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Abstract: Advancements in artificial intelligence (AI) have significantly transformed the field of
abdominal radiology, leading to an improvement in diagnostic and disease management capabilities.
This narrative review seeks to evaluate the current standing of AI in abdominal imaging, with a focus
on recent literature contributions. This work explores the diagnosis and characterization of hepatobil-
iary, pancreatic, gastric, colonic, and other pathologies. In addition, the role of AI has been observed
to help differentiate renal, adrenal, and splenic disorders. Furthermore, workflow optimization strate-
gies and quantitative imaging techniques used for the measurement and characterization of tissue
properties, including radiomics and deep learning, are highlighted. An assessment of how these
advancements enable more precise diagnosis, tumor description, and body composition evaluation is
presented, which ultimately advances the clinical effectiveness and productivity of radiology. Despite
the advancements of AI in abdominal imaging, technical, ethical, and legal challenges persist, and
these challenges, as well as opportunities for future development, are highlighted.

Keywords: artificial intelligence; abdominal radiology; machine learning; imaging; pancreatic;
colorectal; gastric; hepatic

1. Introduction

Diagnostic imaging continues to undergo rapid change as technology advances, im-
proving the diagnostic capabilities within medical imaging. This impact is particularly
evident in abdominal and thoracic imaging, with cutting-edge developments, such as
artificial intelligence (AI), helping to identify, diagnose, and manage diseases. A recent
comprehensive review paper was published on thoracic applications of AI [1]. Similar
review papers focusing on abdominal applications of AI have been published [2–4]. How-
ever, given the rapid rate at which new AI applications are emerging in radiology, this
narrative review highlights many of the latest AI applications, focusing on novel develop-
ments within the past few years and selectively incorporating relevant advancements from
earlier years to provide historical context. A primary focus is to summarize findings from
manuscripts in which more than 300 patients/images were studied using AI intervention.
However, smaller studies are included when deemed relevant for context in the topic
being studied.

This narrative review provides a focused discussion of AI applications in abdominal
radiology (Figure 1). Specific abdominal pathologies by organ system are discussed, which
includes hepatic, pancreatic, gastric, colorectal, and others, offering a body-part-specific
perspective on AI’s role in abdominal radiology. Each section addresses the valuable infor-
mation AI can provide to assist with the diagnosis, grading, and prognosis of these diseases.
Moreover, advanced image processing and analysis play a role in interpreting abdominal
imaging, and those topics are covered here. Image enhancements using reconstructive AI
algorithms and quantitative imaging techniques are discussed as well. Beyond diagnostics,
this narrative review discusses how AI optimizes workflow within radiology and assists
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in minimally invasive procedures. Although abdominal imaging has been transformed in
many ways by AI, technical, legal, and ethical challenges persist and are discussed.
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Figure 1. Summary of AI applications in abdominal radiology.

2. AI in Abdominal Imaging: Pathology Identification and Diagnostic Techniques

The role of AI in diagnosing and characterizing liver, pancreatic, gastric, colorectal,
and other abdominal diseases is constantly evolving, bringing new opportunities for early
diagnosis, accurate characterization, more precise treatment, and better outcomes. In the
following sections, an exploration of the impact of AI on various abdominal pathologies is
presented, with a specific focus on hepatic, pancreatic, gastric, and colorectal pathologies.
Finally, AI’s advancements to diagnose other abdominal pathologies, including conditions
affecting the kidneys, adrenal glands, and spleen, are also discussed. Each section will
detail how AI improves diagnostic accuracy, disease management, and patient outcomes
across these various areas.

2.1. Hepatic Pathologies

In the specific context of hepatic pathologies, AI has notably enhanced the identifica-
tion and description of hepatic lesions, including hepatocellular carcinoma (HCC) [5–24].
HCC is the most common form of liver malignancy, making up 80–90% of all liver cancer
diagnoses [5]. Conventional techniques depend on radiologists to differentiate malignant
from benign lesions, a challenge due to the heterogeneity of the liver. AI, when trained
on large databases of liver images, can pick up on these finer details, leading to better
diagnostic results. Training AI models involves exposing the system to many images with
known diagnoses, allowing it to learn the patterns and features that distinguish different
conditions. For example, in HCC diagnostic performance, area-under-the-curve (AUC) val-
ues are commonly reported to stand at over 0.900 across five imaging techniques: B-mode
ultrasound (US), contrast-enhanced US, endoscopic US, CT, and MRI [7–20] (Figure 2),
with a few exceptions [21–24]. For example, contrast-enhanced US images read with an
AI model achieved an AUC of 0.969, whereas the expert radiologist AUC values for these
same images were 0.864 to 0.935 [13]. Furthermore, the accuracy of HCC diagnosis using CT
images with AI assistance was greater than radiologists with similar experience who did not
have access to the AI tool [17,24]. Overall, these high AUC values suggest that AI can enhance
the diagnostic precision of HCC more than conventional approaches (Tables 1 and 2).
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Table 1. Focal liver lesion classification (benign vs. malignant) on ultrasound images with artificial
intelligence assistance compared to radiologists.

Imaging Modality AI Model
AUC

AI Model
Sensitivity

AI Model
Specificity

AI Model
Accuracy Comparison to Radiologists

B-Mode US [21] 0.77–0.85 80–87% 78% 79–84%

AI model showed greater accuracy
than radiologist experts for lesions

deemed unknown by the Code
Abdomen rating system.

B-Mode US [10] 0.924 86.50% 85.50% 84.70%
Sensitivity and specificity were

greater for the AI model compared to
experienced radiologists.

B-Mode US [11] 0.947 86.70% 98.70% 82.20% Not specified

CEUS [12] 0.934 92.70% 85% 91%

AI model displayed greater accuracy
than radiology residents and similar

accuracy to experienced
radiology attendings.

CEUS + Hepatic
Markers + AFP [13] 0.969 96.60% 91% 94% The AUC of the AI model was greater

than that of radiologists (0.864–0.935).

Endoscopic US
(Image) [14] 0.861 90% 71% N/a Not specified

Endoscopic US
(Video) [15] 0.904 100% 80% N/a Not specified

For values that were reported as a range, the mean value was used. The above data
are also reported in Table 1.

Another significant achievement is the use of AI to predict HCC with biomarkers.
Models can study imaging data to detect molecular changes and biomarkers linked to HCC
and help plan the proper course of action [25,26]. This capability allows for developing
individualized and precise treatment plans that help increase the treatment success rate
and pave the way for a more practical approach to patient care.
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Table 2. HCC diagnosis using CT and MRI images with artificial intelligence assistance compared
to radiologists.

Imaging
Modality

AI Model
AUC

AI Model
Sensitivity

AI Model
Specificity

AI Model
Accuracy Comparison to Radiologists

MRI [22] 0.79 65–75% 75–79% 73–75%

Sensitivity and specificity of the AI
model to identify HCC was similar to
that of radiologists, but identification of
non-HCC malignancies was inferior to
that of radiologists.

MRI [15] 0.9 87% 93% 94%

Less experienced radiologists performed
similar to the AI model (AUC 0.893).
Expert radiologists outperformed the AI
model (AUC 0.957).

MRI [16] 0.925 87.20% 91.60% N/a Similar performance of AI model to three
experienced radiologists.

CT [17] 0.986 N/a N/a 83%
Radiologists with access to the AI model
had greater accuracy than those who did
not have access (79.1% vs. 70.8%).

CT [18] 0.949 N/a N/a N/a Not specified

CT [23] 0.87 75% 88% 61% AI model had greater accuracy than
2 radiologists (61% vs. 53–55%).

CT [24] 0.883 89% 74% 79.3–81.8%
Radiologists who used the AI model
achieved greater accuracy than those
who did not have AI assistance.

3-Phase CT [19] 0.92 74% 94% 86% Not specified

4-Phase CT [19] 0.925 92% 77% 83% Not specified

CT [20] 0.92 73.9% 96.40% 91.60% Not specified

AI algorithms have also shown promising results in accurately predicting HCC pro-
gression and the risk of relapse [27,28]. By leveraging these concepts, it becomes feasible to
forecast the future course of the disease based on data obtained from imaging techniques,
histopathological examination, and molecular markers. This predictive capability is pivotal
in guiding follow-up and management plans and determining the timing of interventions,
instilling a sense of hope for the future of medical imaging and the potential it holds for
improving patient outcomes [28,29].

Beyond the applications of AI for HCC, other common liver pathologies, such as liver
steatosis [29], fibrosis [30–33], hepatic ascites [34], and non-alcoholic/metabolic-associated
fatty liver disease (NAFLD/MAFLD) [33] have been identified and described using AI-
assisted imaging. For example, one study showed that AI-assisted ultrasound can improve
accuracy in diagnosing liver steatosis [29]. In addition, AI assistance in liver fibrosis
staging using CT images has shown great potential [30–32]. AI has demonstrated efficacy
in assisting with hepatic ascites’ detection and assessment using CT scans [34,35]. In a
systematic review, AI-assisted ultrasound was found to significantly improve the sensitivity
and specificity of NAFLD diagnosis [33]. Furthermore, AI has shown the potential to
improve the quantification of the liver iron concentration (LIC) through non-invasive
imaging, such as the use of MRI rather than the invasive liver biopsy [36] (Table 3).

The integration of AI in hepatic imaging significantly contributes to the early diagnosis,
exact identification, and precise management of diseases, leading to better patient outcomes.
By combining the human knowledge and skills of radiologists with the analytical ability
of AI, the diagnosis becomes more comprehensive, accurate, and predictive. The result is
reassurance surrounding imaging accuracy and the value it adds to managing HCC, liver
steatosis, fibrosis, and hepatic ascites.
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Table 3. Summary of additional AI capabilities for hepatic pathologies.

Pathology Findings

HCC Biomarker Prediction
AI models can analyze imaging data to detect molecular changes and biomarkers
associated with HCC, enabling individualized treatment planning to increase success
rates [25,26].

HCC Progression and Relapse AI can predict HCC progression and relapse risk based on imaging, histopathology, and
molecular markers, aiding in follow-up management and timing of interventions [27–29].

Liver Steatosis AI-assisted ultrasound improves accuracy in diagnosing liver steatosis [29].

Fibrosis Staging AI applied to CT imaging shows potential in accurately staging liver fibrosis [30–33].

Hepatic Ascites AI aids in detecting and assessing hepatic ascites with CT imaging, improving diagnostic
accuracy [34].

NAFLD/MAFLD AI-assisted ultrasound significantly enhances sensitivity and specificity in
NAFLD/MAFLD diagnosis [33].

Liver Iron Concentration AI enables accurate, non-invasive quantification of liver iron concentration via MRI,
reducing reliance on biopsies [36].

2.2. Pancreatic Pathologies

Pancreatic cancers are quite a challenge due to a majority being diagnosed at a later
stage. Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses as a
result [37–39]. Additionally, pancreatic cancer diagnoses have doubled in the past 25 years
and are expected to continue to rise, therefore emphasizing the importance of early de-
tection [37]. AI models have been designed to improve the imaging diagnosis of PDAC
using CT scans [40] and endoscopic US [41,42]. Endoscopic US with AI has been found to
have a high sensitivity and specificity in the diagnosis of PDAC against other pancreatic
masses [41–43]. Also, pancreatic cancer detection with artificial intelligence (PANDA)
measures high accuracy in detecting pancreatic lesions in non-contrast CT, indicating better
results than radiologists regarding sensitivity and specificity [20].

The application of AI is not limited to early detection but also involves prognostic
assessments of treatment response and relapse probabilities. AI-based deep learning
models have been shown to accurately predict the grading of PDAC tumors using 18F-
FDG-PET/CT scans obtained before surgery [44]. In addition, these deep learning models
can predict prognoses and guide further actions in treatments through analysis of data
found in relevant imaging. For instance, a recent study showed that AI could estimate
treatment and recurrence probability outcomes and help develop target treatment plans
for patients with PDAC [45,46]. Furthermore, AI has been shown to predict PDAC lymph
node metastases on CT scans with an AUC of 0.91, whereas radiologists produced an AUC
of only 0.65 (p < 0.05). This finding suggests that AI can detect lymph node metastasis from
PDAC with greater discrimination than radiologists and, therefore, presents a promising
tool to be developed and integrated [47] (Figure 3).

In addition, research has demonstrated the ability of AI to diagnose occult preinvasive
cancer that cannot be seen with the naked eye on pre-diagnostic CT images, an important
use for early diagnosis. One study noted that an AI model trained on a large dataset could
accurately identify pancreatic cancer on diagnostic CT scans and visually occult preinvasive
cancer on pre-diagnostic CT scans [40].

Overall, AI has significant potential to assist in diagnosing and differentiating PDAC
and occult cancers early, formulating prognostic assessments, predicting tumor grading
and treatment responses, and predicting the likelihood of relapse with greater accuracy
than traditional methods. By integrating AI into clinical practice, there is potential for more
personalized and effective treatment plans, ultimately improving patient outcomes across
a range of pancreatic conditions (Table 4).
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Table 4. Use of AI for pancreatic pathologies.

Application AI Methodology Outcome References

Diagnosis of PDAC AI with CT,
endoscopic ultrasound

High sensitivity and specificity in differentiating
PDAC from other pancreatic masses. PANDA
model shows higher accuracy than radiologists
in non-contrast CT.

[20,37–43]

Prognostic Assessment Deep learning with
18F-FDG-PET/CT

Accurate tumor grading, treatment response
prediction, and relapse probability outcomes. [44–46]

Lymph Node
Metastasis Prediction AI with CT

Detects PDAC lymph node metastases with
AUC of 0.91, significantly higher than the
radiologist AUC of 0.65.

[47]

Detection of Occult
Preinvasive Cancer

AI on pre-diagnostic
CT images

Identifies visually occult preinvasive cancer,
aiding in early diagnosis. [40]

Overall Impact Multiple modalities

Enhances early detection, prognostic
assessments, treatment planning, and relapse
prediction in PDAC, facilitating personalized
treatment plans for better outcomes.

[37–47]

2.3. Gastric and Colorectal Pathologies

In gastrointestinal imaging, AI improves understanding of the position and size of
tumors, inflammatory changes, and other abnormalities. AI has considerable advantages
for diagnosing and managing gastric and colorectal cancers by endoscopy. The use of
AI in endoscopy—both EGD and colonoscopy—remains highly sensitive and specific in
diagnosing colorectal polyps and neoplasms within the GI tract. For instance, AI systems
have been found to increase the adenoma detection rate and decrease the adenoma miss
rate and quality of endoscopy [48].

In colorectal cancer, AI has been applied to detect biomarkers with prognostic and
predictive value from routine images and histopathological slides to help in the decision-
making process in the treatment plan [49,50]. The AI models can detect the neoplastic
changes in the early stages in endoscopic images, facilitating the timely management of
the diseases and improving the patient’s prognosis [51,52]. This is particularly relevant, as
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colorectal cancer takes the lives of many individuals each year, outnumbered only by the
mortality of lung cancer [49–51].

In addition, AI has been used in endoscopic diagnosis of esophageal and gastric
cancers, with evidence demonstrating improved diagnostic accuracy and a decreased miss
rate of lesions [53–55]. AI has shown the ability to predict histologic features of early gastric
tumors, such as the magnitude of differentiation and depth of invasion, using images and
videos of specimens [56]. However, AI has shown less efficacy in detecting metastases from
gastric adenocarcinoma in a recent study, emphasizing the need to further investigate its
utility in this realm [57].

Beyond the use of AI for cancerous lesions, it has shown efficacy in several other
gastric and colonic pathologies. AI has demonstrated great success in identifying the
presence of Helicobacter Pylori (H. pylori) [58] and diagnosing gastritis using endoscopic
images [59]. Furthermore, AI has shown the potential to detect mesenteric and celiac
artery bleeding with angiography images [60,61]. Using abdominal images of pediatric
patients, AI has been shown to identify necrotizing enterocolitis with similar accuracy to
physicians, suggesting a potential application for quickly recognizing this potentially fatal
condition [62]. AI algorithms have also shown notable accuracy in detecting intussusception
in pediatric patients on abdominal X-rays [63,64] and grayscale ultrasound images [65].
Furthermore, deep learning models have been used to differentiate between Crohn’s
disease and ulcerative colitis using endoscopic images, with accuracies and reading times
surpassing those of experienced physicians [66–68]. Specifically, the accuracy of these deep
learning models has been reported as high as 99.1% and as low as 90.4%, while expert
endoscopists range from 69.9% to 90.2% and novice endoscopists from 59.7% to 78% [66]
(Figure 4). Moreover, small bowel obstructions have been recognized with significant
accuracy with machine learning on CT imaging [69,70] and abdominal X-rays [71].
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Per patient refers to the AI model’s accuracy when taking into account all endoscopic
images for a single patient and making a prediction, whereas per lesion refers to the AI
model’s accuracy for predicting the IBD diagnosis based on a single endoscopic lesion.

In summary, AI has the potential to significantly impact the interpretation of gastric
and colorectal imaging in a wide variety of contexts and patient populations. In gastroin-
testinal imaging, AI may help determine tumor position and size. In addition, AI can help
with endoscopic diagnosis and treatment of gastric and colorectal cancers. AI functions
extend beyond cancerous lesions, such as diagnoses of multiple gastric and colonic condi-
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tions, such as H. pylori, ulcerative colitis, Crohn’s disease, gastritis, and vascular bleeding.
However, further research is necessary to optimize utility across all areas of gastrointestinal
imaging (Table 5).

Table 5. Summary of AI applications for gastric and colorectal pathologies.

Application Outcome References

Endoscopic Diagnosis Increases adenoma detection rate, reduces adenoma miss rate, and
improves endoscopy quality. [48]

Detection of Neoplastic Changes Identifies early-stage neoplastic changes, enabling timely colorectal
cancer management using endoscopy. [49–52]

Gastric and Esophageal Cancer Increases diagnostic accuracy and decreases miss rate, and can predict
differentiation and depth of invasion of early gastric tumors. [53–56]

Detection of H. pylori and Gastritis Accurately identifies the presence of H. pylori and diagnosis gastritis
using endoscopic images. [58,59]

Vascular Bleeding Detection Detects mesenteric and celiac artery bleeding effectively
with angiography. [60,61]

Pediatric Conditions Diagnosis necrotizing enterocolitis and intussusception in pediatric
patients with high accuracy. [62–65]

IBD Differentiation Differentiates Crohn’s disease from ulcerative colitis with high accuracy
and reduced reading time with endoscopic images. [66–68]

Small Bowel Obstructions Recognizes small bowel obstructions accurately, enhancing diagnostic
accuracy and supporting quick intervention. [69–71]

Overall Impact
Improves the interpretation of gastric and colorectal imaging across
diverse conditions, assisting in cancer and non-cancer diagnoses and
treatment. Further research needed in metastasis.

[48–71]

2.4. Other Abdominal Pathologies

AI has also contributed to describing and diagnosing other abdominal pathologies,
such as those of the kidneys, adrenal glands, and spleen. In renal imaging, AI improves the
detection of masses, specifically renal cell carcinoma, by semi-automating the delineation
and characterization of kidney lesions in cross-sectional imaging [72]. In cases of traumatic
injury, deep learning models have shown significant potential to identify renal, hepatic, and
splenic injuries using CT images [73]. Furthermore, AI has been studied and found to assist
with detecting abdominal hemorrhage using CT images [74] and ultrasound images [75,76].

Furthermore, AI has shown the ability to identify functional adrenal masses and
differentiate between the different types of tumors based on the texture features of the
CT images, a task usually performed by complex biochemical analysis. AI increased
radiologists’ accuracy in identifying these adrenal lesions by greater than 10% [77].

In splenic imaging, AI can detect the spleen’s volume to determine if a patient has
splenomegaly [78]. It can also be used with ultrasound imaging to diagnose traumatic
injuries to the spleen with greater accuracy than radiologist interpretation alone [73,79].
However, splenic injury detection and characterization with AI may be limited, as a recent
study showed more remarkable accuracy and specificity for high-grade injuries when
compared with low-grade injuries [80].

3. Advanced Image Processing and Analysis
3.1. AI-Driven Image Enhancement

AI image enhancement is a process whereby techniques are employed to sharpen
images to achieve better resolutions. Thus, it provides the enhanced possibility of recog-
nizing specific subtle changes a radiologist may fail to identify. In recent years, iterative
reconstruction algorithms based on deep learning models have been introduced to improve
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the quality of abdominal CT images with reasonable success compared to the prior iterative
reconstruction algorithms [81–84].

The application of AI algorithms to enhance PET and SPECT images has been proven
effective in improving image quality. Given the noisy appearances of these modalities,
AI can enhance the image resolution and the amount of quantitative data found. Models
reduce the number of radiotracers delivered to the patient and the total scanning time, with
the same diagnostic performance level achieved [85]. In PET/CT and PET/MRI, AI can
also enhance image reconstruction to decrease the scanning time and radiation dosage. The
diagnostic accuracy of MR-based attenuation correction is also improved with AI [86].

3.2. Quantitative Imaging

Quantitative imaging using AI has significantly advanced the measurement and
analysis of tissue characteristics, with profound implications for personalized medicine and
treatment planning. AI-driven quantitative imaging involves extracting detailed imaging
features that can characterize tissue properties beyond what is visible to the human eye.
Other methods, such as radiomics and deep learning, are critical in this area. Radiomics
reuses medical images and quantifies them into high-dimensional quantitative features
associated with clinical endpoints, including shape, texture, and intensity. Radiomics
has been applied in oncology to capture tumor heterogeneity, prognosis of the treatment
response, and risk stratification. For example, radiomics can detect slight variations in
textural patterns of the tumor that may be linked with the tumor’s malignancy and probable
reaction to the treatment and, therefore, contribute to developing an appropriate treatment
plan [87].

Deep learning models, particularly convolutional neural networks (CNNs), further
enhance this capability by automatically learning and extracting relevant features from
imaging data without human intervention. These models can improve the accuracy of
tumor segmentation, classification, and treatment outcome prediction [88,89].

Furthermore, integrating AI enhances disease severity and progression assessment
by measuring and analyzing body composition metrics. Algorithms can analyze imaging
data from modalities, such as CT, MRI, and US, to quantify body composition parameters,
including muscle mass, fat distribution, and bone density, which are critical for assessing
various health conditions. For example, a previous study demonstrated the value of AI
in extracting body composition measures from routine abdominal CT scans. This study
used a fully automated approach to measure fat and muscle masses, validating its clinical
discriminatory value. The model showed excellent agreement with manual segmentation
and could classify sarcopenia and visceral fat, which are significant predictors of mortality
in pancreatic cancer patients [90]. This capability allows for more precise and efficient
diagnosis, aiding in early detection and treatment planning.

Moreover, a systematic review and meta-analysis on AI for body composition and
sarcopenia evaluation using CT scans found that deep learning models for skeletal muscle
segmentation were highly accurate. These models facilitate the automated segmentation
of body composition, aiding in diagnosing sarcopenia and other related conditions [91].
This computerized analysis reduces the manual effort required from radiologists, allowing
them to focus more on image interpretation and patient care.

Clinical implications of the advancement of quantitative imaging using AI include the
ability to make more precise diagnoses based on tumor characteristics, thereby allowing
personalized treatment plans. In addition, clear demarcation of margins and an indication of
the area with high metabolic activity can assist in radiation treatments, ensuring maximum
radiation therapy is delivered to the tumor without harming other non-target tissues [92].

4. Workflow Optimization in Abdominal Imaging
Automation of Routine Imaging Tasks and Integration with Clinical Workflows

The involvement of AI in radiology has been found to enhance or transform radiologi-
cal processes and activities, including imaging processes, amounts of work, and radiologist
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efficiency [93]. Current AI applications, such as ChatGPT, in radiology can assist with
scheduling, study prioritization, and report distribution, which can assist in taking some
of the burdens off the radiologist and allow them to interpret more images and attend to
patients [94]. AI has been implemented in patient scheduling and work list management
to prioritize patients who require the medical provider’s attention in the shortest possible
time [95].

In clinical practice, AI has demonstrated the ability to reduce interpretation times. For
instance, a study on chest CT interpretation showed that AI assistance led to a 22.1% reduc-
tion in interpretation times, significantly enhancing radiologist efficiency [96]. Moreover,
AI can assist in report communication by automatically generating preliminary reports
and highlighting areas of concern for radiologists to review. This quickens the reporting
process and enhances the accuracy of diagnoses by reducing the likelihood of human
error [97]. AI tools can also be integrated into electronic health record (EHR) systems where
radiologists receive real-time decision support, reducing their workload [95]. Besides these
administrative positions, other non-interpreter quality enhancement positions have been
extended to AI, such as reducing variation in subsequent follow-up advice and improving
the quality of radiology reports [95]. These applications assist in managing adherence to
clinical guidelines and enhancing service delivery to patients.

In emergencies, it is possible to use AI to perform quick image analysis and sort
cases of differing severity, increasing the rates of returning urgent results and making
critical decisions. For instance, a recent paper outlined how AI can help trauma and
emergency radiologists quickly and accurately analyze medical images and qualitatively
determine disease severity by quantizing the morphological image details. This automated
prioritization means that the critical cases receive the attention they need in the shortest
time possible [13].

AI-based clinical decision support solutions can assist in recommending the proper
imaging tests and interpreting complicated imaging information. This integration can help to
optimize the patients’ processes and, therefore, enhance the patients’ experience [6,13]. More-
over, there is an ability to train and constantly improve the software with the help of new
data obtained from clinical practice, which makes the results more accurate and reliable.

5. AI in Abdominal Interventions
Guidance in Minimally Invasive Procedures

AI can help guide minimally invasive procedures in the abdomen by enhancing pre-
cision, safety, and efficiency. AI algorithms play a crucial role at various stages of these
procedures, from preoperative planning to intraoperative guidance and postoperative
checks. For example, AI creates detailed 3D models of the patient’s abdominal anatomy
from imaging data, improving visualization and aiding surgery scheduling. This reassures
doctors and patients, instilling confidence in the procedure’s safety. A recent study high-
lighted how AI generates high-resolution 3D images from CT or MRI scans to aid surgical
planning [98].

AI can also assist in guiding surgery by identifying key body landmarks and essential
structures. One study demonstrated how deep learning models can identify safe and risky
incision areas and reduce the chance of adverse surgical events [99]. This guidance is crucial
to procedural success. Additionally, AI can automate certain parts of the procedure, such
as suturing and image interpretation [100].

Furthermore, in the field of interventional radiology, a recent review paper succinctly
described the current pre-, intra-, and post-procedural applications of AI [101]. AI can
assist with pre-charting tasks, predictions of patient responses to procedural interven-
tions, anatomic visualization, as well as virtual reality education and training [101,102].
Other preoperative applications include radiogenomic assistance in preprocedural diag-
noses, prognostication, and outcome predictions [103]. AI has shown the potential to predict
survival and response to transarterial chemoembolization in patients with HCC [104–106]. In-
traoperatively, AI has been used to assist with fusion of images [106], as well as augmented



Tomography 2024, 10 1824

reality eyewear, voice and motion recognition systems, and technology to assess device
expenses [107]. Furthermore, intraoperative assistance with the orientation and pathways
of tumor ablative probes [108] and applications relating to decreasing and tracking radia-
tion exposure in procedures [109,110] have been described. Moreover, following oncologic
therapies, AI can assist with CT scan interpretation of the treatment response and tumor
sizing [111,112] and predict survival [112].

6. Challenges and Limitations of AI in Abdominal Imaging
6.1. Technical Barriers

Several technical challenges hinder the integration of AI in abdominal imaging, pre-
venting its widespread adoption and efficacy. A significant obstacle lies in the diversity of
imaging data, as variations in imaging protocols, equipment, and patient demographics can
impact the performance of AI models. Furthermore, the scarcity of large, labeled datasets
for training robust AI algorithms exacerbates this issue [113] (Figure 5).
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Another critical barrier pertains to the protection of patient data privacy. Safeguarding
patient information often impedes data sharing, a crucial element in developing and
validating AI models. Although researchers are exploring privacy-preserving techniques,
such as federated learning, the practical implementation of such methods remains a subject
of ongoing investigation [114].

It is essential to consider the complexity of AI models, particularly regarding under-
standing their decision-making processes. Many AI systems that utilize deep learning
operate as “black boxes”, which can pose challenges for physicians seeking to comprehend
the rationale behind specific predictions. Establishing trust and promoting the integration
of these tools in clinical settings hinges on addressing this need for more transparency.
Salahuddin et al. discussed various approaches to enhance deep neural networks’ com-
prehensibility in medical image analysis. They proposed nine methods for elucidating AI
decisions, thereby improving the reliability and applicability of the models [115]. Similarly,
Rasheed et al. emphasized the significance of developing comprehensible and trustwor-
thy machine learning models in healthcare. They highlighted the opaque nature of deep
learning models as a significant barrier to their adoption in clinical contexts and explored
diverse techniques to illuminate the decision-making processes of AI, underscoring their
pivotal role in earning the trust of both healthcare providers and patients [116].

An additional technical hurdle arises when AI models demonstrate proficiency with
training data but need help adapting to novel information. This challenge often stems from
developers utilizing limited or biased datasets during model development. To address this
issue, rigorous testing using diverse and representative datasets is crucial [113,114].

In summary, the technical impediments to integrating AI into abdominal imaging en-
compass heterogeneous data types, privacy concerns, model interpretability, and variations
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in learning efficacy. Overcoming these challenges is imperative to seamlessly integrate AI
into routine clinical practice.

6.2. Ethical and Legal Considerations

The use of AI in abdominal imaging raises several ethical and legal considerations
that must be addressed to ensure responsible and effective use. Bias and discrimination are
two primary ethical considerations. Machine learning algorithms trained on prejudiced
datasets may only help replicate healthcare inequalities and produce unequal treatment
results. Timely availability of AI technologies is also essential, as there are disparities in the
current technologies that need not be perpetuated. Furthermore, privacy and confidentiality
are critically important, given the sensitive nature of medical data. Patient data should
be handled ethically, and robust systems should be in place to protect privacy as AI
technologies are being utilized. Additionally, the clinician–patient relationship may be
impacted, necessitating transparency and trust [117,118].

Furthermore, legal liability for AI errors is a significant concern. The ambiguity
around who is responsible—whether it is the radiologist, the AI developer, or the health-
care institution—complicates the implementation of AI tools. For instance, Europe has
categorized many radiology-related AI tools as high risk, reflecting the potential for sig-
nificant legal implications [119]. Furthermore, applying product liability law to AI and
classifying it as a medical device through regulatory bodies, such as the FDA, adds layers
of complexity. Clear rules and oversight are essential in handling these legal issues and
ensuring AI tools work well [119–122].

7. Conclusions and Future Directions

The use of AI in abdominal imaging represents a significant advancement in patient
care. This narrative review highlighted the role of AI in identifying, diagnosing, and
treating abdominal diseases, particularly in organs such as the liver and pancreas. This
technology clarifies images, allows for more exact measurements, and augments radiol-
ogists’ workflow. These improvements can lead to more accurate diagnoses while also
assisting in improving treatment approaches. Lastly, they have the potential to support
efficient diagnostic interpretation. Despite the momentum, several challenges persist, in-
cluding tackling technical limitations, such as differences in data from various training
sources and the complex nature of AI systems. Additionally, ethical and legal concerns,
such as bias and data privacy, are barriers to seamless AI implementation.

Ongoing research and development should aim to improve AI’s transparency, un-
derstanding, and fairness to help a wide range of patients. AI developers and healthcare
professionals need to work together to make these improvements when planning and
carrying out future clinical trials to assess and boost the use of AI. As technology grows,
there becomes a larger and more significant impact on abdominal imaging, leading the way
for personalized medicine, better diagnostics, and more effective healthcare. By tackling
current challenges and building on progress to date, AI has led to worthwhile changes in
abdominal radiology, ushering in a new age of accurate imaging and improved patient care.
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