Current Applications and Future Perspectives of Artificial and Biomimetic Intelligence in Vascular Surgery and Peripheral Artery Disease
Abstract
:1. Introduction and Background
- -
- Learning: acquiring data and creating rules and roads with the aim of transforming them into actionable information. Those roads or rules are called algorithms, and their work is to guide computing devices to accomplish a specific task by step-by-step instructions;
- -
- Reasoning: combining the right algorithms to accomplish the desired task, to perform the specific role;
- -
- Self-correction: a specific capacity of self-testing that allows for continuous corrections and refining to obtain the best outcome in time;
- -
- Creativity: the most stunning and human-emulating BI capacity. It is based on neural networks, rules-based systems, statistical methods,+--+-+ and other BI techniques used to create images, texts, music, etc.
2. Current Applications and Future Development of BI in Vascular Surgery
2.1. Healthcare Information
2.2. Detection and Characterization of Disease
2.3. Automatic Image Analysis
2.4. Natural Language Processing Model for Retrieve Patients’ Disease
2.5. Personalized Medical Decision-Making
2.6. Risk Stratification
2.7. Surveillance Protocols and Patterns
2.8. Research in Evidence-Based Medicine (EBM)
2.9. Robots for Care, Surgery, or Drug Administration
2.10. Remote Patients’ Care
2.11. Education and Training of Surgeons
3. Peripheral Arterial Disease (PAD) and BI
4. Limitations and Risk of Bias
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, U.M.; Shireman, P.K.; Lin, J.C. Current applications of artificial intelligence in vascular surgery. Semin. Vasc. Surg. 2021, 34, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Afzal, N.; Sohn, S.; Abram, S.; Scott, C.G.; Chaudhry, R.; Liu, H.; Kullo, I.J.; Arruda-Olson, A.M. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing. J. Vasc. Surg. 2017, 65, 1753–1761. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pan, C.; Zhang, S.; Spin, J.M.; Deng, A.; Leung, L.L.; Dalman, R.L.; Tsao, P.S.; Snyder, M. Decoding the Genomics of Abdominal Aortic Aneurysm. Cell 2018, 174, 1361–1372.e10. [Google Scholar] [CrossRef] [PubMed]
- Klarin, D.; Lynch, J.; Aragam, K.; Chaffin, M.; Assimes, T.L.; Huang, J.; Lee, K.M.; Shao, Q.; Huffman, J.E.; Natarajan, P.; et al. Genome-wide association study of peripheral artery disease in the Million Veteran Program. Nat. Med. 2019, 25, 1274–1279. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wang, T.; Shi, H.; Zhang, M.; Yin, R.; Wu, Q.; Pan, C. Artificial Intelligence and Big Data Technologies in the Construction of Surgical Risk Prediction Model for Patients with Coronary Artery Bypass Grafting. Comput. Intell. Neurosci. 2023, 2023, 9575553. [Google Scholar] [CrossRef] [PubMed]
- Ruel, M.; Une, D.; Bonatti, J.; McGinn, J.T. Minimally invasive coronary artery bypass grafting: Is it time for the robot? Curr. Opin. Cardiol. 2013, 28, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Samant, S.; Bakhos, J.J.; Wu, W.; Zhao, S.; Kassab, G.S.; Khan, B.; Panagopoulos, A.; Makadia, J.; Oguz, U.M.; Banga, A.; et al. Artificial Intelligence, Computational Simulations, and Extended Reality in Cardiovascular Interventions. JACC Cardiovasc. Interv. 2023, 16, 2479–2497. [Google Scholar] [CrossRef] [PubMed]
- Lekadir, K.; Galimzianova, A.; Betriu, A.; Del Mar Vila, M.; Igual, L.; Rubin, D.L.; Fernandez, E.; Radeva, P.; Napel, S. A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound. IEEE J. Biomed. Health Inform. 2017, 21, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Fenster, A.; Xia, Y.; Spence, J.D.; Ding, M. Deep learning-based carotid media-adventitia and lumen-intima boundary segmentation from three-dimensional ultrasound images. Med. Phys. 2019, 46, 3180–3193. [Google Scholar] [CrossRef] [PubMed]
- Biswas, M.; Saba, L.; Chakrabartty, S.; Khanna, N.N.; Song, H.; Suri, H.S.; Sfikakis, P.P.; Mavrogeni, S.; Viskovic, K.; Laird, J.R.; et al. Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment. Comput. Biol. Med. 2020, 103847, 103847. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xin, J.; Yang, X.; Sun, J.; Xu, D.; Zheng, N.; Yuan, C. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI. Med. Phys. 2019, 46, 5544–5561. [Google Scholar] [CrossRef] [PubMed]
- Zunair, H. Sharp U-Net: Depthwise convolutional network for biomedical image segmentation. Comput. Biol. Med. 2021, 136, 104699. [Google Scholar] [CrossRef] [PubMed]
- Akay, E.M.Z.; Hilbert, A.; Carlisle, B.G.; Madai, V.I.; Mutke, M.A.; Frey, D. Artificial Intelligence for Clinical Decision Support in Acute Ischemic Stroke: A Systematic Review. Stroke 2023, 54, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Talebi, S.; Madani, M.H.; Madani, A.; Chien, A.; Shen, J.; Mastrodicasa, D.; Fleischmann, D.; Chan, F.P.; Mofrad, M.R.K. Machine learning for endoleak detection after endovascular aortic repair. Sci. Rep. 2020, 10, 18343. [Google Scholar] [CrossRef] [PubMed]
- Hahn, S.; Perry, M.; Morris, C.S.; Wshah, S.; Bertges, D.J. Machine deep learning accurately detects endoleak after endovascular abdominal aortic aneurysm repair. JVS Vasc. Sci. 2020, 1, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Caradu, C.; Spampinato, B.; Vrancianu, A.M.; Bérard, X.; Ducasse, E. Fully automatic volume segmentation of infra-renal abdominal aortic aneurysm CT images with deep learning approaches versus physician controlled manual segmentation. J. Vasc. Surg. 2021, 74, 246–256.e6. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A.; Handa, A.; Shivakumar, N.; Lapolla, P.; Uberoi, R.; Grau, V.; Lee, R. A Deep Learning Pipeline to Automate High-Resolution Arterial Segmentation with or without Intravenous Contrast. Ann. Surg. 2022, 276, e1017-lpagee1027. [Google Scholar] [CrossRef] [PubMed]
- Wanhainen, A.; Mani, K.; Golledge, J. Surrogate Markers of Abdominal Aortic Aneurysm Progression. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ara, L.; Ding, H.; Rollins, D.; Motaganahalli, R.; Sawchuk, A.P. Computational methods to automate the initial interpretation of lower extremity arterial Doppler and duplex carotid ultrasound studies. J. Vasc. Surg. 2021, 74, 988–996.e1. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Zhou, Q.; Zhou, H.; Zhang, H.; Cheng, P.; Ding, M.; Xu, X.; Zhang, X. Deep learning-based classification of lower extremity arterial stenosis in computed tomography angiography. Eur. J. Radiol. 2021, 136, 109528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Conlin, C.C.; Li, X.; Layec, G.; Chang, K.; Kalpathy-Cramer, J.; Lee, V.S. Exercise-induced calf muscle hyperemia: Rapid mapping of magnetic resonance imaging using deep learning approach. Physiol. Rep. 2020, 8, e14563. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, Y.; Radev, D.; Malhotra, A. Identification of patients with carotid stenosis using natural language processing. Eur. Radiol. 2020, 30, 4125–4133. [Google Scholar] [CrossRef] [PubMed]
- Ross, E.G.; Shah, N.H.; Dalman, R.L.; Nead, K.T.; Cooke, J.P.; Leeper, N.J. The use of machine learning for the identification of peripheral artery disease and future mortality risk. J. Vasc. Surg. 2016, 64, 1515–1522.e3. [Google Scholar] [CrossRef] [PubMed]
- Hippe, D.S.; Balu, N.; Chen, L.; Canton, G.; Liu, W.; Watase, H.; Waterton, J.C.; Hatsukami, T.S.; Hwang, J.-N.; Yuan, C. Confidence Weighting for Robust Automated Measurements of Popliteal Vessel Wall Magnetic Resonance Imaging. Circ. Genom. Precis. Med. 2020, 13, e002870. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Canton, G.; Liu, W.; Hippe, D.S.; Balu, N.; Watase, H.; Hatsukami, T.S.; Waterton, J.C.; Hwang, J.-N.; Yuan, C. Fully automated and robust analysis technique for popliteal artery vessel wall evaluation (FRAPPE) using neural network models from standardized knee MRI. Magn. Reson. Med. 2020, 84, 2147–2160. [Google Scholar] [CrossRef] [PubMed]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [PubMed]
- Arcadu, F.; Benmansour, F.; Maunz, A.; Willis, J.; Haskova, Z.; Prunotto, M. Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit. Med. 2019, 2, 92. [Google Scholar] [CrossRef] [PubMed]
- Bora, A.; Balasubramanian, S.; Babenko, B.; Virmani, S.; Venugopalan, S.; Mitani, A.; de Oliveira Marinho, G.; Cuadros, J.; Ruamviboonsuk, P.; Corrado, G.S.; et al. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit. Health 2021, 3, E10–E19. [Google Scholar] [CrossRef] [PubMed]
- Abràmoff, M.D.; Lavin, P.T.; Birch, M.; Shah, N.; Folk, J.C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit. Med. 2018, 1, 39. [Google Scholar] [CrossRef] [PubMed]
- Poplin, R.; Varadarajan, A.V.; Blumer, K.; Liu, Y.; McConnell, M.V.; Corrado, G.S.; Peng, L.; Webster, D.R. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2018, 2, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Skandha, S.S.; Gupta, S.K.; Saba, L.; Koppula, V.K.; Johri, A.M.; Khanna, N.N.; Mavrogeni, S.; Laird, J.R.; Pareek, G.; Miner, M.; et al. 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Ateromatic RM 2.0. Comput. Biol. Med. 2020, 125, 103958. [Google Scholar] [CrossRef] [PubMed]
- Saba, L.; Biswas, M.; Suri, H.S.; Viskovic, K.; Laird, J.R.; Cuadrado-Godia, E.; Nicolaides, A.; Khanna, N.N.; Viswanathan, V.; Suri, J.S. Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: A deep learning paradigm. Cardiovasc. Diagn. Ther. 2019, 9, 439–461. [Google Scholar] [CrossRef] [PubMed]
- Brutti, F.; Fantazzini, A.; Finotello, A.; Müller, L.O.; Auricchio, F.; Pane, B.; Spinella, G.; Conti, M. Deep Learning to Automatically Segment and Analyze Abdominal Aortic Aneurysm from Computed Tomography Angiography. Cardiovasc. Eng. Technol. 2022, 13, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A.; Lapolla, P.; Shivakumar, N.; Ngetich, E.; Grau, V.; Lee, R. Prediction of Abdominal Aortic Aneurysm Growth Using Geometric Assessment of Computerised Tomography Images Acquired During the Aneurysm Surveillance Period. Ann. Surg. 2023, 277, e175–e183. [Google Scholar] [CrossRef] [PubMed]
- Raffort, J.; Adam, C.; Carrier, M.; Ballaith, A.; Coscas, R.; Jean-Baptiste, E.; Hassen-Khodja, R.; Chakfé, N.; Lareyre, F. Artificial intelligence in abdominal aortic aneurysm. J. Vasc. Surg. 2020, 72, 321–333.e1. [Google Scholar] [CrossRef] [PubMed]
- Gombar, S.; Callahan, A.; Califf, R.; Harrington, R.; Shah, N.H. It is time to learn from patients like mine. NPJ Digit. Med. 2019, 2, 16. [Google Scholar] [CrossRef] [PubMed]
- Javidan, A.P.; Li, A.; Lee, M.H.; Forbes, T.L.; Naji, F. A Systematic Review and Bibliometric Analysis of Applications of Artificial Intelligence and Machine Learning in Vascular Surgery. Ann. Vasc. Surg. 2022, 85, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Rudan, D.; Zhu, Y.; Fowkes, F.J.I.; Rahimi, K.; Fowkes, F.G.R.; Rudan, I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015, An updated systematic review and analysis. Lancet Glob. Health 2019, 7, e1020–e1030. [Google Scholar] [CrossRef]
- Posnett, J.; Gottrup, F.; Lundgren, H.; Saal, G.; Eucomed Advanced Wound Care Sector Group. The resource impact of wounds on health-care providers in Europe. J. Wound Care 2009, 18, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.-B.; Suresh, K.R.; Murad, M.H.; et al. Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. Eur. J. Vasc. Endovasc. Surg. 2019, 58, S1–S109.e33. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.P.; Ibrahim, N.E.; van KimmenadevK, R.R.J.; Gaggin, H.K.; Simon, M.L.; Gandhi, P.; Kelly, N.; Motiwala, S.R.; Mukai, R.; Magaret, C.A.; et al. A clinical and proteomics approach to predict the presence of obstructive peripheral arterial disease: From the Catheter Sampled Blood Archive in Cardiovascular Diseases (CASABLANCA) Study. Clin. Cardiol. 2018, 41, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Baloch, Z.Q.; Raza, S.A.; Pathak, R.; Marone, L.; Ali, A. Machine Learning Confirms Nonlinear Relationship between Severity of Peripheral Arterial Disease, Functional Limitation and Symptom Severity. Diagnostics 2020, 10, 515. [Google Scholar] [CrossRef] [PubMed]
- Weissler, E.H.; Zhang, J.; Lippmann, S.; Rusincovitch, S.; Henao, R.; Jones, W.S. Use of Natural Language Processing to Improve Identification of Patients With Peripheral Artery Disease. Circ. Cardiovasc. Interv. 2020, 13, e009447. [Google Scholar] [CrossRef] [PubMed]
- Yom-Tov, E.; Feraru, G.; Kozdoba, M.; Mannor, S.; Tennenholtz, M.; Hochberg, I. Encouraging Physical Activity in Patients With Diabetes: Intervention using a Reinforcement Learning System. J. Med. Internet Res. 2017, 19, e338. [Google Scholar] [CrossRef] [PubMed]
- Vascular.org. Available online: https://vascular.org/news-advocacy/articles-press-releases/vesap5-mobile-app-now-available (accessed on 30 June 2024).
- Davis, F.M.; Sutzko, D.C.; Grey, S.F.; Mansour, M.A.; Jain, K.M.; Nypaver, T.J.; Gaborek, G.; Henke, P.K. Predictors of surgical site infection after open lower extremity revascularization. J. Vasc. Surg. 2017, 65, 1769–1778.e3. [Google Scholar] [CrossRef] [PubMed]
- Zreik, M.; Lessmann, N.; van HamersveltvH, R.W.; Wolterink, J.M.; Voskuil, M.; Viergever, M.A.; Leiner, T.; Išgum, I. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis. Med. Image Anal. 2018, 44, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Coenen, A.; Kim, Y.-H.; Kruk, M.; Tesche, C.; De Geer, J.; Kurata, A.; Lubbers, M.L.; Daemen, J.; Itu, L.; Rapaka, S.; et al. Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve: Result From the MACHINE Consortium. Circ. Cardiovasc. Imaging 2018, 11, e007217. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Feridooni, T.; Cuen-Ojeda, C.; Kishibe, T.; de Mestral, C.; Mamdani, M.; Al-Omran, M. Machine learning in vascular surgery: A systematic review and critical appraisal. NPJ Digit. Med. 2022, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Rodziewicz, T.L.; Houseman, B.; Hipskind, J.E. Medical Error Reduction and Prevention. In StatPearls; [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
Author | Disease Investigated | Source Used | Results |
---|---|---|---|
Afzal et al. [2] | PAD | Clinical narrative notes | NLP system greater accuracy in PAD diagnosis |
Li et al. [3] | AAA | Electronic health record and personal genomes | Identification of disease |
Klarin et al. [4] | PAD, CAD, cerebral vascular disease | Million Veteran Program DNA sequences and UK Biobank | Identification of disease-specific genetic loci |
Tang et al. [5] | CAD | Clinical CABG patients’ data | Surgical risk prediction model construction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martelli, E.; Capoccia, L.; Di Francesco, M.; Cavallo, E.; Pezzulla, M.G.; Giudice, G.; Bauleo, A.; Coppola, G.; Panagrosso, M. Current Applications and Future Perspectives of Artificial and Biomimetic Intelligence in Vascular Surgery and Peripheral Artery Disease. Biomimetics 2024, 9, 465. https://doi.org/10.3390/biomimetics9080465
Martelli E, Capoccia L, Di Francesco M, Cavallo E, Pezzulla MG, Giudice G, Bauleo A, Coppola G, Panagrosso M. Current Applications and Future Perspectives of Artificial and Biomimetic Intelligence in Vascular Surgery and Peripheral Artery Disease. Biomimetics. 2024; 9(8):465. https://doi.org/10.3390/biomimetics9080465
Chicago/Turabian StyleMartelli, Eugenio, Laura Capoccia, Marco Di Francesco, Eduardo Cavallo, Maria Giulia Pezzulla, Giorgio Giudice, Antonio Bauleo, Giuseppe Coppola, and Marco Panagrosso. 2024. "Current Applications and Future Perspectives of Artificial and Biomimetic Intelligence in Vascular Surgery and Peripheral Artery Disease" Biomimetics 9, no. 8: 465. https://doi.org/10.3390/biomimetics9080465
APA StyleMartelli, E., Capoccia, L., Di Francesco, M., Cavallo, E., Pezzulla, M. G., Giudice, G., Bauleo, A., Coppola, G., & Panagrosso, M. (2024). Current Applications and Future Perspectives of Artificial and Biomimetic Intelligence in Vascular Surgery and Peripheral Artery Disease. Biomimetics, 9(8), 465. https://doi.org/10.3390/biomimetics9080465