Wax Protrusions on Anti-Adhesive Plant Surfaces and Their Interactions with Insect Adhesive Pads: A Mechanical Interpretation
Abstract
:1. Introduction
2. Plant Waxes, Their Properties, and Fracture Behavior
2.1. Structure of Plant Waxes
2.2. Mechanical Properties of Plant Waxes
2.3. Deformation and Fracture of Plant Wax Structures
2.3.1. Euler Buckling of Wax Projections
2.3.2. Elastoplastic Buckling of Wax Columns
2.3.3. Bending of Wax Beams: Elastoplastic Bending
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Federle, W.; Labonte, D. Dynamic biological adhesion: Mechanisms for controlling attachment during locomotion. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190199. [Google Scholar] [CrossRef] [PubMed]
- Endlein, T.; Ji, A.; Samuel, D.; Yao, N.; Wang, Z.; Barnes, W.J.P.; Federle, W.; Kappl, M.; Dai, Z. Sticking like sticky tape: Tree frogs use friction forces to enhance attachment on overhanging surfaces. J. R. Soc. Interface 2013, 10, 20120838. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-I.; Kim, Y.-T.; Kim, D.-E. Adhesion characteristics of the snail foot under various surface conditions. Int. J. Precis. Eng. Manuf. 2010, 11, 623–628. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Li, L.X. Study on the structural parameters and adhesive force of gecko seta. J. Adhes. 2020, 96, 1449–1465. [Google Scholar] [CrossRef]
- Langowski, J.K.A.; Dodou, D.; Kamperman, M.; van Leeuwen, J.L. Tree frog attachment: Mechanisms, challenges, and perspectives. Front. Zool. 2018, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Orndorf, N.; Garner, A.M.; Dhinojwala, A. Polar bear paw pad surface roughness and its relevance to contact mechanics on snow. J. R. Soc. Interface 2022, 19, 20220466. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny, T.W.; Fearing, R.; Full, R.J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685. [Google Scholar] [CrossRef]
- Autumn, K.; Sitti, M.; Liang, Y.A.; Peattie, A.M.; Hansen, W.R.; Sponberg, S.; Kenny, T.W.; Fearing, R.; Israelachvili, J.N.; Full, R.J. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 2002, 99, 12252–12256. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Wang, W.; Shen, H.; Feng, X.; Zhang, H.; Li, Q.; Sun, Y.; Wu, H.; Ji, A. Detachment Behavior of Gecko Toe in Functional Strategies for Bionic Toe. J. Bionic Eng. 2024, 21, 707–717. [Google Scholar] [CrossRef]
- Gorb, S.N. The design of the fly adhesive pad: Distal tenent setae are adapted to the delivery of an adhesive secretion. Proc. R. Soc. London. Ser. B Biol. Sci. 1998, 265, 747–752. [Google Scholar] [CrossRef]
- Sudersan, P.; Kappl, M.; Pinchasik, B.-E.; Butt, H.-J.; Endlein, T. Wetting of the tarsal adhesive fluid determines underwater adhesion in ladybird beetles. J. Exp. Biol. 2021, 224, jeb242852. [Google Scholar] [CrossRef] [PubMed]
- van den Boogaart, L.M.; Langowski, J.K.A.; Amador, G.J. Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics 2022, 7, 134. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W.; Neinhuis, C.; Cutler, D.; Ditsch, F.; Meusel, I.; Theisen, I.; Wilhelmi, H. Classification and terminology of plant epicuticular waxes. Bot. J. Linn. Soc. 1998, 126, 237–260. [Google Scholar] [CrossRef]
- Jeffree, C.E. The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. Insects Plant Surf. 1986, 5, 23–64. [Google Scholar]
- Tunstad, S.A.; Bull, I.D.; Rands, S.A.; Whitney, H.M. The cuticular wax composition and crystal coverage of leaves and petals differ in a consistent manner between plant species. Open Biol. 2024, 14, 230430. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W. Scanning electron microscopy of the epidermal surface in plants. In Scanning Electron Microscopy in Taxonomy and Functional Morphology; Claugher, D., Ed.; Clarendon Press: Oxford, UK, 1990; Volume 41, pp. 69–94. [Google Scholar]
- Bargel, H.; Koch, K.; Cerman, Z.; Neinhuis, C. Evans Review No. 3: Structurefunction relationships of the plant cuticle and cuticular waxes a smart material? Funct. Plant Biol. 2006, 33, 893–910. [Google Scholar] [CrossRef] [PubMed]
- Weißinger, L.; Arand, K.; Bieler, E.; Kassemeyer, H.-H.; Breuer, M.; Müller, C. Physical and Chemical Traits of Grape Varieties Influence Drosophila suzukii Preferences and Performance. Front. Plant Sci. 2021, 12, 664636. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Romano, D.; Miraglia, M.; Ge, W.; Stefanini, C. Effect of Substrates’ Compliance on the Jumping Mechanism of Locusta migratoria. Front. Bioeng. Biotechnol. 2020, 8, 661. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dong, S.; Zhou, Q. Slippery Surface of Nepenthes alata Pitcher: The Role of Lunate Cell and Wax Crystal in Restricting Attachment Ability of Ant Camponotus japonicus Mayr. J. Bionic Eng. 2016, 13, 373–387. [Google Scholar] [CrossRef]
- Jeffree, C.E. The Fine Structure of the Plant Cuticle. In Biology of the Plant Cuticle; Riederer, M., Müller, C., Eds.; Blackwell: Oxford, UK, 2006; Volume 23, pp. 11–125. [Google Scholar]
- Jetter, R.; Kunst, L.; Samuels, A.L. Composition of plant cuticular waxes. In Biology of the Plant Cuticle; Riederer, M., Müller, C., Eds.; Blackwell: Oxford, UK, 2006; Volume 23, pp. 148–181. [Google Scholar]
- Kirkwood, R.C. Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic. Sci. 1999, 55, 69–77. [Google Scholar] [CrossRef]
- Kovalev, A.; Belyaeva, I.A.; von Hofen, C.; Gorb, S.; Shamonin, M. Magnetically Switchable Adhesion and Friction of Soft Magnetoactive Elastomers. Adv. Eng. Mater. 2022, 24, 2200372. [Google Scholar] [CrossRef]
- Chen, S.; Qian, Z.; Fu, X.; Wu, X. Magnetically Tunable Adhesion of Magnetoactive Elastomers’ Surface Covered with Two-Level Newt-Inspired Microstructures. Biomimetics 2022, 7, 245. [Google Scholar] [CrossRef]
- Meusel, I.; Neinhuis, C.; Markstädter, C.; Barthlott, W. Chemical Composition and Recrystallization of Epicuticular Waxes: Coiled Rodlets and Tubules. Plant Biol. 2000, 2, 462–470. [Google Scholar] [CrossRef]
- Ensikat, H.J.; Boese, M.; Mader, W.; Barthlott, W.; Koch, K. Crystallinity of plant epicuticular waxes: Electron and X-ray diffraction studies. Chem. Phys. Lipids 2006, 144, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Jetter, R.; Riederer, M. Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors influencing crystal habits. Planta 1994, 195, 257–270. [Google Scholar] [CrossRef]
- Jeffree, C.E.; Baker, E.A.; Holloway, P.J. Ultrastructure and recrystallisation of plant epicuticular waxes. New Phytol. 1975, 75, 539–549. [Google Scholar] [CrossRef]
- Jetter, R.; Riederer, M. In vitro Reconstitution of Epicuticular Wax Crystals: Formation of Tubular Aggregates by Long-Chain Secondary Alkanediols. Bot. Acta 1995, 108, 111–120. [Google Scholar] [CrossRef]
- Koch, K.; Ensikat, H.-J. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 2008, 39, 759–772. [Google Scholar] [CrossRef]
- Gorb, E.V.; Gorb, S.N. Insect attachment on waxy plant surfaces: The effect of pad contamination by different waxes. Beilstein J. Nanotechnol. 2024, 15, 385–395. [Google Scholar] [CrossRef]
- Gorb, E.V.; Haas, K.; Henrich, A.; Enders, S.; Barbakadze, N.; Gorb, S.N. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. J. Exp. Biol. 2005, 208, 4651–4662. [Google Scholar] [CrossRef]
- Craig, R.G.; Eick, J.D.; Peyton, F.A. Strength Properties of Waxes at Various Temperatures and Their Practical Application. J. Dent. Res. 1967, 46, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Shellhammer, T.H.; Rumsey, T.R.; Krochta, J.M. Viscoelastic properties of edible lipids. J. Food Eng. 1997, 33, 305–320. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Timoshenko, S.; Gere, J.M. Mechanics of Materials; Van Nostrand Reinhold: New York, NY, USA, 1972. [Google Scholar]
- Gorb, E.V.; Gorb, S.N. Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol. Exp. Et Appl. 2002, 105, 13–28. [Google Scholar] [CrossRef]
- Borodich, F.M.; Gorb, E.V.; Gorb, S.N. Fracture behaviour of plant epicuticular wax crystals and its role in preventing insect attachment: A theoretical approach. Appl. Phys. A 2010, 100, 63–71. [Google Scholar] [CrossRef]
- Oelschlägel, B.; Gorb, S.N.; Wanke, S.; Neinhuis, C. Structure and biomechanics of trapping flower trichomes and their role in the pollination biology of Aristolochia plants (Aristolochiaceae). New Phytol. 2009, 184, 988–1002. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nano-Micro Lett. 2017, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Holloway, P.J. Chemistry of leaf waxes in relation to wetting. J. Sci. Food Agric. 1969, 20, 124–128. [Google Scholar] [CrossRef]
- Scherge, M.; Gorb, S.N. Biological Micro- and Nanotribology: Nature’s Solutions; Springer: Berlin, Germany, 2001. [Google Scholar]
- Hasan, M.S.; Nosonovsky, M. Lotus Effect and Friction: Does Nonsticky Mean Slippery? Biomimetics 2020, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, T.; Robertson, G.W.; Griffiths, D.W.; Birch, A.N.E. Epicuticular wax composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.). Phytochemistry 1999, 52, 1239–1254. [Google Scholar] [CrossRef]
- Shepherd, T.; Robertson, G.W.; Griffiths, D.W.; Birch, A.N.E. Epicuticular wax ester and triacylglycerol composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.). Phytochemistry 1999, 52, 1255–1267. [Google Scholar] [CrossRef]
- Matas, A.J.; Sanz, M.J.; Heredia, A. Studies on the structure of the plant wax nonacosan-10-ol, the main component of epicuticular wax conifers. Int. J. Biol. Macromol. 2003, 33, 31–35. [Google Scholar] [CrossRef]
- Thomas, J.; Gorb, S.N.; Büscher, T.H. Comparative analysis of the ultrastructure and adhesive secretion pathways of different smooth attachment pads of the stick insect Medauroidea extradentata (Phasmatodea). Beilstein J. Nanotechnol. 2024, 15, 612–630. [Google Scholar] [CrossRef]
- Bergmann, J.B.; Moatsou, D.; Steiner, U.; Wilts, B.D. Bio-inspired materials to control and minimise insect attachment. Bioinspir. Biomim. 2022, 17, 051001. [Google Scholar] [CrossRef]
- Min, H.; Baik, S.; Lee, J.; Kim, D.W.; Song, J.H.; Kim, K.H.; Kim, M.-S.; Pang, C. Enhanced biocompatibility and multidirectional wet adhesion of insect-like synergistic wrinkled pillars with microcavities. Chem. Eng. J. 2022, 429, 132467. [Google Scholar] [CrossRef]
- Thomson, R. Theory of chemically assisted fracture. J. Mater. Sci. 1980, 15, 1014–1026. [Google Scholar] [CrossRef]
- Wang, B.; Xiong, X.; Duan, J.; Wang, Z.; Dai, Z. Compliant Detachment of Wall-Climbing Robot Unaffected by Adhesion State. Appl. Sci. 2021, 11, 5860. [Google Scholar] [CrossRef]
- Lee, G.; Kim, H.; Seo, K.; Kim, J.; Kim, H.S. MultiTrack: A multi-linked track robot with suction adhesion for climbing and transition. Robot. Auton. Syst. 2015, 72, 207–216. [Google Scholar] [CrossRef]
- Duan, W.; Yu, Z.; Cui, W.; Zhang, Z.; Zhang, W.; Tian, Y. Bio-inspired switchable soft adhesion for the boost of adhesive surfaces and robotics applications: A brief review. Adv. Colloid Interface Sci. 2023, 313, 102862. [Google Scholar] [CrossRef]
- Arena, E.; Arena, P.; Strauss, R.; Patané, L. Motor-Skill learning in an insect inspired neuro-computational control system. Front. Neurorobot. 2017, 11, 12. [Google Scholar] [CrossRef]
- Bianco, R.; Nolfi, S. Evolving the neural controller for a robotic arm able to grasp objects on the basis of tactile sensors. Adapt. Behav. 2004, 12, 37–45. [Google Scholar] [CrossRef]
- Yu, N.; Yu, H. A map construction method based on the cognitive mechanism of rat brain hippocampus. Comput. Model. Eng. Sci. 2022, 131, 1147–1169. [Google Scholar] [CrossRef]
Temperature | E (×106 Pa) | ||
---|---|---|---|
1806.5 | 10.94 | 18.775 | |
772.2 | 5.72 | 9.03 |
Plant Species | Aquilegia vulgaris | Berberis vulgaris | Chelidonium majus | Prunus domestica | Aristolochia fimbriata |
---|---|---|---|---|---|
580 | 730 | 830 | 580 | 6310 | |
170 | 160 | 180 | 260 | 92 | |
8.18 | 10.94 | 11.06 | 5.35 | 164.6 |
Plant Species | Aquilegia vulgaris | Berberis vulgaris | Chelidonium majus | Prunus domestica | Aristolochia fimbriata |
---|---|---|---|---|---|
170 | 160 | 180 | 260 | 92 | |
28.7 | 23.9 | 34.0 | 102.5 | 4.5 | |
43 | 39 | 51 | 154 | 6.8 |
Plant Species | Aquilegia vulgaris | Berberis vulgaris | Chelidonium majus | Prunus domestica | Aristolochia fimbriata |
---|---|---|---|---|---|
580 | 730 | 830 | 580 | 6310 | |
91 | 115 | 131 | 91 | 994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borodich, F.M.; Gao, Z.; Gorb, E.V.; Gorb, S.N.; Jin, X. Wax Protrusions on Anti-Adhesive Plant Surfaces and Their Interactions with Insect Adhesive Pads: A Mechanical Interpretation. Biomimetics 2024, 9, 442. https://doi.org/10.3390/biomimetics9070442
Borodich FM, Gao Z, Gorb EV, Gorb SN, Jin X. Wax Protrusions on Anti-Adhesive Plant Surfaces and Their Interactions with Insect Adhesive Pads: A Mechanical Interpretation. Biomimetics. 2024; 9(7):442. https://doi.org/10.3390/biomimetics9070442
Chicago/Turabian StyleBorodich, Feodor M., Zaida Gao, Elena V. Gorb, Stanislav N. Gorb, and Xiaoqing Jin. 2024. "Wax Protrusions on Anti-Adhesive Plant Surfaces and Their Interactions with Insect Adhesive Pads: A Mechanical Interpretation" Biomimetics 9, no. 7: 442. https://doi.org/10.3390/biomimetics9070442
APA StyleBorodich, F. M., Gao, Z., Gorb, E. V., Gorb, S. N., & Jin, X. (2024). Wax Protrusions on Anti-Adhesive Plant Surfaces and Their Interactions with Insect Adhesive Pads: A Mechanical Interpretation. Biomimetics, 9(7), 442. https://doi.org/10.3390/biomimetics9070442