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Abstract: Enhancing road safety by monitoring a driver’s physical condition is critical in both
conventional and autonomous driving contexts. Our research focuses on a wireless intelligent sensor
system that utilizes millimeter-wave (mmWave) radar to monitor heart rate variability (HRV) in
drivers. By assessing HRV, the system can detect early signs of drowsiness and sudden medical
emergencies, such as heart attacks, thereby preventing accidents. This is particularly vital for fully
self-driving (FSD) systems, as it ensures control is not transferred to an impaired driver. The proposed
system employs a 60 GHz frequency-modulated continuous wave (FMCW) radar placed behind the
driver’s seat. This article mainly describes how advanced signal processing methods, including the
Huber–Kalman filtering algorithm, are applied to mitigate the impact of respiration on heart rate
detection. Additionally, the autocorrelation algorithm enables fast detection of vital signs. Intensive
experiments demonstrate the system’s effectiveness in accurately monitoring HRV, highlighting its
potential to enhance safety and reliability in both traditional and autonomous driving environments.

Keywords: millimeter-wave radar; heart rate variability; driver monitoring; signal processing;
FMCW radar

1. Introduction
1.1. Importance of Continuous Driver Health Monitoring

Monitoring a driver’s physical condition is crucial for enhancing road safety in both
normal and autonomous driving scenarios. By continuously assessing the driver’s health,
the system can prevent accidents caused by factors such as drowsiness and sudden medical
emergencies like heart attacks. For fully self-driving (FSD) systems, this monitoring ensures
that control remains with a capable driver, thereby maintaining safety [1,2].

This technology gains significance as automotive companies begin to commercialize
FSD capabilities and consider offering insurance services. Ensuring the driver’s fitness to
drive not only enhances safety but also reduces liability and insurance costs [3], providing
a comprehensive safety net and financial benefit for both the company and consumers.

In addition to emergency health situations, driver drowsiness due to fatigue, alco-
hol consumption, and certain substances can lead to loss of vehicle control. Heart rate
variability (HRV) serves as a critical indicator for detecting drowsiness and health-related
emergencies [4–6]. By monitoring HRV, the system can identify early signs of driver im-
pairment and take pre-emptive actions to prevent accidents, thus improving overall road
safety and the reliability of FSD systems.

1.2. Technologies and Methods for HRV Monitoring

Technologies and methods for monitoring HRV play a pivotal role in ensuring ef-
fective driver health monitoring amidst the challenges of dynamic driving environments.
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Radio Frequency (RF) technologies, such as Wi-Fi-based channel status indicator (CSI)
and radar-based millimeter-wave (mmWave) sensors, are employed for accurate HRV
measurement [7,8]. The mmWave radar, operating at 60 GHz with frequency-modulated
continuous wave (FMCW) technology behind the driver’s seat, has emerged as a preferred
sensor for noncontact vital sign monitoring [9–11].

Continuous monitoring of a driver’s health during driving faces numerous chal-
lenges. These challenges include HRV displacement signals being mixed with respiration
signals [12], which necessitates innovative approaches to separate the HRV signal effec-
tively [13–18]. Dynamic driving conditions, such as road bumps and driver maneuvers, also
pose challenges by causing unpredictable body movements relative to the sensor [13,19–22].

Quasi-static heart rate (HR) monitoring, conducted when the automobile is in its park-
ing or starting phases, can significantly reduce the noise encountered during driving. Such
noise includes road conditions, driving maneuvers, vehicle instabilities, and mechanical
vibrations. Since the quasi-static state of the vehicle typically lasts less than 30 s, a rapid
algorithm is required to detect the driver’s HR for an initial assessment of their state. This
initial assessment can also help in identifying false positives during HRV monitoring in the
driving phase.

To address these challenges, this paper proposes advanced signal processing methods
that combine the autocorrelation algorithm and the Huber–Kalman algorithm to rapidly
and accurately acquire HR and HRV. The Huber–Kalman filtering method is introduced to
effectively separate HRV from respiration [23,24], forming the basis for HRV measurement
when the vehicle is stationary. This is the first application of the Huber–Kalman method
in noncontact HRV monitoring. Additionally, the autocorrelation algorithm is employed
to determine HR, enhancing the accuracy of HRV detection and filtering out anomalies
detected by the Huber–Kalman algorithm. These methods are validated using a 60 GHz
FMCW radar positioned behind the driver’s seat, demonstrating their efficacy in obtain-
ing reliable HRV measurements during stops (e.g., at traffic lights) and smooth driving
conditions (e.g., on highways).

The structure of the paper is as follows: Section 2 discusses the physiological basis
and importance of HRV monitoring, providing an understanding of HRV, its regulation by
the autonomic nervous system (ANS), and its significance in detecting stress, fatigue, and
cardiovascular health. Section 3 explores the technological principles and applications of
FMCW radar, focusing on its use for noncontact HRV monitoring. Section 4 delves into
the advanced signal processing methods, including the classification of noise, the Huber–
Kalman filtering method, and the short-window autocorrelation algorithm. Section 5
presents the experiments and results, describing the experimental setup, data analysis, and
the accuracy evaluation of HR and HRV measurements. Finally, the findings and their
implications are summarized and discussed for improving road safety in Section 6.

2. Physiological Basis and Importance of HRV Monitoring

This section explores the physiological mechanisms of HRV and its significance. We
will define HRV, discuss its regulation by the ANS, and highlight its importance in detecting
stress, fatigue, and cardiovascular health. Understanding these aspects underscores the
critical role of HRV monitoring in ensuring driver safety.

2.1. Understanding HRV: Definition and Mechanisms

HRV denotes the fluctuations in the intervals between successive heartbeats. These
time intervals are often measured as the R-R intervals (RRI) on an electrocardiogram (ECG).
The RRI is the time between two successive R-waves, which are the peaks that represent the
depolarization of the ventricles, the main pumping chambers of the heart. This interval is
crucial because it reflects the heart’s ability to respond to various physiological conditions,
including stress, exercise, and rest.

The ANS plays a significant role in regulating HRV. The ANS consists of two primary
branches: the sympathetic and parasympathetic nervous systems. The sympathetic branch
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is responsible for the body’s fight or flight responses, causing an increase in HR and energy
mobilization in response to stress or danger. On the other hand, the parasympathetic branch
controls rest and digest functions, promoting relaxation and recovery by decreasing HR.

2.2. Clinical and Practical Importance of HRV

The importance of HRV lies in its ability to serve as a comprehensive indicator of the
body’s cardiovascular health and autonomic function. Higher HRV is typically associated
with a greater ability to adapt to stress and better cardiovascular fitness, suggesting a
well-functioning ANS. Conversely, lower HRV can indicate stress, fatigue, or underlying
health problems such as cardiovascular diseases.

Stress and Fatigue Detection: HRV monitoring can help in identifying stress and
fatigue levels in individuals. For instance, a significant reduction in HRV can be an
early indicator of mental or physical stress. This is particularly useful for drivers, where
high stress or fatigue can lead to impaired driving performance and an increased risk
of accidents.

Cardiovascular Health: HRV is a valuable marker in assessing the risk of cardiovascu-
lar diseases. Studies have shown that individuals with consistently low HRV are at a higher
risk of developing conditions like hypertension, heart failure, and myocardial infarction.
Continuous HRV monitoring can aid in the early detection and prevention of such diseases.

Drowsiness Detection: In driving scenarios, drowsiness detection is critical for pre-
venting accidents. HRV can provide real-time insights into a driver’s alertness level. A
drop in HRV might indicate the onset of drowsiness, prompting timely interventions such
as alarms or automated driving assistance.

3. Technological Principles and Applications of FMCW Radar

Building on the physiological importance and monitoring significance of HRV dis-
cussed earlier, this section explores the technological methods for HRV detection. We focus
on FMCW radar technology, a noncontact, highly sensitive solution operating at mmWave
frequencies. By understanding how mmWave radar functions and its integration into
vehicles, we can appreciate its crucial role in enhancing driver safety through accurate
HRV monitoring.

3.1. Overview of Millimeter-Wave Radar

The mmWave radar operates at extremely high frequencies, typically between 30 GHz
and 300 GHz, allowing it to achieve high resolution and sensitivity. These characteristics
make mmWave radar ideal for detecting small movements such as those caused by human
respiration and heartbeats. The short wavelength of mmWave radar enables it to detect
very fine movements, such as the minute chest displacements caused by heartbeats and
breathing, making it an ideal system for non-intrusive and contactless HRV monitoring.
Moreover, mmWave radar can operate effectively under various environmental condi-
tions, including darkness and through clothing, ensuring reliable performance in diverse
scenarios, which is particularly suitable for automotive applications.

The compact size and versatility of mmWave radar make it ideal for integration
into vehicles. Typically, the radar sensor is mounted behind the driver’s seat, with the
antenna array aimed at the driver’s back, specifically targeting the heart region. This
strategic placement offers several advantages: it ensures close proximity to the heart for
precise detection, provides a noncontact method for continuous health monitoring without
disrupting the driver’s comfort, and utilizes a stable mounting surface that minimizes the
impact of vibrations and movements on radar accuracy. This setup is illustrated in Figure 1.
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3.2. FMCW Radar: Basic Operating Principles

FMCW radar is a type of radar system that emits a continuous signal whose frequency
is modulated over time. This signal, often referred to as a chirp, increases linearly in
frequency over a specified period. The basic operating principles of FMCW radar include
range measurement, velocity detection, and vital sign monitoring.

The hardware selected for this project is the Texas Instruments Incorporated (Dal-
las, TX, USA) AWR6843AOP, a single-chip 60 GHz mmWave sensor [25]. This sensor is
specifically designed for low-power, high-accuracy applications such as driver vital sign
monitoring. The 60 GHz frequency band is legally authorized in many regions, including
the United States and Europe.

• Chirp Signal Transmission:

FMCW radar transmits a chirp signal that sweeps linearly across a range of frequencies.
When this signal encounters an object, it reflects back to the radar system.

• Time Delay Measurement:

The expression of the transmission signal of the continuous frequency-modulated
wave shown in Figure 2 is as follows [26]:

sTX(t) = ATXcos
[∫

(w0 + Ab ∗ t)dt
]
= ATXcos

[(
w0 +

Ab
2

∗ t
)
∗ t

]
(1)
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Upon a delay of Td, the signal reflected from the object is captured. The received signal
is expressed as:

sRX(t) = β ∗ sTX(t − Td) = ARXcos
[(

w0 +
Ab
2

∗ (t − Td)

)
∗ (t − Td)

]
(2)

β represents the attenuation factor encountered by the signal during propagation. Therefore,
the distance between the object and the radar can be calculated by the time difference
between the transmitted signal and the received signal. However, it is difficult to obtain the
time delay directly. Therefore, we calculate the time by the frequency difference between
the transmitted signal and the received signal.

• Frequency Difference Calculation:

By mixing the received signal with a portion of the transmitted signal, an intermediate
frequency (IF) signal is generated. This IF signal’s frequency is indicative of the object’s
range. Applying a Fast Fourier Transform (FFT) to the IF signal allows the system to
determine the range of the object accurately. The signal formula after the mixer is [26]:

sIF(t) = sRX(t) ∗ sTX(t)
= ATX∗ARX

2

[
cos

(
2 ∗ w0 ∗ t + Ab ∗ t2 − Ab ∗ Td ∗ t + Ab

2 ∗ T2
d

−w0 ∗ Td) + cos
(

Ab ∗ Td ∗ t + w0 ∗ Td − Ab
2 ∗ T2

d

)] (3)

The first cosine function represents the high-frequency component, which is filtered by
a low pass filter, and the second cosine function is the low-frequency component, describing
a beat signal at a fixed frequency. In Td = 2 ∗ R

c , the R denotes the radar-to-target distance.

• Data Acquisition:

The data acquisition process involves capturing the reflected radar signals from the
driver’s back. These signals contain information about the chest movements due to heart-
beats and respiration. The radar sensor continuously emits FMCW signals and records the
IF signals that result from the mixing of the transmitted and received signals.

• Target Detection:

The first step in the signal processing workflow is detecting the presence of a target
(i.e., the driver’s back). This is achieved using the radar’s ability to measure distance and
detect movement within a predefined range.

• Distance Measurement:

Once a target is detected, the radar measures the distance to the target by analyzing
the frequency of the IF signal. The frequency difference f IF between the transmitted and
received signals is directly related to the distance d:

f IF = S ∗ Td (4)

where S is the frequency modulation slope, and Td is the time delay. The distance d can
then be calculated using:

d =
c ∗ Td

2
(5)

where c denotes the speed of light.
Having covered the basic principles of FMCW radar, we can now delve into its

specific application for vital sign monitoring, focusing on how it detects the small chest
displacements caused by respiration and heartbeats.

3.3. Principles of FMCW Radar for Vital Sign Monitoring

For vital sign monitoring, FMCW radar detects the small chest displacements caused
by respiration and heartbeats. These displacements result in phase changes in the reflected
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signal. Figure 3 depicts the overall system workflow for vital sign monitoring using FMCW
radar. The workflow includes the emission of FMCW signals, reception and processing of
reflected signals, and the extraction of vital signs such as heart and respiration rates.
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• Phase Change Analysis:

The radar continuously monitors the reflected signal’s phase. The phase change is
directly related to the displacement of the chest, allowing the radar to capture the breathing
pattern and heartbeat. The IF signal for multiple reflected signals is described by [26]:

sIF(t) = ∑
k=0

Ak ∗ cos (2 ∗ π ∗ fk ∗ t + ϕk + noise) (6)

where k indicates different reflected signals captured by the receiver, Ak denotes the re-
flected energy level from each target, and ϕk is the phase difference between the transmitted
and received signals.

The radar continuously monitors the phase variations in the IF signal. The phase ϕ of
the received signal is given by:

ϕ(t) =
4πd(t)

λ
(7)

where λ is the radar signal’s wavelength and d(t) denotes the displacement of the chest
over time.

A 1D-FFT is applied to the time-domain IF signal to extract phase information from
the signal. The In-phase (I) and Quadrature (Q) parts of the 1D-FFT signal are then used to
demodulate the phase information:

ϕ(t) = arctan
(

Q
I

)
(8)

• Phase Unwrapping:

Phase unwrapping resolves phase ambiguities that arise due to the periodic nature
of the phase signal [23]. It ensures a continuous phase signal by adding or subtracting 2π
whenever a phase discontinuity more significant than π is detected. This process is crucial
for accurately tracking the chest movements over time.

Phase unwrapping is essential because the radar signal’s phase is periodic and can
wrap around, causing sudden jumps in the phase value. If not corrected, these discontinu-
ities can lead to errors in measuring chest displacement and, consequently, HRV.

• Feature Extraction:
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After obtaining the correct phase information, the following features are extracted:

1. Respiration Rate: The phase signal’s low-frequency components, corresponding to
slower, more significant movements, determine the respiration rate. The breathing
pattern can be extracted by identifying the periodicity in these components;

2. HR: To detect the HR, the high-frequency components of the phase signal correspond-
ing to rapid, small movements are isolated. This is achieved by filtering out the
respiration signal and focusing on the minor amplitude variations corresponding
to heartbeats;

3. HRV: HRV is calculated by analyzing the variations in the time intervals between
consecutive heartbeats. These intervals, derived from the demodulated phase signal,
provide insights into the ANS’s regulation of the heart.

Following this detailed signal processing workflow, the system accurately monitors
the driver’s vital signs, providing critical information for enhancing road safety through
continuous health monitoring.

4. Advanced Signal Processing Methods

Building upon the principles and applications of FMCW radar technology discussed
in Section 3, this delves into the advanced signal processing methods essential for fast
and accurate HRV monitoring. The effectiveness of HRV detection relies not only on the
high sensitivity of mmWave radar but also on sophisticated algorithms to filter out noise
and accurately extract vital signals. Here, we will explore the classification of noise, the
Huber–Kalman filtering method, and the short-window autocorrelation algorithm, all of
which play a critical role in enhancing the reliability and accuracy of HRV monitoring in
real-world conditions.

4.1. Classification of Noise and Challenges
4.1.1. Interference from Respiration Signals

Respiration signals present a significant challenge in accurately detecting HR and
HRV using mmWave radar. The primary issue arises from the fact that the chest move-
ments caused by breathing are much larger than those caused by heartbeats. Respiration
typically results in chest displacements of approximately 5 mm, whereas heartbeats cause
displacements averaging around 0.5 mm.

Due to the relatively small displacement associated with heartbeats, the HRV signal is
quickly overshadowed by the more pronounced movements from respiration. This overlap
can lead to difficulty isolating the HRV signal from the respiratory signal. Advanced signal
processing techniques, such as the Huber–Kalman filter, are necessary to differentiate
between these two types of displacements. The filter effectively separates the smaller,
HRV-related movements from the larger, respiration-induced displacements.

4.1.2. Dynamic Noise in the Driving Environment

Another significant source of noise in HRV monitoring using mmWave radar comes
from the dynamic conditions experienced during driving. The vehicle’s motion introduces
various types of noise that can interfere with accurate HRV detection. These include
the following:

• Road Conditions: Bumps, gravel, and potholes can cause abrupt movements of the
driver’s body relative to the sensor, resulting in significant displacements ranging
from millimeters to tens of centimeters;

• Driver’s Maneuvers: Actions such as hand movements, adjusting posture, and other
body movements can also create noise that complicates HRV signal detection;

• Vehicle Dynamics: Acceleration, deceleration, and turning movements further con-
tribute to the displacements between the driver’s body and the sensor. These move-
ments are often random and unpredictable, making it challenging to filter out the
noise effectively.
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The combined effect of these factors results in a complex and unpredictable noise
environment that can obscure the HRV signal. Despite efforts to apply advanced filtering
techniques, such as the Huber–Kalman filter and short-windowed autocorrelation methods,
the challenge remains substantial due to the inherent variability and randomness of driving-
induced movements.

Given these challenges, it is recommended that HR and HRV be monitored primar-
ily when the vehicle is stable, such as when it is parked or moving smoothly on well-
maintained roads. During bumpy or irregular road conditions, it becomes exceedingly
difficult to obtain accurate HRV measurements due to the excessive noise introduced by
the factors mentioned above. Therefore, ensuring that HRV detection is performed during
stable driving conditions will improve the reliability and accuracy of the data collected.

4.2. Huber–Kalman Filtering Method

The Kalman filter algorithm is highly effective for filtering phase signals to detect
vital signs [23,27]. However, during driving, more significant disturbances occur due to
vehicle motion, which requires optimization of the Kalman filter. This is where the Huber
algorithm comes into play, enhancing the robustness of the Kalman filter by handling
outliers and reducing the impact of significant disturbances. This optimized approach
has proven effective when applied in Wi-Fi-based driver respiration detection [23]. When
adapted for millimeter-wave radar, the combination of Kalman and Huber filtering offers
superior performance, yielding more accurate HR and HRV measurements.

4.2.1. Algorithm Principles

The Kalman filter is a highly effective data processing tool known for its real-time ca-
pabilities, accuracy, and speed. It is particularly adept at reducing measurement errors and
managing random noise within a system. Kalman filters are widely used in various signal
processing and control domains, including navigation, tracking, and communications. As a
recursive algorithm, the Kalman filter does not require storing all past measurement data; it
only uses current data for calculations, making it highly efficient for real-time applications.
However, the Kalman filter is sensitive to outliers in the measurement data, which can
increase estimation errors and potentially cause filter divergence. The Huber–Kalman
filter was introduced to address the sensitivity of the Kalman filter to outliers. The Huber–
Kalman filter incorporates the robustness of the Huber loss function into the Kalman filter
framework, enhancing its resistance to outliers. The Huber loss function behaves like the
squared loss for minor errors. Still, it transitions to linear growth for errors exceeding a
certain threshold, thus reducing the impact of outliers on the estimation results. Specifically,
the Huber–Kalman filter reweights the errors during the state update phase, reducing the
weight of significant errors (potentially outliers) and mitigating their adverse effects on
state estimation.

ρa( f ) =

{
f 2

2 i f f ≤ a
a| f | − a2

2 i f f > a
(9)

let a be a positive constant that defines the boundary between the significant and minor
errors and let f represent the error function. By adjusting a, the balance between the norms
ℓ1 or ℓ2 in processing error functions can be controlled. When a is large, the optimization
problem aligns with the traditional least squares approach. Conversely, as a approaches
zero, the optimization problem shifts towards a first norm-based method.

The prior estimation error e−k and the posterior estimation error ek represent the differ-
ence between the prior estimate x̃−k , the optimal estimate x̃k, and the actual value xk, respec-
tively. The covariances of these estimation errors are described by the following functions:

P−
k =

{
e−2

k
2 i f

∣∣e−k ∣∣ ≤ a
a
∣∣e−k ∣∣− a2

2 i f
∣∣e−k ∣∣ > a

(10)
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Pk =

{
e2

k
2 i f |ek| ≤ a
a|ek| − a2

2 i f |ek| > a
(11)

Combined x̃k = x̃−k + Kk
(
zk − Hx̃−k

)
, Pk represented by P−

k as

Pk =


(I−KH)P−

k (I−KH)T+KRKT

2 i f 0 ≤ P−
k ≤ a2

2

(I − KH)
(

P−
k + a2

2

)
− a2

2 i f P−
k > a2

2

(12)

The Kalman filter’s estimation method aims to minimize the error in the state estima-
tion function to closely match the actual value.

Taking the partial derivative of Equation (13) with respect to the Kalman gain coeffi-
cient K results in:

∂Pk
∂Kk

=


−P−

k HT + K
(

HP−
k HT + R

)
i f 0 ≤ P−

k ≤ a2

2
HKk HT−H
|1−Kk H|

(
P−

k + a2

2

)
i f P−

k > a2

2

(13)

By setting the partial derivative in Equation (14) to zero, we obtain

Kk =


P−

k HT

HP−
k HT+R

i f 0 ≤ P−
k ≤ a2

2
1
H i f P−

k > a2

2

(14)

It is clear that P−
k can be represented using Pk−1 as follows:

P−
k =


APk−1 AT+Q

2 i f 0 ≤ Pk−1 ≤ a2

2

|A|
(

Pk−1 +
a2

2

)
− a2

2 i f Pk−1 > a2

2
(15)

Figure 4 presents the prediction-update model of the Huber–Kalman filter. This
model illustrates how the Huber–Kalman filter improves upon the traditional Kalman
filter by incorporating the Huber loss function, which enhances the filter’s robustness
against outliers and significant disturbances. The model outlines the state prediction and
correction process, highlighting the integration of Huber weighting to mitigate the impact
of measurement errors and ensure more accurate state estimation in dynamic environments.
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4.2.2. HRV Measurement via Huber–Kalman Filter

As mentioned above, the IF signal phase of FMCW radar reflects the displacement of
the chest. This displacement encompasses both respiratory and heartbeat movements. The
displacement caused by heartbeat is significantly smaller than that caused by respiration.
Heartbeat-induced chest movements typically range from 0.2 mm to 0.6 mm, whereas
respiratory movements can cause chest displacements of 4 mm to 12 mm. The amplitude
of heartbeat-induced chest displacement is significantly weaker than that of respiratory
movements, which increases the difficulty of separating respiratory and heartbeat signals.
However, respiration and heartbeat exhibit different patterns. A smooth, rhythmic pattern
characterizes respiratory movements; in contrast, the heartbeat movements are rapid
and follow a sudden motion pattern, with each beat causing a quick, sharp displacement
followed by a brief pause. This periodic nature of respiration contrasts with the intermittent,
sudden motions of heartbeat-induced chest movements. Given the direct correlation
between phase and chest displacement, the derivative of the phase can be used to determine
the velocity of chest displacement. By calculating the velocity, it is possible to enhance the
heartbeat signal, which facilitates the accurate calculation of HRV.

We can develop a model utilizing the Huber–Kalman filter to estimate the velocity
of chest displacement. The Huber–Kalman filter is particularly effective in dealing with
non-Gaussian noise and outliers, enhancing robustness and accuracy in state estimation.
By applying this filter, we can accurately determine the velocity of chest movements,
improving the heartbeat signal. Detecting HRV requires accurate RRI, which is more
challenging than regular HR detection. Standard methods, such as band-pass filtering or
spectral analysis, are unsuitable for HRV detection. Because band-pass filters smooth the
waveform, accurate RRI cannot be obtained. The Huber–Kalman algorithm enhances the
characteristics of the R-wave, significantly improving the accuracy of HRV detection. It
effectively separates HRV signals from respiratory signals. This improvement is crucial for
the precise calculation of HRV.

We first build the physical model. In this model, the observation variable is the chest
displacement z, and the state variables include both displacement

∼
xk and velocity

∼
vk. The

system can be described using the following state-space equations:
State Equation: This describes the evolution of the system state over time. For dis-

placement and velocity, the state transition model is given by(
x̃k+1
ṽk+1

)
=

(
1 ∆t
0 1

)(
x̃k
ṽk

)
+

( 1
2 ∆t2

∆t

)
uk + ωk (16)

Here, x̃k is the displacement at time k, ṽk is the velocity of the chest movement, ∆t is
the time step, uk is the acceleration, and ωk is the process noise.

Observation Equation: This relates the observed displacement to the state variables:

zk = xk + nk (17)

Here, zk is the observed displacement and nk is the measurement noise.
By incorporating these equations, the Kalman filter can iteratively estimate the state

vector
(

x̃k
ṽk

)
, providing robust velocity estimations even in the presence of noise. This

model forms the basis for further applications, such as enhancing heartbeat signal detection
and HRV analysis.

Figure 5 illustrates the impact of body movements on radar phase signals and com-
pares the performance of the Kalman filter and the Huber–Kalman filter in mitigating these
effects. The top subplot shows the raw radar phase signal with noticeable disturbances
caused by intentional body movements, highlighted in red boxes. These body movements
were simulated in a stationary and turned-off vehicle, with the radar installed behind the car
seat (as shown in Figure 1). The bottom subplot compares the RRI calculated using the Polar
H10 (reference device), Kalman, and Huber–Kalman filters. The Huber–Kalman filter (red
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line) provides a more consistent and accurate RRI measurement compared to the Kalman
filter (blue line), closely matching the reference data (green line), thereby demonstrating its
effectiveness in handling noise and body movements for reliable HRV monitoring.
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From Figure 6, the three subplots in the figure respectively display the raw radar
phase signal, the heartbeat signal after Huber–Kalman filtering, and the comparison of
the interval between successive heartbeats (RRI) calculated by the Huber–Kalman filter
and the reference device Polar H10, which is a wearable golden standard. The second
subplot presents the signal after being processed by the Huber–Kalman filter. This filtered
signal prominently highlights the heartbeat positions (marked in red). Compared to the
raw radar phase in the first subplot, the processed signal clearly shows the heartbeat
locations, facilitating accurate heartbeat signal extraction. The third subplot compares
the RRIs calculated by the radar after Huber–Kalman filtering and those measured by
the reference device, Polar H10. The plot indicates that the RRI trend obtained from
the Huber–Kalman filtered signal closely matches the measurements from the Polar H10,
demonstrating high consistency.

In conclusion, it is evident that after applying the Huber–Kalman filter with this model,
the velocity changes caused by the heartbeat are significantly amplified, creating distinct
peaks. These peaks enable the effective capture of heartbeat timestamps, allowing for the
calculation of RRI and HRV.
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4.3. Short-Window Autocorrelation Algorithm

While the Huber–Kalman algorithm is effective, it can only sometimes ensure accurate
HRV results, particularly when phase signal quality is compromised, such as on bumpy
roads. Additionally, the Huber–Kalman algorithm does not assess the reliability of HRV
results. Therefore, an additional algorithm is necessary for post-processing analysis.

The short-window autocorrelation algorithm is essential for rapidly extracting HR by
leveraging the periodic characteristics of physiological signals. By implementing a moving
autocorrelation sliding window, the algorithm estimates the periodicity of heartbeats,
allowing for continuous and unobtrusive cardiac monitoring. This capability is precious in
quick and reliable cardiac monitoring scenarios.

The autocorrelation function measures the similarity between a signal and a delayed
version of itself over various time lags, identifying periodic patterns that correspond to
heartbeats. This method is effective for short-term HR estimation because it can rapidly
determine the fundamental frequency of the heartbeat signal within a short observation
window, thereby providing real-time and robust HR measurements.

The autocorrelation function rk for the chosen radar phase time series y at lag k is
computed as follows:

rk =
1
T ∑T−k

t=1 (yt − y)(yt+k − y)
c0

(18)

where T is the total number of time series data points, y represents the mean of y, and c0
is the sample variance of y. The periodic lag km corresponding to the frequency range of
0.6–2 Hz is then identified by locating the maximum within this range rk. This step can be
straightforwardly implemented. Consequently, the HR can be estimated as follows:

fHR =
1

km∆t
(19)

By inputting 3 s of radar phase data, if the autocorrelation result rk shows a prominent
peak, it indicates a high confidence level in the current HR. Conversely, a less pronounced
peak suggests significant interference, and the current HR should not be used to remove
anomalous RRI. When a high-confidence HR is present, the acceptable range for RRI should
be calculated as 60,000

HR ± 200 ms. Any RRI outside this range should be discarded.
As shown in Figure 7, a 3 s time window was selected and processed through a band-

pass filter to retain only the high-frequency micro-features. The autocorrelation algorithm
was then applied, yielding an HR result of 70 bpm, compared to the reference device, which
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showed an actual HR of 71 bpm. The comparison between the autocorrelation and FFT
results indicates that the autocorrelation result is closer to the exact value. Because the
spectral resolution of FFT is limited and requires a more extended sampling period for
accurate results. However, the autocorrelation algorithm proves to be more effective for
short-term HR detection and tracking HR changes.
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Additionally, the autocorrelation results can be used to evaluate signal quality. When
the signal quality is good, the HR results from the autocorrelation are prominent. Con-
versely, the HR results could be more prominent and attainable when the signal quality is
poor. If the HR results cannot be obtained, it is impossible to determine HRV.

5. Experiments and Results

Building on the theoretical foundations and advanced signal processing methods
discussed in the previous sections, this section delves into the practical application and
evaluation of the proposed wireless intelligent sensor system. We conducted experiments
to assess the system’s performance in real-world scenarios. This section will describe the
experimental setup, present the collected data, and analyze the results to demonstrate the
system’s effectiveness and accuracy in monitoring driver HRV.

5.1. Experimental Setup

The experiments were conducted with five participants to evaluate the performance
of the proposed wireless intelligent sensor system for monitoring HRV in drivers. These
participants were tested across two vehicle models: Mode V and Model S. Figure 8 shows
the 60 GHz FMCW radar system installation behind the driver’s seat. This strategic
placement ensures optimal detection of the driver’s HR and respiration by providing a
stable, unobstructed line of sight to the driver’s chest area, thereby enhancing the accuracy
and reliability of the health monitoring system in real-world driving conditions.
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5.2. Data Results Analysis

The data analysis focused on evaluating the accuracy of HR and HRV measurements
under various conditions. Table 1 summarizes the results obtained from different vehicle
models and test persons, including the average and HRV errors.

Table 1. Summary of HR and HRV measurement errors across different vehicle models and test persons.

Vehicle Model Test Person ID
HR (bpm) MEAN RRI (ms)

This Work Polar H10 Error This Work Polar H10 Error

Model V

1 84.9 86.2 −1.3 706.18 696.08 10.1

2 112.0 112.0 0 537.00 537.00 0

3 90.4 90.4 0 663.97 663.94 0.03

Model S
4 107.7 108 −0.3 556.94 557.00 −0.06

5 78.4 78.3 0.1 765.01 765.89 −0.88

Average Error 0.34 2.21

Table 1 summarizes HR and HRV measurement errors across vehicle models and test
subjects using the proposed wireless intelligent sensor system. The system’s HRV detection
employs a 60 GHz FMCW radar and advanced signal processing algorithms. The results
show that the average HR error across all participants was approximately 0.34 bpm, and the
average HRV (Mean RRI) error was about 2.21 ms. These low error margins demonstrate
the system’s high accuracy and reliability in real-world conditions. The effectiveness of
the Huber–Kalman filtering and autocorrelation algorithms is evident, as they successfully
mitigate noise and accurately capture HR and HRV data. After thorough testing, we
confirmed that the type of vehicle did not have a significant effect on the experimental
results. Our system demonstrated consistent performance across different car models.
According to the Task Force of the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology, HRV standards specify that a measurement error
of less than 5% is acceptable for time-domain methods such as SDNN and RMSSD [28].
These guidelines are widely recognized and serve as a benchmark for HRV monitoring
systems. Our system’s HRV testing error is less than 5%.

The accuracy of HRV measurements is further supported by analyzing specific HRV
metrics such as SDNN (Standard Deviation of NN intervals) [5,9] and RMSSD (Root Mean
Square of Successive Differences) [2,5]. SDNN and RMSSD are crucial metrics in the analysis
of HRV. SDNN measures the variability in the time intervals between RRI over a given
period, providing an overall assessment of ANS activity and reflecting the balance between
sympathetic and parasympathetic nervous system inputs. RMSSD, on the other hand,
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focuses on the short-term components of HRV by calculating the square root of the mean
of the squares of successive differences between adjacent RRI. This metric is particularly
sensitive to high-frequency HR variations, primarily influenced by parasympathetic activity.
Together, SDNN and RMSSD offer comprehensive insights into cardiovascular health, stress
levels, and autonomic regulation, making them essential for evaluating the effectiveness of
HRV monitoring systems.

Table 2 compares HRV time-domain results between the radar system and the reference
device, Polar H10. The table includes critical metrics such as Mean RRI, Mean HR, Min
HR, Max HR, SDNN, and RMSSD across different test participants. The radar system’s
SDNN values showed an average error range of 0.6 ms to 4.2 ms compared to the Polar
H10. RMSSD focuses on short-term HRV by calculating the square root of the mean of
the squares of successive differences between adjacent NN intervals. The radar system’s
RMSSD values had an average error range of 1.9 ms to 12.6 ms compared to the Polar
H10. This higher sensitivity to short-term HRV changes is beneficial for detecting rapid
fluctuations in HR, indicative of parasympathetic nervous system activity.

Table 2. HRV time-domain analysis results.

Test Person ID Variable Units
Value

This Work Polar H10 Error

1

Mean RRI ms 706.18 696.08 10.1

Mean HR beats/min 84.964 86.197 −1.233

Min HR beats/min 74.184 76.766 −2.582

Max HR beats/min 96.277 95.178 1.099

SDNN ms 36.307 32.764 3.543

RMSSD ms 33.060 20.494 12.566

2

Mean RRI ms 537 537 0

Mean HR beats/min 112 112 0

Min HR beats/min 108 107 1

Max HR beats/min 118 117 1

SDNN ms 8.7 9.3 −0.6

RMSSD ms 9.8 11.7 −1.9

3

Mean RRI ms 663.97 663.94 0.03

Mean HR beats/min 90.366 90.369 −0.003

Min HR beats/min 73.457 73.135 0.322

Max HR beats/min 97.911 98.361 −0.45

SDNN ms 36.105 31.908 4.197

RMSSD ms 40.680 30.999 9.681

4

Mean RRI ms 556.94 557 −0.06

Mean HR beats/min 107.73 108 −0.27

Min HR beats/min 98.555 99 −0.445

Max HR beats/min 113.12 113 0.12

SDNN ms 17.773 14.5 3.273

RMSSD ms 21.373 9.5 11.873
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Table 2. Cont.

Test Person ID Variable Units
Value

This Work Polar H10 Error

5

Mean RRI ms 765.01 765.89 −0.88

Mean HR beats/min 78.430 78.341 0.089

Min HR beats/min 74.111 74.004 0.107

Max HR beats/min 82.873 83.156 −0.283

SDNN ms 17.226 15.719 1.507

RMSSD ms 22.488 18.596 3.892

6. Conclusions

In this study, we addressed several challenging problems associated with noncontact
HRV monitoring, particularly the need for rapid and accurate detection. Traditional
methods often require 30 s or more to achieve reliable measurements, which is impractical
for real-time driver monitoring due to the potential for variable data quality over extended
periods. Quick detection is crucial in driver monitoring scenarios, as data quality cannot be
guaranteed to remain reasonably good for long durations.

Our original contributions to solving these problems are significant as follows: (1) we
can claim that it is the first time to apply the Huber–Kalman algorithm in HRV monitoring;
(2) the autocorrelation algorithm is used to swiftly determine HR within 3 s and assess
signal quality based on the prominence of peaks in the autocorrelation results; (3) the
Huber–Kalman method may include some erroneous RRI results, but these can be filtered
out using the HR results obtained from the autocorrelation analysis. Therefore, by combin-
ing the Huber–Kalman and autocorrelation algorithms, we have achieved fast and accurate
HRV monitoring; and (4) the results demonstrate high precision, with the SDNN error
within 5 ms, RMSSD error within 13 ms, and Mean RRI error within 11 ms.

Despite these advancements, several challenges remain for future research. Achieving
stable HRV monitoring during vehicle movement has not been fully realized, necessitating
further investigation. Ensuring reliable HRV measurements in dynamic driving conditions
is crucial for enhancing the robustness and applicability of our system in real-world sce-
narios. Future efforts will focus on optimizing signal processing algorithms to improve
performance in more dynamic and noisy environments. The ultimate goal is to seam-
lessly integrate our HRV monitoring system into driver assistance technologies, thereby
enhancing road safety and health monitoring.
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