

R(s) = ∑
j=1

r(ŷj
(s−1), yj + Cs(xj)) + Ψ(Cs). (4)

This is accomplished by sequentially adding trees to the ensemble, with each new
tree being trained to correct the errors (residuals) of the previous ensemble. This additive
method enables the model to progressively learn complex data patterns by concentrating on
the residual errors from earlier predictions. The proposed model employs a second-order
approximation to improve the target function, as suggested in [43–45].

R(s) ≈ ∑
j=1

[
r(ŷj

(s−1), yj) + hjCs(xj) +
1
2

bjC2
s (xj)

]
+ Ψ(Cs), (5)

where hj represents the first-order gradient statistic with respect to ŷj
(s−1) in the loss

function R(), while bj denotes the second-order derivative with respect to ŷj
(s−1) in the

same context.
Since r(ŷj

(s−1), yj) remains constant, it can be removed to streamline Equation (5).
If we define Kj as the sample set of leaf v, where v ranges from 1 to f p, and expand the
function Ψ(), Equation (5) can be represented as follows:

R̃(s) ≈ ∑
j=1

[
∑

j∈Kv

(hk)w_rv +
1
2 ∑

j∈Kv

(bj + γ)w_r2
v

]
+ λF, (6)

where R̃(s) signifies the simplified form of R(s) achieved by removing constant terms. The
best weight w_rv assigned to leaf v within a given structure u(x) can be calculated in the
following manner:

w_rv = −
∑j∈Kv(hk)

∑j∈Kv(bj + γ)
. (7)

Ultimately, for the proposed approach, the optimal value can be attained through
the following:

R̃(s)(u) = −1
2

fp

∑
v=1

(∑j∈Kv(hk))
2

∑j∈Kv(bj + γ)
+ λF. (8)

Initially, we conducted thorough data preprocessing to optimize the performance
of our models. During data cleaning, we managed missing values using appropriate
imputation techniques such as mean, median, or mode based on the data nature, and we
addressed outliers through quartile analysis and boxplots to prevent negative impacts on
the model performance. Subsequently, we encoded categorical variables using one-hot
encoding for nominal variables and ordinal encoding to maintain the natural order of
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categories. Following this, numerical features were scaled using Min-Max normalization
to ensure equitable contribution to the model. For class balancing in imbalanced datasets,
we employed techniques like SMOTE for oversampling and undersampling methods. We
then partitioned the dataset into training and testing sets using a typical 70–30 split while
implementing 5-fold crossvalidation to robustly evaluate model performance and mitigate
overfitting. These meticulous preprocessing steps were implemented to enhance the data
quality and ensure that our machine learning models received relevant and well-prepared
information, thus resulting in improved performance and enhanced model robustness, as
evidenced by the metrics presented in our study.

This research subjected the proposed method to a comprehensive comparison with
various machine learning techniques to classify the mortality of COVID-19 patients in the
emergency department. The comparative analysis included Decision Trees (DTs) [46,47],
Gaussian Naive Bayes (GNB) [48–50], K-Nearest Neighbors (KNNs) [51–53], Support Vector
Machines (SVMs) [54–56], Neural Networks (NNs) [57,58], Random forest (RF) [59–61], the
Convolutional Neural Network (CNN) [62,63], AdaBoost [64,65], and the novel method
proposed in this study [66–69]. MATLAB software (MATLAB 2023a) was used for the
assessment. To mitigate overfitting, a 5-fold crossvalidation strategy was employed. The
dataset was divided into two parts, with 70% used for training and 30% for testing, thus
ensuring that there was no overlap of patients between the two groups. The study workflow
is schematically represented in Figure 1. It begins with patient selection and database
creation, followed by the training phase, and it concludes with the validation of the
implemented models.

Two performance metrics, namely accuracy and area under the curve (AUC), were
used to evaluate and enhance the results. In addition, to mitigate the effects of randomness
inherent in machine learning, the study conducted 100 random iterations. This approach
aimed to reduce the influence of data noise, identify optimal parameters, and ensure
statistically robust outcomes, as detailed in [70].
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Figure 1. The illustration depicts the stages of learning and validation undertaken for machine
learning algorithms.

Machine learning techniques often rely on various hyperparameters to fine-tune
the algorithm during training. These hyperparameters encompass settings such as the
number of splits, types of learners, nearest neighbors, distance metrics, kernel types, box
constraint levels, and methods for handling multiple classes, among others. The proper
selection and adjustment of these hyperparameters are crucial, as they greatly influence the
predictive accuracy and efficiency of the algorithm. Experimenting with different values of
these hyperparameters is essential to achieve the best possible performance. In this study,
Bayesian optimization was employed as a method to systematically refine and optimize
the hyperparameters for each machine learning technique utilized.
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Bayesian optimization seeks to find the best hyperparameter settings that maximize
algorithm performance, thus building on past attempts while assuming a relationship
between hyperparameters and performance metrics. Performance metrics such as the area
under the receiver operating characteristic curve (AUC) and balanced accuracy were crucial
in guiding this optimization process. Given the inherent randomness in machine learning
and simulations, the study conducted 100 repetitions to compute the mean and standard
deviation values of the performance metrics. To address data variability and enhance
the reliability of the AUC values and statistical significance, experiments were repeated
randomly and uniformly. The specific configurations used in this study are detailed in
Table 1.

Table 1. Main hyperparameters of the machine learning algorithms evaluated in the study.

Method Parameters

SVM

Kernel function: Gaussian
Sigma = 0.5

C = 1.0
Numerical tolerance = 0.001

Iteration limit = 100

DT

Minimum number of instances in leaves = 4
Minimum number of instances in internal nodes = 6

Maximum depth = 100

BLDA Kernel: Bayesian

NN

Number of hidden layers: 2 layers.
Max neurons per hidden layer: 64.

Activation function: ReLU.
Learning rate: 0.001.

Batch size: 64.
Number of epochs: 100.

Regularization: L2 regularization (Ridge)
Weight initialization: Glorot/Xavier initialization.

GNB

Usekernel: False
fL = 0

Adjust = 0

CNN

Learning rate = 0.1
Network section depth = 3
Pooling type: Max pooling.

Momentum = 0.9
Pool size: 64

L2 regularization = 1 × 10−3

Adaboost

Base estimator: tree
Maximum number of splits = 20

Learning rate = 0.1
Number of learners = 50

KNN

Number of neighbors = 20
Distance metric: Euclidean

Weight: Uniform

XGB

Eta = 0.20
Minimum chil weight = 1

Maximum depth = 7
Number of learners = 50
Maximum delta step = 3

Performance Evaluation

To analyze the performance of the compared algorithms, we employed the follow-
ing measures to assess the accuracy: degenerate Youden index (DYI), receiver operating
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characteristic (ROC) curve, specificity, recall (also known as sensitivity), precision, and
AUC [71].

4. Results

During the study period (2 March to 30 April 2020), over 13,000 patients presented
to the emergency department with symptoms compatible with COVID-19. Among them,
708 patients tested positive for the SARS-CoV-2 PCR test. Figure 1 illustrates that 183 patients
were excluded due to being under 18 years old. Of the included patients, 225 (37%) were
male. The most prevalent comorbidities observed during their emergency department visits
were hypertension (52%), type 2 diabetes mellitus (25%), and dyslipidemia (25%). Chronic
obstructive pulmonary disease (COPD) (8.9%), obesity (7.4%), and chronic kidney disease
(CKD) (6.6%) were also recorded. It is worth mentioning that in our sample, 4.5% of the
patients had some form of active cancer, and eight patients were immunocompromised (1.3%).
Less frequent comorbidities included liver diseases (1.5%) and previous thromboembolic
events (1.5%). Other types of comorbidities were also recorded, such as nine patients (1.4%)
with some form of liver disease. An overview of the sample characteristics is provided in
Table 2.

Table 2. The table presents the epidemiographic data and emergency department (ED) onset symp-
tomatology of the study.

n %

Male sex 225 37.19
HTA 318 52.56

Type 2 DM 153 25.29
EPOC 54 8.93

Severe asthma 16 2.64
ERC 40 6.61

Obesity 45 7.44
Pregnancy 1 0.16
Dyslipemia 149 24.63

Liver disease 9 1.49
ETV 9 1.49

Active cancer 27 4.46
Institutionalized 50 8.26

Cough 378 62.48
Fever 438 72.4

Dyspnea 327 54.05
Chest pain 20 3.31

Myalgia 98 16.2
Headache 10 1.65
Anosmia 19 3.14
Ageusia 26 4.3
Diarrhea 65 10.74
Asthenia 136 22.48

Admission 495 81.82
Exitus 132 21.82

Regarding symptoms, fever was the most prevalent (72.5%), followed by cough
(62.5%), dyspnea (54%), asthenia (22%), myalgia (16%), and headache (1.6%). In our
series, 19 patients initially presented with anosmia (3.1%), 26 patients with ageusia (4.3%),
and 65 patients consulted for diarrhea (10%), thus confirming the great clinical variability of
this virus. Of all patients with a positive PCR for SARS-CoV-2, 495 (81.8%) were admitted
to the hospital, of whom 132 (21.8%) ultimately passed away.

The proposed XGB model was compared with various algorithms, and the system
was trained to determine which achieved better mortality prediction, as well as the most
important variables in the prediction. Standard parameters widely used in the scientific
community were employed, as shown in Tables 3 and 4. As shown in Table 3, the XGB
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model proposed in this study demonstrated superior performance compared to the other
analyzed methods, thus achieving precision values approaching 91%. Specifically, it outper-
formed the RF algorithm in prediction by 2.48% and AdaBoost by 3.09%. GNB and BLDA
exhibited the lowest accuracy among the tested systems.

Other metrics, including the area under the curve (AUC), Matthews correlation coeffi-
cient (MCC), degenerate Youden index (DYI), and Kappa index, were also assessed. The
MCC is a robust statistical measure that yields a high score only if predictions perform
well across all four categories of the confusion matrix (true positives, false negatives, true
negatives, and false positives) proportionally to the distribution of positive and negative
instances in the dataset. Table 4 illustrates that the XGB method proposed in this study
achieved an MCC value nearing 1, thus indicating higher accuracy in predicting mortality
compared to other methods. Another metric considered was the Kappa index, where the
XGB system again outperformed RF and AdaBoost (Table 3).

Table 3. The table displays the average values and standard deviations of accuracy, recall, Kappa,
and precision.

Methods Accuracy (%) Recall (%) Kappa (%) Precision (%)

SVM 83.74 ± 0.87 83.84 ± 0.85 73.77 ± 0.86 83.15 ± 0.85
BLDA 79.96 ± 0.92 80.06 ± 0.91 71.04 ± 0.90 79.36 ± 0.92

DT 82.65 ± 0.78 82.75 ± 0.79 72.93 ± 0.77 82.13 ± 0.78
GNB 75.59 ± 0.98 75.68 ± 0.97 67.36 ± 0.95 75.12 ± 0.96
NN 84.24 ± 0.73 84.01 ± 0.75 74.53 ± 0.74 84.58 ± 0.73

KNN 85.96 ± 0.68 86.09 ± 0.71 76.36 ± 0.69 85.70 ± 0.68
CNN 84.97 ± 0.71 85.04 ± 0.75 75.23 ± 0.73 85.02 ± 0.73

AdaBoost 88.53 ± 0.77 88.64 ± 0.74 78.82 ± 0.76 87.90 ± 0.75
RF 89.14 ± 0.65 89.25 ± 0.69 79.42 ± 0.67 88.51 ± 0.66

XGB 91.62 ± 0.47 91.71 ± 0.45 82.53 ± 0.46 90.97 ± 0.45

Table 4. The table presents the average values and standard deviations of AUC, F1 score, MCC, and DYI.

Methods AUC F1 Score (%) MCC (%) DYI (%)

SVM 0.84 ± 0.02 83.49 ± 0.84 74.31 ± 0.85 83.74 ± 0.85
BLDA 0.80 ± 0.02 79.71 ± 0.92 70.94 ± 0.91 79.96 ± 0.92

DT 0.83 ± 0.02 82.44 ± 0.79 73.39 ± 0.77 82.65 ± 0.78
GNB 0.76 ± 0.02 75.40 ± 0.98 66.51 ± 0.96 75.59 ± 0.97
NN 0.84 ± 0.02 84.46 ± 0.80 75.32 ± 0.78 84.45 ± 0.79

KNN 0.86 ± 0.02 85.90 ± 0.72 76.18 ± 0.75 85.96 ± 0.73
CNN 0.85 ± 0.02 85.17 ± 0.76 75.93 ± 0.73 85.01 ± 0.76

AdaBoost 0.88 ± 0.01 88.27 ± 0.72 78.56 ± 0.74 88.53 ± 0.73
RF 0.89 ± 0.01 88.91 ± 0.67 79.10 ± 0.68 89.13 ± 0.67

XGB 0.92 ± 0.01 91.34 ± 0.46 83.02 ± 0.45 91.62 ± 0.46

We have also generated the receiver operating characteristic (ROC) curve to assess
the performance of our proposed system against other ML methods. As can be observed
in Figure 2, it displays the results obtained by various systems in predicting mortality
variables. As depicted in Figure 2, the proposed XGB method exhibited a larger area
under the curve (AUC) of 0.91, with the RF method (AUC of 0.89) being the closest in
performance. Despite optimizing the RF model, the results consistently showed that XGB
offered slightly superior performance in terms of key metrics such as precision, recall, F1
score, and AUC–ROC. This can be attributed to XGB’s inherent ability to handle complex
feature interactions and its boosting approach, which iteratively corrects errors, something
that RF, as a bagging-based ensemble method, cannot do in the same way. Additionally,
XGB provides other advantages such as better handling of missing data, more precise
control over overfitting through regularization parameters, and the ability to incorporate
weights in observations, which is particularly useful in imbalanced datasets. In structured
data, interpreting features is crucial to understanding how each variable contributes to
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model predictions. CNNs, designed to extract complex hierarchical features, may not be
as transparent in feature interpretation as XGB models. XGB’s recursive partitioning of
feature space makes it more efficient and faster to train on structured data compared to
the iterative learning and feedback process characteristic of CNNs. Structured data often
exhibit high dimensionality and sparsity, thus posing challenges for CNNs to effectively
learn direct and efficient relationships between variables, which is why they did not achieve
the precision values attained by XGB.
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Figure 2. The figure illustrates the various ROC curves of the five machine learning algorithms that
were analyzed.

To visualize the results more effectively, we aggregated all measurements from each
training dataset (Figure 3) and test dataset (Figure 4) and represented them using radar
charts. Perfect performance across all measurements would be depicted as a circle covering
the entire grid. To avoid overtraining, the test dataset results should not significantly differ
from the training dataset results. In our analysis, the training datasets consistently attained
high scores across all metrics. The test datasets also achieved solid scores, though slightly
lower and without significant loss, thus indicating that overtraining was not present. As
seen in Figures 3 and 4, the proposed XGB model achieved a larger area in both the training
and test phases, thus demonstrating its balanced performance. The algorithms closest to
our proposed model were RF and AdaBoost. Regarding the GNB system, it showed lower
performance in prediction.

The proposed XGB system assigned weights to each variable for predicting mortality
in COVID-19 cases. Among these variables, elevated procalcitonin, age, and initial oxygen
saturation in the emergency department received the highest weights, as shown in Figure 5.
Immediately following were variables such as lactate dehydrogenase (LDH), C-reactive
protein, the presence of infiltrates in chest radiography, and D-dimer. Additionally, our
system identified the importance of the patient’s need for oxygen therapy and a high score
on the quick Sepsis Related Organ Failure Assessment (qSOFA) scale, which is widely used
for early sepsis diagnosis. Other comorbidities such as hypertension and diabetes also
contributed moderately to our prediction.
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Figure 3. The figure shows the results of training phase in a radar graph.
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Figure 4. The figure displays the results of validation phase in a radar graph.

Figure 5. The figure depicts a histogram illustrating the most relevant parameters contributing to the
prediction of mortality among emergency COVID-19 patients.
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In this study, the Big-O notation technique has been used to analyze the complexity of
the implemented algorithms. This technique allows for the calculation of the complexity
and performance of each system [72]. As shown in Table 5, the proposed system exhibited
logarithmic growth O(log(N)). Other systems that achieved similar growth include Ad-
aBoost and Random Forest (RF). Conversely, the algorithm with the worst performance in
terms of complexity was the SVM. The KNN and CNN models reached complexity values
of O(N).

Table 5. The complexity of the classification algorithms as determined by the Big-O notation.

Method Number of Samples N Big-O

104 2 × 105 5 × 106 107

SVM 2634 5550 20,770 351,681 O(N²)
BLDA 3565 6980 13,970 27,470 O(N)

DT 3883 7169 9436 11,703 O(log(N))
GNB 3161 6459 12,759 26,349 O(N)
RF 3345 4468 5695 9097 O(log(N))
NN 3225 6898 12,224 25,361 O(N)

KNN 2307 4824 10,479 23,945 O(N)
CNN 5660 9689 16,407 28,736 O(N)

AdaBoost 3008 4358 7067 9312 O(log(N))
XGB 2080 3002 4358 4413 O(log(N))

5. Discussion

The implementation of artificial intelligence in emergency services can provide sig-
nificant assistance for rapid and accurate diagnosis, resource optimization, and improved
effectiveness in clinical decision making within a short period of time. These AI systems
have the ability to learn and improve over time as they process more data and receive
feedback, thus making them valuable in emergency services to quickly assess all patient
characteristics and provide an initial approximation of the medical treatment they might
receive, thereby optimizing clinical outcomes. This application can be crucial in pandemic
management [1,2,73].

Since the onset of a pandemic like COVID-19, understanding the behavior of the
microorganism, in this case SARS-CoV-2, becomes the top priority in attempting to predict
the mortality and morbidity of the disease. Due to this unfamiliarity, numerous studies
initially emerged comparing clinical characteristics, risk factors, and outcomes among
hospitalized COVID-19 patients with other respiratory viruses that are better understood
and managed by current medicine. The aim was to anticipate the progression of the new
emerging pathogen. Early comparisons were often made with the influenza virus due to
their similarities [74–76].

Additionally, overlapping with periods of outbreaks of other respiratory viruses, such
as the respiratory syncytial virus (RSV), COVID-19’s potential influence on the epidemiol-
ogy of these viruses has also been studied [77]. It could even be possible that prior infection
with respiratory viruses such as rhinovirus enhances the immune response to subsequent
exposure to SARS-CoV-2, thus aiding in more effective viral clearance, as proposed by
Radzikowska et al. [78]. Conversely, measures like quarantine implemented during the
COVID-19 era may have influenced the behavior of other respiratory viruses afterward,
as suggested by Olsen [79] below. In any case, the emergence of an infectious disease be-
having like a pandemic has such extensive effects that leveraging technology to anticipate
all preventive measures can be a significant advantage, with hospital emergency services
being the first line of defense.

Once the behavior of the microorganism is understood, efforts are made to predict its
evolution. Traditionally, clinical data and laboratory values have been analyzed primarily
to predict the need for hospitalization as a severity criterion, the requirement for ICU
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admission, and/or the need for invasive mechanical ventilation therapy using conventional
statistics, with an accuracy ranging from 86% to 88% [16].

Just as other similar microorganisms are used as models when an infectious disease
behaves like a pandemic, if we take COVID-19 as an example, implementing these tools
to rapidly create predictive models that help optimize resources could be applied in the
future with other potentially serious pathogens for the same purpose. Moreover, if we can
utilize artificial intelligence, for instance, to expedite triage tasks, healthcare professionals
who previously performed this work could focus on providing medical care to the most
critical patients as quickly as possible, thus leading to improved vital prognosis. Learning
from the past to optimize the future is crucial, and this study underscores its importance.

Based on the literature review, studies began to emerge for predicting mortality in
COVID-19 patients. For instance, Yadaw et al. [80] tested the utility of four ML algorithms
using a wide dataset (n = 3841) to predict COVID-19 mortality. While these authors
achieved high accuracy (area under the curve of 0.91), our model achieved 0.94. Another
example is the study by Gao Y et al. [81], which presented a model to stratify the risk of
death from COVID-19 based solely on clinical characteristics using four ML algorithms,
including logistic regression, SVM, DT, and Neural Network (NN), thus achieving a similar
area under the curve value. Similarly, An C et al. [82] trained four ML techniques on
data from 10,237 patients, with their SVM achieving a specificity of 91.4%, a sensitivity of
90.7%, and an ROC of 0.96, thereby also obtaining a comparable area under the curve value.
Other authors like Moulaei et al. also predicted COVID-19 mortality, thus concluding that
Random Forest was the best model, wherein they achieved an area under the curve of 1
but with data from 850 patients [83]. Our proposed XGB model obtained higher accuracy
with a smaller number of patients. The differences in results between a CNN and XGB
on structured data stem from the inherent characteristics and capabilities of each model.
CNNs are optimized to capture complex patterns in data such as images or sequences
by using deep learning to extract hierarchical features. However, in structured tabular
data, where relationships between variables are more direct and feature interpretation is
crucial, XGB and other tree-based models like RF are typically preferred. These models
are more effective at handling high dimensionality, data sparsity, and providing a clearer
interpretation of how features influence predictions, thereby adapting better to problems
where interpretability and the ability to handle nonlinear relationships are essential.

The behavior of SARS-CoV-2 was indeed peculiar, especially in the initial stages
when clinicians faced patients exhibiting significant disparities between clinical severity
and the objective analytical and imaging data obtained. These peculiarities persisted for
an extended period until epidemic control was achieved. We do not know how future
pandemics caused by other pathogens will unfold until they arise, as seen with the influenza
A virus, dengue, or any other emerging pathogen. We believe our predictive model could
prove beneficial for managing any of these or future pandemics, thus operating from
emergency services.

Another notable benefit of machine learning methodology is its capability to leverage
numerous variables with diverse characteristics. This capability is not a hindrance but
rather an advantage in developing predictive models, thus enriching them, enhancing result
accuracy, and broadening their applicability. In our study, we opted for the XGB method due
to its exceptional scalability and rapid execution speed, which are key factors contributing
to its success in ML applications. Furthermore, machine learning approaches allow multiple
variables and their complex interactions to be tested simultaneously to create predictive
models [84–86]. When applied to medicine, this makes machine learning a crucial tool
for developing these systems for various diseases in the future. In biomedical fields, XGB
has been previously used to classify patients with cancer [69,87], lupus [88], epilepsy [89],
and chronic kidney [90] disease, and we believe it could be useful for any other type of
emerging and nonemerging disease, although more studies and algorithm refinement are
needed. The XGB model is capable of assigning weight to each variable according to its
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importance in predicting COVID-19 mortality, which sets it apart from other models. We
obtained a significant weight for procalcitonin value, age, and oxygen saturation.

Once a patient arrives at the emergency department, unlike other models, the XGB
system can assign a weight to each variable based on its importance in predicting COVID-19
mortality. Through data analysis, we found significant weights for procalcitonin levels, age,
and oxygen saturation. Immediately following were variables such as LDH, C-reactive pro-
tein, the presence of infiltrates on chest X-ray, and D-dimer. This is crucial, because knowing
these variables quickly can enhance decision making regarding which patients have poorer
prognoses and should be admitted or which patients can be discharged. Similarly, under-
standing the weight of these variables can guide studies to determine effective treatments
to halt disease progression, such as investigating the efficacy of anticoagulation therapy
when D-dimer elevation first suggested worse prognosis, as studied by Moreno [91], or the
emergence of thromboembolic disease as a complication of COVID-19 in emergency de-
partments, as examined by Rodriguez [92]. This underscores the importance of identifying
these variables as early as possible.

In addition, our system also identified the importance of the patient’s need for oxygen
therapy. This could be crucial for hospital resource preparation, such as bed allocation or
even increasing their number considering the demand for oxygen supply. Such preparation
could prevent shortages in healthcare provision due to material scarcity, thereby eliminating
the need for patient transfers to other healthcare facilities to mitigate these deficiencies.
Combined with the predictive capability of the XGB system, this would enable us, based
on a pandemic like COVID-19, to derive new prognostic variables to guide initial steps in
combating a new pandemic.

In studies throughout 2021, age and oxygen saturation were also shown to be key
factors in the mortality of these patients, as analyzed by Losonczy G et al. [93]. We were
surprised by the importance the system assigns to the procalcitonin variable in COVID-19
patient mortality, which could be interpreted due to the possible coexistence of bacterial
infections in patients with viral infections, as described by Jennie Han et al. [93]. This
logically increases the severity of the patient and worsens their prognosis, thus emphasizing
the importance of early treatment, as procalcitonin is a well-known marker in emergency
services [94].

A mortality prediction model was used with clinical, analytical, and radiological
data [21,23]. It was found that the use of ML could achieve better performance more
quickly for the prediction of such emergency patients. The first wave of COVID-19 and AI
was used for analysis without the use of currently recognized drugs. This idea provides us
with a demonstration for future previously unknown emerging diseases, where the speed
of results is necessary compared to the traditional statistical system.

The recent COVID-19 pandemic has taught us that all healthcare systems need to be
organized and prepared to respond to any infectious disease. In this regard, the threat of
a new pandemic will always loom. During the World Government Summit, the Director
General of the World Health Organization (WHO), Tedros Adhanom Ghebreyesus, pre-
dicted that there will be another pandemic, although it is uncertain when, and it could
be caused by another respiratory virus (such as influenza, another coronavirus, or an
unknown disease). He also acknowledged that the world “remains unprepared for a new
pandemic” [95].

Since mid-2023, the WHO has issued a statement urging all countries to prepare for
new emerging global threats. The measures proposed include increased investment, pro-
moting coordination and cooperation among countries, and emphasizing priority actions
based on past events. During health crises like pandemics, there is a risk of emergency ser-
vices becoming overwhelmed, which is why triage systems exist to prioritize patients based
on severity. Currently, the five most important triage models worldwide are the following:
the Canadian Emergency Department Triage and Acuity Scale (CTAS), the Australasian
Triage Scale (ATS), the Emergency Severity Index (ESI), the Manchester Triage System
(MTS), and the Sistema Español de Triaje (SET). These models assess specific variables
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related to airway, breathing, circulation, neurological disability, and patient exposure to
categorize emergency services into five priority levels. These variables are assessed and
inputted by healthcare personnel.

Our goal is to use AI to develop a system that, as it gathers data, can self-train to
quickly detect patients at potential risk of transmitting infectious diseases during emergen-
cies. This system aims to initiate early organizational prevention measures such as placing
patients in individual isolation rooms, ensuring mask use, proper hand hygiene, and even
employing Personal Protective Equipment (PPE). This approach would enhance health-
care professionals’ safety and disrupt the transmission chain among patients. Therefore,
implementing our AI model would introduce a novel system to enhance emergency triage
capacity and ensure that healthcare professionals are equipped with appropriate protective
measures to mitigate contagion risks. It could seamlessly integrate with existing triage
models used worldwide in emergency services.

Other advantages of this triage method would include the quicker identification
of critically ill patients, improved prioritization, optimized patient flow, the prevention
of emergency department overcrowding, and, ultimately, the enhancement of medical
care quality.

Compared to other machine learning algorithms, the proposed model based on XG-
Boost 2.1.0 (XGB) offers several significant advantages. XGB is renowned for its ability to
efficiently handle complex and large datasets due to its optimized implementation and
capability to parallelize the training process. Moreover, XGB can manage a variety of
data types and variables, including numeric and categorical, without requiring extensive
preprocessing. This versatility makes it suitable for a wide range of applications.

Another key advantage of XGB is its ability to capture nonlinear and complex relation-
ships among variables, which is achieved through its sequential tree-building approach
that incrementally improves the model. This boosting approach enhances model accuracy
by focusing on residual errors from previous iterations, which is particularly beneficial in
problems where the relationships between features and the target variable are challenging
to model linearly.

Additionally, XGB provides built-in tools for feature importance selection and model
evaluation, thus facilitating the interpretation and optimization of the final model. Its
capability to handle imbalanced data and resistance to overfitting are also standout features
that make it preferred in scenarios where generalization and accuracy are critical.

The proposed system was compared with different machine learning methods de-
scribed in the literature, as shown in Tables 3 and 4. The comparison of the systems
demonstrated a significant improvement in XGB compared to the other methods studied.
The GNB and BLDA methods yielded lower performance than the other systems across all
analyzed parameters, with values close to AUC = 76 and recall = 80%. The method that
came closest to the precision values of the proposed method was RF, which achieved an
AUC value of 89% and recall = 89%. It is noteworthy that the proposed method achieved a
balanced radar plot between the training and test phases. This results in a reliable tool that
facilitates automatic analysis to assist in predicting mortality in future pandemics.

A limitation of our study could be the wide diversity among the collected patients.
We acknowledge the variability, ranging from critically ill to minimally symptomatic
individuals in our series, which could introduce bias. However, we consider this diversity
potentially advantageous for future pandemics, as the status of patients—whether critical
or noncritical—can change rapidly. Additionally, one can consider the preservation some
physical structures and physical properties, such as long time behavior, maximum principle,
singular solutions, and positivity preservation [96–98].

6. Conclusions

The aim of this study is to create a useful and innovative tool to streamline triage
systems in hospital emergency services using machine learning algorithms and to identify
the most predictive variables in the process.
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Procalcitonin has proven to be a significant predictor of mortality in COVID-19 patients.
Other clinical, analytical, and radiological factors include age, initial oxygen saturation in
the emergency department, LDH levels, C-reactive protein, and chest X-ray with peripheral
interstitial infiltrates—in that order.

These findings underscore that XGBoost (XGB) is a valuable and innovative tool in
emergency triage systems to guide patient care pathways during future pandemics, thus
drawing from the example of COVID-19. Therefore, applying artificial intelligence for
COVID-19 and future pandemics can significantly enhance detection, response, and disease
management capabilities, thereby saving lives and mitigating public health impacts.
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