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Abstract: Insect attachment devices enhance adhesion to complex-geometry substrates by increasing
the real contact area. In nature, insects mainly interact with plant surfaces that are often covered
by 3D wax structures. Here, we describe, discuss, and give a mechanical interpretation of plant
waxes and the possible fracture mechanisms of these wax structures during their interactions with the
adhesive pads of insects. It is argued that these plant surface microstructures significantly influence
insect adhesion through reducing the contact area and contaminating the insect pads.
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1. Introduction

Exploring biomimetics in relation to insect attachment devices may help to prepare
artificial adhesives with numerous attachment–detachment cycles. Indeed, in order to
adapt to complex and changing environments, insects, geckos, tree frogs, and other animals
have evolved complex micro- and nanostructures on their legs to control the adhesion
function on various natural substrates. On the other hand, plants have developed some
mechanisms to prevent insects from adhering to their surfaces. Many leaves and fruits are
covered by crystalline wax structures that decrease insects’ abilities to adhere to these sur-
faces. Here, we discuss the mechanical properties of plant waxes and present a mechanical
interpretation of the mechanisms of fracturing in these 3D wax projections. These models
explain the microscopic mechanisms of insect attachment to plant surfaces from a multidis-
ciplinary perspective, providing a theoretical basis for understanding the basic principles
of biological attachment and transferring them to biomimetic applications. Hence, they
may be used to explain the behavior of biological and artificial anti-adhesive surfaces with
micro- and nanostructures.

The animals mentioned above can modulate attachment strength via shear-sensitive
adhesive pads and manage detachment by altering the angle of attachment of the limb to
the substrate [1–4]. This rapid ability of organisms to establish and release attachment has
significantly inspired research during last decades. Numerous researchers have elucidated
the mechanisms behind biological climbing. When organisms respond to complex environ-
ments with different modes of locomotion, a combination of strong adhesion (attachment
force perpendicular to a substrate) and strong friction (attachment force parallel to a sub-
strate) is required [5,6]. Biological adhesion devices can be divided into two types: wet and
dry. For example, spiders and geckos use dry adhesion, which is primarily achieved by
intermolecular forces (Van der Waals) between deformable setae connected to the adhesive
pad and the substrate [7–9]. Wet adhesion occurs when organisms secrete fluid on their feet
and use capillary and viscous forces to adhere to the substrate [10–12]. Here, we concentrate
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on discussing the adhesion of insects, spiders, and geckos to surfaces contaminated by
particulate materials of a certain shape, in particular by plant wax crystals.

In order to understand the mechanical principle of strong adhesion from some special-
ized plant surfaces, this review focuses mainly on exploring the interaction between the
insect attachment organs and the plant surface. Plant surfaces exhibit a diverse array of
textures in the form of micro- and nanostructures. These can be either smooth or structured,
and the latter ones can be covered by different types of hairs (trichomes) or microscopic
crystals of epicuticular waxes of very diverse shapes [13–15].

Plant crystalline waxes serve various functions, as discussed in reviews by Barthlott [16]
and Bargel et al. [17]. Specifically, they protect plants by inhibiting insect attachment to
their surfaces. This is important because the majority of insect species interact with plants,
and therefore they typically need to adhere effectively to plant surfaces [18–20].

It is known that plant waxes are made up of a number of chemical substances [21–23].
Understanding the physical and chemical properties of plant waxes helps to improve
our understanding of the mechanisms behind the anti-insect-attachment ability of plant
surfaces. On one hand, understanding the rapid and reversible attachment mechanisms
in biological systems creates new opportunities for the development of biomimetic ap-
plications, such as climbing robots, grippers, green adhesives, etc. On the other hand,
understanding the effective anti-adhesive mechanisms of plant surfaces might help in the
development of novel green anti-adhesive coatings or switchable controllable attachment
devices employing switchable changes in the surface microstructure, as described in [24,25].

2. Plant Waxes, Their Properties, and Fracture Behavior
2.1. Structure of Plant Waxes

Plants have developed cuticles to protect their internal tissues. These cuticles exhibit
complex ultrastructures and chemical compositions in response to various environmental
stresses and interactions with microorganisms, insects, and other abiotic and biotic factors.
The cuticle may be impregnated with intracuticular waxes, or waxes may be transported
across the cuticle and deposited on its surface as epicuticular waxes. Epicuticular waxes
accumulate in forms ranging from amorphous films to microcrystalline structures [13].
Electron microscopy and X-ray diffraction analyses [13,21,26,27] have revealed the diverse
structures of epicuticular waxes, such as massive crusts, filaments, rodlets, plates, etc.
(Figure 1). The diversity of these shapes arises from molecular self-assembly on the cuticle
surface [26,28–31].

Epicuticular waxes include several major classes of alicyclic and long-chain aliphatic
compounds, typically with homologous chain lengths in the range of C16 to C35 [21,22].
Waxes exhibit differences in their composition, abundance, relative distribution of classes,
and homolog chain lengths, which vary among plant species, plant parts, developmental
stages, and environmental factors. Microscopically small crystals frequently protrude from
the wax film, which overlays the plant cuticle, giving rise to the pruinose or powdery
appearance observed on the surfaces of numerous plant species. The length of these wax
crystals ranges from a few hundred nanometers to several micrometers. These pruinose
waxy surfaces are present on the stems, leaves, flowers, seeds, and fruits of numerous plant
species (Figure 2).

The structure of the epicuticular wax on Nepenthes alata comprises two distinct layers
and warrants a detailed examination. The upper layer is composed of separate, easily
distinguishable, irregular platelets that cover the surface [13] (Figure 3A). The crystals in the
upper layer are brittle and can easily exfoliate or break into tiny pieces. Both whole crystals
and small fragments can adhere to insect feet (Figure 3B), contaminating the attachment
organs and impeding proper contact between adhesive pads and plant surfaces, which
significantly reduces the attachment force. The lower layer is composed of interconnected
membranous platelets resembling a foam (see Figure 3C). The crystals in the lower layer
are not easily detached and can remain intact even after the removal of the upper layer.
The crystal network can withstand lateral forces from climbing insects. However, its micro-
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roughness significantly decreases the contact area with the insects’ adhesive organs, as
demonstrated in Figure 3D. This reduces the insect’s ability to attach.

sssssBiomimetics 2024, 9, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 1. Scanning electron microscopy (SEM) micrographs of waxy plant surfaces in a young stem 

of Acer negundo (a) and in adaxial (upper) leaf sides of Aloe vera (b), Aquilegia vulgaris (c), Brassica 

oleracea (d), Chelidonium majus (e), Chenopodium album (f), Iris germanica (g), Lactuca serriola (h), and 

Trifolium montanum (i). PL, wax platelets; RD, wax rodlets; TU, wax tubules. Arrows in (d) denote 

filament-like branches on top of the tubules. Scale bars: 2 μm (a,b,d,g,h) and 1 μm (c,e,f,i). 

Reproduced with permission from [32]. 
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Figure 1. Scanning electron microscopy (SEM) micrographs of waxy plant surfaces in a young stem of
Acer negundo (a) and in adaxial (upper) leaf sides of Aloe vera (b), Aquilegia vulgaris (c), Brassica oleracea
(d), Chelidonium majus (e), Chenopodium album (f), Iris germanica (g), Lactuca serriola (h), and Trifolium
montanum (i). PL, wax platelets; RD, wax rodlets; TU, wax tubules. Arrows in (d) denote filament-like
branches on top of the tubules. Scale bars: 2 µm (a,b,d,g,h) and 1 µm (c,e,f,i). Reproduced with
permission from [32].

sssssBiomimetics 2024, 9, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 1. Scanning electron microscopy (SEM) micrographs of waxy plant surfaces in a young stem 

of Acer negundo (a) and in adaxial (upper) leaf sides of Aloe vera (b), Aquilegia vulgaris (c), Brassica 

oleracea (d), Chelidonium majus (e), Chenopodium album (f), Iris germanica (g), Lactuca serriola (h), and 

Trifolium montanum (i). PL, wax platelets; RD, wax rodlets; TU, wax tubules. Arrows in (d) denote 

filament-like branches on top of the tubules. Scale bars: 2 μm (a,b,d,g,h) and 1 μm (c,e,f,i). 

Reproduced with permission from [32]. 

Epicuticular waxes include several major classes of alicyclic and long-chain aliphatic 

compounds, typically with homologous chain lengths in the range of C16 to C35 [21,22]. 

Waxes exhibit differences in their composition, abundance, relative distribution of classes, 

and homolog chain lengths, which vary among plant species, plant parts, developmental 

stages, and environmental factors. Microscopically small crystals frequently protrude 

from the wax film, which overlays the plant cuticle, giving rise to the pruinose or powdery 

appearance observed on the surfaces of numerous plant species. The length of these wax 

crystals ranges from a few hundred nanometers to several micrometers. These pruinose 

waxy surfaces are present on the stems, leaves, flowers, seeds, and fruits of numerous 

plant species (Figure 2). 

 

Figure 2. Surfaces of plants covered by epicuticular wax projections: (A) Lactuca serriola; (B) Chelido-
nium majus; (C) Chenopodium album; (D) Brassica oleracea; (E) Acer negundo; (F) Prunus domestica.
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Figure 3. Layering of wax crystals of the pitcher plant Nepenthes alata reduces insect attachment
capacity: (A) SEM image of epicuticular wax of the upper layer; (B) schematic image of contamination
of an insect adhesive microstructure (red) by wax crystals of the upper wax layer (yellow); (C) SEM
image of epicuticular wax of the lower layer; (D) schematic image of interaction between an insect
adhesive microstructure and micro-roughness of a plant. Reproduced with permission from [33].

2.2. Mechanical Properties of Plant Waxes

The following section provides a discussion of the mechanical properties of plant
waxes. Unfortunately, the available experimental information about wax stress–strain
curves is rather limited, even in the case of axially loaded samples. To the best of our
knowledge, there is no available information about multiaxial stress states. It is understood
that for moderate loads, specifically when the applied stresses are equal to a specific stress,
the one-dimensional tension–compression proportional limit σpr of crystalline materials
obeys Hooke’s law, which establishes a linear relationship between stress σ and strain ε, or
between tensile elongation or reduction δ and the force P applied to a tested specimen:

δ =
PL
AE

or σ = Eε (1)

where A represents the cross-sectional area of the specimen, E denotes a material prop-
erty (Young’s modulus or elastic modulus), and L is the length of the sample. In a one-
dimensional problem, the strain ε is calculated as δ/L, and σ is calculated as P/A.

When stresses fall between the proportional limit σpr and the yield stress σpl (σpr ≤
σ < σpl), a small region of nonlinear elastic behavior may be observed. This means that
after unloading, the sample retains its original shape, although the material’s behavior
deviates from the linear relation. If the tensile (or compressive) stress exceeds the yield
stress σpl , the sample undergoes plastic deformation upon unloading, resulting in a shape
different from its pre-loading state. Typically, σpr ∼= σpl , suggesting they are equivalent.
Brittle materials fail with minimal elongation or reduction (just a few percent) post yield
stress (point B in Figure 4). Figure 4 depicts the standard stress–strain curve for a brittle
crystalline material.

It has been observed that mechanical properties such as the Young’s modulus E,
proportional limit σpr, and compressive strength σst of waxes are generally temperature-
dependent. The details of these are shown in Table 1.
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Table 1. Mechanical properties of carnauba wax at two different temperatures [34].

Temperature E (×106 Pa) σpr (×106Pa) σst (×106Pa)

23 ◦C 1806.5 10.94 18.775
37 ◦C 772.2 5.72 9.03

For example, carnauba wax, which is extracted from the leaves of the carnauba wax
palm (Copernicia prunifera), exhibits this temperature sensitivity. It has a Poisson’s ratio
ν = 0.49 and a density ρ = 951 kg/m3. Craig et al. [34] noted that the strain before
fracture under compression for all tested waxes ranged from 2.7% to 4.3%. The samples
exhibited brittle fracture behavior. This observation of the brittle fracture characteristics of
crystalline waxes aligns with the findings from experiments on plant waxes reported in [33].
Shellhammer et al. [35] found that natural candelilla and carnauba waxes behaved similarly
to hard and elastic materials at 2% compressive strain, with candelilla wax exhibiting greater
viscosity than carnauba wax. However, both waxes demonstrated behavior more akin to
that of elastic materials compared to that of beeswax, which exhibited significantly more
viscosity and less elastic behavior.

The widespread claim that carnauba wax is the hardest known wax is supported by
evidence that it has the highest mechanical properties at the relevant temperature of all of
the waxes tested by Craig et al. [34]. However, our previous experiments [33] indicated
that other plant waxes may exhibit higher hardness and elastic modulus values compared
to carnauba wax. Specifically, depth-sensing nanoindentation on the wax of the carnivorous
plant Nepenthes alata revealed an elastic modulus of approximately E = 2.5 GPa and a
hardness of H = 0.1 GPa at T = 22 ◦C.

The elasticity of real materials significantly affects the elastic–plastic indentation pro-
cess. Initially, when the yield point is exceeded, the plastic zone is small and completely
surrounded by material that remains elastic. This results in plastic strains that are compara-
ble to the surrounding elastic strains. In such cases, the material displaced by the indenter
is absorbed by the elastic expansion of the surrounding solid. With increasing indentation
depth, the plastic zone eventually extends to the free surface, allowing displaced material
to flow plastically to the sides of the indenter. Johnson [36] suggested the following relation
between the mean pressure pm acting normal to the original surface as pm = cσpl , where
the constant c, which depends on the geometry of the indenter and the interfacial friction,
typically has a value of about 3. Initially, when yielding first occurs, the constant c is
approximately one. In the mechanics of elastic–plastic contact, it is generally accepted that
hardness is the average stress under the indenter at which the entire material yields. Using
Johnson’s calculation method, one can approximate H ≈ cσpl , 2.8 ≤ c ≤ 3. Hence, we
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can estimate for the wax of the carnivorous plant Nepenthes alata, having H = 0.1 GPa at
T = 22 ◦C, that σpl is approximately 35 MPa.

We can assume that the waxes have a bilinear diagram (Figure 5), whose reference
points A, B, and C vary with temperature. Figure 5 depicts an idealized stress–strain
diagram in two cases: (a) a bilinear diagram with strain hardening, and (b) linear elastic–
ideal plastic diagram. When stresses have absolute values less than the yield stress σpl , the
material obeys Hooke’s law (1) with E = tan α. If the absolute value of stress exceeds the
yield stress, strain hardening is approximated by a line with another slope: E1 = tan β. If
β = 0, then σ = σpl . This indicates that the wax yields without any further increase in the
external load. With Hooke’s law, calculations can proceed as follows:

εpl =
σpl

E
=

35 · 106

25 · 109 = 0.014 (2)
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Figure 5. (a) Bilinear stress–strain diagram and (b) linear elastic–ideal plastic diagram. It is noted
that tan α = E and tan β = E1, where E and E1 are Young’s modulus and the plastic hardening
modulus, respectively.

Based on the experiments conducted by Craig et al. [34], it can be assumed that the
strain at fracture is 2.7%, i.e., εst = 0.027. To plot the bilinear diagram, we need either the
slope of the linear hardening part (the tangent modulus E1) or the stress at fracture σst.
From this bilinear diagram, we derive the relation εst − εpl =

(
σst − σpl

)
/E1.

We may assume that the ratio σst/σpl of the Nepenthes alata wax is the same as that of
carnauba wax, i.e., 1.575. Therefore, we obtain εst − εpl = 0.013 = 0.575σpl/E1. Thus, E1

can be calculated as E1 = 20.125 · 106/0.013 = 1.548 · 109 Pa.

2.3. Deformation and Fracture of Plant Wax Structures
2.3.1. Euler Buckling of Wax Projections

In the mechanics of materials, long and slender structures, as plant wax projections,
subjected to axial compression are referred to as columns. First, let us analyze the stability
of tubular columns, which resemble tubular wax crystals, under compressive loading.
When the applied compressive load P increases, a slender elastic column will buckle at the
critical load Pcr, determinable using the Euler formula:

Pcr =
π2EI

(KL)2 =
π2EI(
Le f

)2 (3)
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where K represents the effective length factor, which varies depending on the boundary
conditions at the end of the column, and where effective length is defined as Le f = KL.
When a column has pinned ends, K is 1. When the base is built-in (fixed) and the top end
is free (Figure 6A), K is 2. When the base is fixed and the top is pinned (Figure 6C), K is
0.7. When both ends are built-in (Figure 6B), K is 0.5. It is plausible to assume that one end
of the wax projection is attached to the plant surface, indicating a built-in state, while the
other end is involved in adhesive interactions with the insect’s attachment organ (adhesive
pad). Insects usually rely on capillary adhesion resulting from the secretion of fluid (pad
secretion) into the contact zone between the pad and the substrate [10]. These conditions
suggest that the column may be modeled as a rod with an elastically restrained (clumped)
end, which may be represented as an elastic torsional spring at this end (Figure 6D). The
torsion spring model represents the adhesive interaction between an insect’s seta and a
wax column. Consequently, Le f = 0.6L can be considered a reasonable approximation for
the effective length of the column.

sssssBiomimetics 2024, 9, x FOR PEER REVIEW 7 of 16 
 

 

Figure 5. (a) Bilinear stress–strain diagram and (b) linear elastic–ideal plastic diagram. It is noted 

that tanα E=   and 
1

tan β E=  , where E   and 
1

E   are Young’s modulus and the plastic 

hardening modulus, respectively. 

Based on the experiments conducted by Craig et al. [34], it can be assumed that the 

strain at fracture is 2.7%, i.e., 0.027
st
ε = . To plot the bilinear diagram, we need either the 

slope of the linear hardening part (the tangent modulus 
1

E ) or the stress at fracture 
st

σ . 

From this bilinear diagram, we derive the relation ( ) 1
/

st pl st pl
ε ε σ σ E− = − .  

We may assume that the ratio /
st pl
σ σ  of the Nepenthes alata wax is the same as that 

of carnauba wax, i.e., 1.575. Therefore, we obtain 1
0.013 0.575 /

st pl pl
ε ε σ E− = = . Thus, 

1
E  

can be calculated as 6 9

1
20.125 10 / 0.013 1.548 10  PaE =  =  . 

2.3. Deformation and Fracture of Plant Wax Structures 

2.3.1. Euler Buckling of Wax Projections 

In the mechanics of materials, long and slender structures, as plant wax projections, 

subjected to axial compression are referred to as columns. First, let us analyze the stability 

of tubular columns, which resemble tubular wax crystals, under compressive loading. 

When the applied compressive load P  increases, a slender elastic column will buckle at 

the critical load 
cr

P , determinable using the Euler formula: 

( ) ( )
= =

2 2

2 2cr

ef

π EI π EI
P

KL L

 
(3) 

where K  represents the effective length factor, which varies depending on the boundary 

conditions at the end of the column, and where effective length is defined as ef
L KL= . 

When a column has pinned ends, K  is 1. When the base is built-in (fixed) and the top 

end is free (Figure 6A), K  is 2. When the base is fixed and the top is pinned (Figure 6C), 
K  is 0.7. When both ends are built-in (Figure 6B), K  is 0.5. It is plausible to assume that 

one end of the wax projection is attached to the plant surface, indicating a built-in state, 

while the other end is involved in adhesive interactions with the insect’s attachment organ 

(adhesive pad). Insects usually rely on capillary adhesion resulting from the secretion of 

fluid (pad secretion) into the contact zone between the pad and the substrate [10]. These 

conditions suggest that the column may be modeled as a rod with an elastically restrained 

(clumped) end, which may be represented as an elastic torsional spring at this end (Figure 

6D). The torsion spring model represents the adhesive interaction between an insect’s seta 

and a wax column. Consequently, 0.6
ef

L L=   can be considered a reasonable 

approximation for the effective length of the column. 

 

Figure 6. Some boundary conditions for compressed columns: (A) a column with built-in and free
ends; (B) a column with both ends built-in; (C) a column with built-in and pinned ends; (D) a column
with built-in and elastically clumped ends. K is the effective length factor for different boundary
conditions at the end of the column.

2.3.2. Elastoplastic Buckling of Wax Columns

The Euler formula in Formula (4) assumes a linearly elastic stress–strain relationship
and becomes invalid when compressive stresses in the column exceed the yielding stress.
Consequently, inelastic buckling must be considered. Engesser and Jasinski developed this
theory, as cited in [37]. According to this theory, the critical load Pcr at which a slender
elastic–plastic column buckles can be calculated as follows:

Pcr =
π2Er I

(KL)2 (4)

where Er represents the column’s reduced modulus. For a rectangular cross-section, we
can calculate this modulus using Formula (5). This serves as an approximation for columns
with circular cross-sections.

Er =
4EE1(√

E +
√

E1

)2 (5)

Given the moduli of elasticity, E = 2.5 GPa and E1 = 1.548 GPa, for the plant wax, the
reduced modulus of the column can be calculated as follows:

Er =
4 · 2.5 · 1.548(√
2.5 +

√
1.548

)2 = 1.94 GPa (6)
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These formulas are applicable to slender columns. To characterize the behavior of a
column, it is essential to introduce the slenderness ratio λ = Le f /r, where r =

√
I/A, the

radius of gyration of the column’s cross-section in the bending plane. Here, A denotes
the cross-section’s area, and I represents the moment of inertia for the cross-sectional area.
For a circular cross-section with diameter D, A = πD2/4 and I = πD4/64, the radius of
gyration is calculated below:

r =

√
I
A

=

√
4D4

64D2 =
D
4

(7)

It is important to understand the difference between the aspect ratio and the slen-
derness of a column. The aspect ratio is a purely geometric characteristic, defined as the
ratio between the largest and smallest dimensions of the column, whereas the slenderness
depends on both the geometry, represented by the length L and the radius of gyration r of
the column’s cross-section, and the loading conditions, indicated by the effective length
factor K. For instance, although all cases A–D in Figure 6 share the same aspect ratio
L/D, their slenderness values differ significantly. The Euler formula in Formula (3) is
applicable solely to purely linearly elastic materials; therefore, the transition from elastic to
the elastic–plastic case, i.e., from Formula (4) to Formula (3), should be at the critical force
such that it causes the critical stress to be equal to the yield stress, as follows:

σcr =
Pcr

A
=

π2EI
AL2

e f
= σpl (8)

Consequently, the critical slenderness ratio can be calculated as follows:

λc =

( Le f

r

)
c
=

√
π2E
σpl

(9)

Hence, the relationship between the average compressive stress σ and slenderness
ratio λ for plant waxes may be represented by the graph shown in Figure 7.
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Figure 7. Relationship between plant wax compressive stress and slenderness ratio. In region BC,
the critical stress at the yield limit σpl is given by σcr = π2E

λ2 . In region AB, the critical stress at the

strength limit σst is given by σcr =
π2Er

λ2 . When λ ≤ λcpl , the material will not buckle, as it has already
exceeded the strength limit, and will instead be crushed.
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Substituting the values for plant wax, we obtain the following critical slenderness ratio:

λc =

√
9.87 · 2.5 · 109

35 · 106 = 26.5 (10)

Hence, the slenderness ratio for columns with K = 0.6 and gyration radius r = D/4 is
as follows:

λ =
0.6L

r
=

2.4L
D

(11)

Gorb et al. [38] report that certain plants, such as Aquilegia vulgaris (European columbine),
Berberis vulgaris (common barberry), Chelidonium majus (white goosefoot), and Prunus
domestica (European plum), exhibit tubular epicuticular wax crystals. Aristolochia fimbriata
(white-veined Dutchman’s pipe) crystals, as well as those of many other Aristolochia species,
also exhibit this tubular shape, but at a very high slenderness ratio, as shown in Figure 8.
Table 2 presents the average lengths and diameters of these crystal columns, along with the
calculated slenderness ratios (λ = Le f /r) for all five plants mentioned above.
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Figure 8. (A) White-veined Dutchman’s pipe (Aristolochia fimbriata) flower; (B) scanning electron
microscopy micrographs of trichomes on the inner surface of the flower trap; (C) wax crystals
covering the trichome surface that may buckle.

Table 2. Geometrical parameters of the wax columns in selected plant species: L—length;
D—diameter; λ—slenderness ratio.

Plant Species Aquilegia
vulgaris

Berberis
vulgaris

Chelidonium
majus

Prunus
domestica

Aristolochia
fimbriata

L(nm) 580 730 830 580 6310
D(nm) 170 160 180 260 92

λ = Le f /r 8.18 10.94 11.06 5.35 164.6

Clearly, among the tubular-shaped plant wax crystals studied [39,40], only Aristolochia
fimbriata can elastically buckle, as the slenderness ratios for the other plants fall below the
critical value of 26.5.

Therefore, the crystals from these four plants do not meet the length criteria for
the Euler formula approximation. Formula (3) applies solely under stresses below the
material’s ultimate compressive stress σst. Consequently, the critical slenderness ratio
λcpl for discontinuing the use of Formula (3) due to elastic–plastic buckling is identified
as follows:

λcpl =

( Le f

r

)
cpl

=

√
π2Er

σst
(12)
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The plant critical slenderness ratio λcpl can be obtained by substituting the specified
plant wax values into Formula (12), as follows:

λcpl =

√
9.87 · 1.94 · 109

55 · 106 = 18.66 (13)

Plotting a diagram of the average stress against the slenderness ratio (Figure 7) reveals
that, aside from Aristolochia fimbriata, which buckles in the elastic regime, crystals from all
other studied plants do not buckle in either the elastic or elastic–plastic regimes given the
calculated slenderness ratios. Indeed, these short columns are not susceptible to failure
through a pure buckling mechanism. Failure occurs only when compressive stress reaches
the wax’s strength limit. Therefore, it is necessary to account for the bending of wax crystals
under simultaneous axial and orthogonal loading.

There are two restrictions in the application of the above Euler formula: One is that the
default compression column is perfectly straight before the load is applied, but in reality,
the presence of tubular columnar plant wax crystals does not guarantee perfect straightness.
Secondly, Euler’s formula assumes that the applied load passes exactly through the centroid
of the compressed column cross-section, but in reality, the applied load will always deviate
slightly from the centroid of the cross-section. While the Euler formula provides a useful
framework for understanding the behavior of compressed columns, its assumptions may
not fully capture the complexities of real-world scenarios, particularly when dealing with
tubular columnar plant wax crystals. As highlighted, the assumption of perfect straightness
before the application of load overlooks the inherent imperfections present in natural
structures. These discrepancies underscore the need for a more detailed consideration
of the loading schemes of such structures. Transitioning from the limitations of Euler’s
formula, our study delves into the realm of the elastoplastic bending of beams.

2.3.3. Bending of Wax Beams: Elastoplastic Bending

We aim to provide a more accurate understanding of the mechanical response of
columnar plant wax crystals under various loading conditions and aspect ratios.

Let us consider the case in which the wax material exhibits linear elastic and ideal
plastic behavior (Figure 9b). Hence, the beam material is assumed to obey Hooke’s law up
to the yield stress σpl , beyond which it deforms plastically without any hardening.
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Figure 9. (a) A built-in wax rod (length L) under the action of a transverse load Q; (b) free-body
diagram for this wax rod (length L) under the action of a transverse load Q and moment M.

So far, we have considered only loads acting along the axis of the wax structure (the
rod of length L). If the load is inclined, then it can be decomposed into the vertical load
P and the component Q, perpendicular to the axis of the rod. Let us consider now the
results of the actions of the force Q. If the rod is built-in as part of the cuticle, then it can be
modeled as a cantilever beam (see its free body diagram in Figure 9).
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To illustrate the main idea, we will consider a simple case with a constant square
cross-section of the rod. Let the size of the square have an edge length D (see Figure 10a).
Initially, the wax exhibits linear elastic behavior and the stress distribution is linear, and
the maximum stress at the built-in end is σmax = M · D/2I, I = D4/6, M = Q · L (see
Figure 10b). However, the maximum stress cannot be greater than σpl . Hence, if Q increases,
then the stress distribution becomes as it is shown in Figure 10c. As soon as Q reaches the
value Q = σpl D3/4L, a plastic hinge (see Figure 10d) appears in the built-in cross-section,
and the rod breaks. Similar calculations can be carried out for tubular cross-sections of rods.
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stress distribution when stresses in some fibers reach the plastic limit; (d) the plastic hinge stresses.

Let us consider an example [39]. It is assumed that the example insect (a syrphid
fly) has a mass of 160 · 10−6kg. During locomotion, the syrphid fly’s weight is distributed
across half of its legs, resulting in an approximate load of 523.2 nN per foot. Each fly foot
consists of two pulvilli with hairy adhesive pads. Such structures help the insect to increase
the actual area of its attachment to the counterpart surface. The force exerted by each
bristle on a wax crystal, calculated from the density of the bristles on the adhesive pads,
is G = 157.5 nN. When the stress in the beam’s outermost fiber meets the yield stress σ,
this is defined as the plastic yield moment, Mpl . For a beam of a square cross-section with
dimension D, Mpl is calculated as follows:

Mpl =
σpl D3

6
(14)

For the five plant wax crystals mentioned above, each has a different size D, and the
corresponding yield moments Mpl are given in Table 3 below.

Table 3. Yield moments of different plant wax crystals.

Plant Species Aquilegia
vulgaris

Berberis
vulgaris

Chelidonium
majus

Prunus
domestica

Aristolochia
fimbriata

D(nm) 170 160 180 260 92
Mpl

(
×10−15 N · m

)
28.7 23.9 34.0 102.5 4.5

Mp
(
×10−15 N · m

)
43 39 51 154 6.8

If the transverse component of the applied force is Q, i.e., if Q is the force applied
transversely to the crystal axis, then the bending moment is M(L) = QL. If the plant surface
has an angle θ with the horizontal plane, then Q = G sin θ. If θ = 90◦, then G = 157.5 nN.
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By calculation, the bending moment value ML on the wax crystal can be obtained as shown
in Table 4.

Table 4. Bending moments applied by insects to plant wax crystals.

Plant Species Aquilegia
vulgaris

Berberis
vulgaris

Chelidonium
majus

Prunus
domestica

Aristolochia
fimbriata

L(nm) 580 730 830 580 6310
ML

(
×10−15 N · m

)
91 115 131 91 994

In the most straightforward instance of inelastic bending, known as ideal plastic
bending, the plastic hinge assumes that materials yield plastically under a constant stress
(Figure 10d). In this model, plastic yielding starts at the fibers furthest from the neutral
axis (Figure 10b). As the bending moment increases, the plastic region expands further
inwards (Figure 10c). The beam reaches its maximum moment-resisting capacity when the
entire cross-section enters the plastic region (Figure 10d). This specific moment is called the
plastic moment Mp.

The ratio of a beam’s plastic moment to its yield moment, which is determined solely
by the shape of the cross-section, is known as the shape factor f. For a circular cross-section,
f is 1.7; for a square cross-section, f is 1.5. After calculation, the plastic moment Mp for a
square cross-section beam is given as the value shown in Table 3. Upon comparison, it can
be seen that for all of the plant crystals considered, except Prunus domestica, the ultimate
bending moment values Mp that insects can produce are higher than the corresponding
ultimate plastic moment values ML, in which case the crystals are destroyed.

3. Conclusions

The relationship between the chemical composition and the morphology of wax crys-
tals is rather well studied [41–44]. Shepherd et al. [45,46] detected unusual triacylglycerols
in small amounts on leaves frequented by raspberry aphids. They reported that these com-
pounds originated from the aphid cuticle on the leaf surface. Research by Matas et al. [47]
has suggested that the diffusion or sorption of other molecules may disrupt the molec-
ular arrangement of plant wax. Furthermore, hydrogen bonds may form between wax
molecules and other molecules with different structures and functional groups. Van der
Waals and hydrogen bond interactions can irreversibly disrupt the structure and morphol-
ogy of some plant wax molecules. As is well known, insects can firmly adhere to natural
surfaces and can easily and quickly detach from these surfaces at any time. Numerous
studies [48–50] have investigated the attachment processes of insects; however, we believe
that understanding the mechanical mechanisms underlying the detachment of insects from
natural surfaces is equally important.

We believe that a subsequent study of the mechanics of the formation of intermolecular
chemical bonds at the contact interface and their disruption by physical or chemical means
during the process of insect adhesion and detachment from plant surfaces could be based
on the Thomson model [51] used to study crack growth in solids. However, this model is
outside of the scope of the present paper. This research will be the subject of subsequent
papers. Detachment in engineering applications, such as robots [52–54], can occur when
the surfaces or materials involved degrade or lose their substance. This can lead to failures
at joints, connections, or adhesion points, affecting the performance of the robot. Due
to the inherent adaptive capabilities of living organisms to respond to various adhesion–
detachment conditions, many researchers [55–57] have embarked on algorithmic research
to achieve bio-inspired robots with capacities for learning and adaptability comparable
to those of biological entities. However, there is still a lack of research on the mechanical
principles underlying the detachment process in living organisms. We hope that our
subsequent research can provide theoretical support for applications such as bio-inspired
climbing robots and grasping robotic arms in achieving the functionality of firm adhesion
and rapid detachment.
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The connection between structure and function is of great significance for the opti-
mization of biomimetic surfaces. We have reviewed available information about the main
mechanical properties of plant waxes and the possible fracture mechanisms of these wax
structures during their interactions with insects. In particular, we have presented case
studies concerning the mechanical analysis of columnar plant wax crystals with different
aspect ratios under various load conditions. It is argued that plant surface microstructures,
such as epicuticular waxes, significantly influence insect adhesion.
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