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Abstract: Background: This multicenter and retrospective study investigated the additive value
of tumor morphologic features derived from the functional tumor volume (FTV) tumor mask at
pre-treatment (T0) and the early treatment time point (T1) in the prediction of pathologic outcomes
for breast cancer patients undergoing neoadjuvant chemotherapy. Methods: A total of 910 patients
enrolled in the multicenter I-SPY 2 trial were included. FTV and tumor morphologic features were
calculated from the dynamic contrast-enhanced (DCE) MRI. A poor response was defined as a
residual cancer burden (RCB) class III (RCB-III) at surgical excision. The area under the receiver
operating characteristic curve (AUC) was used to evaluate the predictive performance. The analysis
was performed in the full cohort and in individual sub-cohorts stratified by hormone receptor (HR)
and human epidermal growth factor receptor 2 (HER2) status. Results: In the full cohort, the AUCs for
the use of the FTV ratio and clinicopathologic data were 0.64 ± 0.03 (mean ± SD [standard deviation]).
With morphologic features, the AUC increased significantly to 0.76 ± 0.04 (p < 0.001). The ratio of
the surface area to volume ratio between T0 and T1 was found to be the most contributing feature.
All top contributing features were from T1. An improvement was also observed in the HR+/HER2-
and triple-negative sub-cohorts. The AUC increased significantly from 0.56 ± 0.05 to 0.70 ± 0.06
(p < 0.001) and from 0.65 ± 0.06 to 0.73 ± 0.06 (p < 0.001), respectively, when adding morphologic
features. Conclusion: Tumor morphologic features can improve the prediction of RCB-III compared
to using FTV only at the early treatment time point.

Keywords: magnetic resonance imaging; breast cancer; tumor morphology; neoadjuvant therapy;
multicenter clinical trial; residual cancer burden

1. Introduction

For women with locally advanced breast cancer undergoing neoadjuvant chemother-
apy (NAC), favorable recurrence-free survival (RFS) and overall survival (OS) are observed
for those who achieve a pathologic complete response (pCR), defined as the absence of
invasive disease after NAC [1,2]. For those who do not have pCR, the residual cancer
burden (RCB) method is a standard measure of residual disease in the primary tumor and
in the lymph nodes after neoadjuvant treatment [3–6]. The categorical RCB classes (0-III)
quantify the extent of residual disease, with RCB-0 indicating no residual invasive disease
(pCR) and RCB-III indicating a high burden of residual disease [7]. The RCB classes and
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the RCB calculation on a continuous scale have been validated as a prognostic tool, with
a higher RCB after NAC associated with a worse prognosis [8]. In patients undergoing
NAC, the ability to identify poorly responding tumors at an early treatment time point can
potentially facilitate appropriate early intervention, either by switching to a more effective
therapy or by stopping an ineffective but potentially toxic one.

Magnetic resonance imaging (MRI) offers a non-invasive and real-time assessment
of the breast cancer treatment response. The functional tumor volume (FTV), derived
from dynamic contrast-enhanced (DCE) MRI, is an imaging biomarker that has been
integrated into personalized decision-making workflows in the Investigation of Serial
Studies to Predict your Therapeutic Response with Imaging and Molecular Analysis 2 (I-
SPY 2 TRIAL) to identify and re-direct patients with tumors that respond well or poorly to a
more suitable treatment by either de-escalating or escalating the treatment, respectively [9].
However, as a gross measurement of the tumor volume, the FTV does not reflect tumor
morphological characteristics such as the shape or structure, which may also predict
the response to treatment [10,11]. In BI-RADS, or the Breast Imaging Reporting and Data
System, the tumor morphology is described based on observations by radiologists regarding
the appearance, shape, and structure in breast imaging, but it is subject to inter-observer
variability, especially for non-mass lesions [12]. An objective, quantitative assessment of the
tumor morphology in breast DCE-MRI is needed. Previous studies have demonstrated that
the tumor sphericity, a single shape feature measured from the same tumor segmentation
used in FTV calculation, can predict the pCR for breast cancer treated by NAC [13].

In this study, we extracted a set of morphologic features from the existing FTV tumor
segmentation and investigated the additive value of tumor morphologic features to FTV in
the prediction of RCB-based pathologic outcomes using data from the multicenter I-SPY 2
study.

2. Materials and Methods
2.1. Patient Cohort

The study cohort comprised 990 patients enrolled in the I-SPY 2 clinical trial who
had completed treatment by November 2016. Women who were 18 years or older and
diagnosed with clinical stage II or III breast cancer with a tumor size of at least 2.5 cm by
imaging or physical examination were eligible to enroll in the I-SPY 2 TRIAL. Patients who
had a hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-
negative status that were low risk according to MammaPrint (Agendia, Irvine, CA, USA)
were excluded. Other patient exclusion criteria included not having a pathologic assessment
at surgery or not having demographic data. All patients were treated with experimental
drugs or standard chemotherapy for 12 weeks, followed by 4 cycles of doxorubicin and
cyclophosphamide (AC). This was a Health Insurance Portability and Accountability
Act (HIPAA)-compliant multicenter study. The study was conducted according to the
guidelines of the Declaration of Helsinki and approved by the Institutional Review Boards
of the participating sites. All participating sites had received institutional review board
approval, and all participating patients provided written informed consent for this research.

2.2. Image Acquisition

As per the I-SPY protocol, dynamic contrast-enhanced (DCE) MRI was acquired at
multiple time points for each patient at the participating site. MRI examinations were
performed on either 1.5T or 3T scanners, but the same scanner and configuration was
always used for the same patient across time points. Three-dimensional fat-suppressed
T1 images were acquired before and after contrast injection. Details of the DCE-MRI
acquisition protocol can be found in Table S1. Postcontrast imaging started simultaneously
with the injection. The gadolinium contrast agent was administrated intravenously at a
dose of 0.1 mmol/kg body weight and at a rate of 2 mL/s, followed by a 20 mL saline
flush. DCE-MRI acquired at pretreatment (T0) and 3 weeks after the start of NAC (T1) was
analyzed in this study. The imaging data included in this study can be accessed via the
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Cancer Imaging Archive (TCIA) [14]. Patients included in this study were required to have
MRI at both T0 and T1, with acceptable MRI quality. MRI was excluded if the data were
corrupted or the acquisition was not protocol-adherent (across visits) or had severe motion
upon visual inspection.

2.3. Image Analysis

The MRI variables, including the FTV and tumor morphologic features, were calcu-
lated from the DCE-MRI. As described in prior publications [15], the FTV was calculated
as the sum of the voxel volumes, in which the voxels were selected automatically using
thresholds for the early percent enhancement (PE) and signal enhancement ratio (SER),
after a 3D rectangular volume-of-interest box was delineated manually by a site radiologist
or a trained imaging coordinator to cover the entire tumor area. The FTV was calculated at
each treatment time point, T0 and T1, separately. The ratio of the FTV value at T1 relative
to the FTV value at T0 (referred to as FTV Ratio (FTVR)) was also calculated to capture the
change between treatment time points.

To calculate the tumor morphologic features, three-dimensional shape features were
extracted from the existing FTV tumor mask after simple preprocessing steps were applied
to the tumor mask to remove noise and ensure that the radiomic features accurately
reflected the tumor shape. First, all voxels were resampled to an isotropic voxel size of
1 mm × 1 mm × 1 mm with nearest-neighbor interpolation. Second, a morphological
closing operation with a kernel radius of 5 mm was applied to fill small holes. Third, anti-
aliasing filtering was applied to the binary image to reduce the aliasing artifacts created by
surface generation [16]. The number of iterations and maximum root-mean-square error
were 50 and 0.01, respectively. Finally, objects with a size less than or equal to 100 connected
voxels were removed.

FTV tumor masks were generated using in-house software developed in the Interac-
tive Data Language (IDL Version 8.5, NV5 Geospatial Solutions, Broomfield, CO, USA). All
preprocessing steps were implemented using the SimpleITK toolkit (Kitware, Inc., Clifton
Park, New York, NY, USA) [17]. After preprocessing, radiomic shape features were ex-
tracted within the FTV tumor mask. A total number of 17 3D shape features were calculated
for the tumor masks in each DCE-MRI exam using Pyradiomics [18]. See Figure 1 for an
illustration of the shape feature extraction, and the list of features extracted can be found
in Table S2. Missing data occurred when the number of tumor voxels was too small to
calculate shape features. In these cases, a random forest-based imputation method was
implemented [19]. A total of 51 shape feature variables were extracted, including 17 shape
features extracted at T0, 17 shape features extracted at T1, and 17 ratios of shape features at
T1 over shape features at T0.
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Figure 1. Illustration of radiomic feature extraction from functional tumor volume (FTV) tumor mask
in dynamic contrast-enhanced MRI. First, early percent enhancement (PE) and signal enhancement
ratio (SER) thresholds were applied to generate the FTV tumor mask, from which the FTV was
calculated. Second, multiple preprocessing steps were applied to the FTV tumor mask to fill small
holes, smooth edges, and remove small clusters of connected voxels. Lastly, the Pyradiomics package
was used to extract radiomic 3D shape features.
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2.4. Pathologic Outcome

The pathologic outcome was assessed at the time of surgery, after the completion of
NAC. The histopathologic analysis of the surgical specimens was performed at the partici-
pating sites by the institutional pathologist, following the I-SPY protocol [6]. RCB classes
(RCB-0, RCB-I, RCB-II, RCB-III) were calculated based on pathology measurements [20],
where RCB-0 was considered as a pCR. The patient cohort was dichotomized based on
the RCB classes in three methods: (1) pCR (RCB-0) versus non-pCR (RCB-I, -II, -III) for
the prediction of the best outcome; (2) RCB-0 and -I (RCB-0 and RCB-I versus RCB-II and
RCB-III) for the prediction of minimal residual disease; (3) RCB-III versus non RCB-III
(RCB-0, -I, -II) for the prediction of the worst outcome with extensive residual disease. This
study focused on predicting RCB-III versus non RCB-III.

2.5. Statistical Analysis

The prediction of RCB outcomes was evaluated using four commonly used machine
learning (ML) algorithms—elastic net [21], classification and regression tree (CART) [22],
random forest [23], and gradient boosting machine (GBM) [24]. Each model was evaluated
with respect to its performance using the FTVR and clinicopathologic data, with and
without 51 shape feature variables. The patient clinicopathologic data were the age, race,
menopausal status, and HR/HER2 subtype defined by HR-positive/-negative and HER2-
postive/-negative status. Model evaluation was performed using automatic tuning and
testing, in which nested resampling was used. The inner resampling was conduced for
the hyperparameter tuning of the model, performed by a grid search using 5-fold cross
validation. Lists of the hyperparameters tuned in each ML model can be found in Table S3.
The outer resampling was conducted for model generalizability and was performed with
20 stratified subsamples. The area under the receiver operating characteristic curve (AUC)
was used to evaluate the predictive performance. AUC estimations were given as the
mean with standard deviation (SD) of the AUC values across all 20 testing sets of the outer
resampling. An illustration of the nested cross-validation is shown in Figure S1. The model
comparison was conducted by the pairwise Wilcoxon signed-rank test. Fisher’s exact test
was used to estimate p-values for the distributions of categorical clinicopathologic data
between the two groups, and a two-sided Student t test was used to estimate the p-value
for the age difference between the two groups. Numeric MRI variables were presented as
medians with interquartile ranges, and a two-sided Wilcoxon signed-rank test was used to
test the difference in the two groups. Correlation coefficients between the FTV and shape
features were calculated by Spearman’s method.

The additive value of the shape features was assessed by comparing the AUCs of
the optimal models with and without shape features. The optimal model was selected by
identifying the one with the highest mean AUC among the four ML algorithms listed above.
Variable importance was used to rank the contributions of MRI and the clinicopathologic
variables in the ML models. In the elastic net models, coefficients were used to generate the
variable importance for numeric variables only (categorical variables were not included)
after the coefficients were scaled by the multiplication of the standard deviation.

The statistical analysis was performed in R (version 4.2.2). The machine learning
model evaluation was performed using the rtemis package [25]. The statistical significance
level was nominally set to be 0.05.

3. Results
3.1. Patient Characteristics

A flowchart showing the patient inclusion and exclusion process is shown in Figure 2.
Patients with missing pathologic outcomes (n = 45) or clinicopathologic data (n = 3),
missing MRI data (n= 17), or poor MRI quality (n = 15) were excluded. Out of 15 excluded
due to poor quality, six had non-usable MRI data; six had severe motion; and three had
inconsistent sequence acquisition times between T0 and T1 or a non-protocol-adherent
sequence acquisition time. Thus, a sub-cohort of 910 was included in the analysis. Table 1
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shows the characteristics of the eligible (n = 990), analysis (n = 910), and excluded (n = 80)
cohorts. The analysis cohort had the same mean age (48.8 years old) and standard deviation
(10.5 years old) as the eligible cohort. The two cohorts also shared similar HR/HER2
and menopausal status, race, and RCB class distributions. However, the excluded cohort
had different subtype (p = 0.024), race (p = 0.018), and RCB class (p < 0.001) distributions
compared to the analysis cohort.
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Figure 2. Data inclusion and exclusion. Patients were excluded from the analysis because of missing
pathological outcomes, clinicopathologic data, or MRI or unusable imaging data.

Table 1. Patient characteristics.

Characteristic Eligible Cohort
n = 990

Analysis Cohort
n = 910

Excluded Cohort
n = 80

p-Value
(Analysis versus Excluded)

Age (mean ± standard deviation) 48.8 ± 10.5 48.8 ± 10.5 47.8 ± 11.0 0.41

HR/HER2 subtype (n, %)

0.024

HR+/HER2- 382 (39%) 358 (39%) 24 (30%)

HR+/HER2+ 156 (16%) 147 (16%) 9 (11%)

HR-/HER2+ 89 (9%) 75 (8%) 14 (18%)

HR-/HER2- (triple-negative) 363 (37%) 330 (36%) 33 (41%)

Menopausal status (n, %)

0.63

Premenopausal 481 (49%) 438 (48%) 43 (54%)

Perimenopausal 35 (4%) 33 (4%) 2 (3%)

Postmenopausal 301 (30%) 282 (31%) 19 (24%)

Not applicable 135 (14%) 123 (14%) 12 (15%)

Unknown 38 (4%) 34 (4%) 4 (5%)

Race (n, %)

0.018

White 783 (79%) 730 (80%) 53 (66%)

Black or African American 120 (12%) 104 (11%) 16 (20%)

Asian 68 (7%) 61 (7%) 7 (9%)

Mixed 7 (0.7%) 7 (0.8%) 0 (0%)

Native Hawaiian or Pacific Islander 5 (0.5%) 5 (0.5%) 0 (0%)

American Indian or Alaska Native 4 (0.4%) 3 (0.3%) 1 (1%)

Unknown 1 (0.1%) 0 (0%) 1 (1%)
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Table 1. Cont.

Characteristic Eligible Cohort
n = 990

Analysis Cohort
n = 910

Excluded Cohort
n = 80

p-Value
(Analysis versus Excluded)

Residual cancer burden (n, %)

<0.001

RCB-0 (pCR) 325 (33%) 315 (35%) 10 (13%)

RCB-I 135 (14%) 127 (14%) 8 (10%)

RCB-II 339 (34%) 327 (36%) 12 (15%)

RCB-III 146 (15%) 141 (15%) 5 (6%)

Unknown 45 (5%) 0 (0%) 45 (56%)

HR: hormone receptor. HER2: human epidermal growth factor receptor 2. pCR: pathologic complete response.
RCB: residual cancer burden. p-values were calculated by two-sided t test for age and Fisher’s exact test for
HR/HER2, menopausal, and pCR.

3.2. Additive Value of Shape Features

In the analysis cohort, 141 patients (15%) had RCB-III at the surgery and the remaining
769 patients (85%) were non RCB-IIIs (65%). The AUCs of the ML models estimated in the
full cohort (n = 910) and in the sub-cohorts defined by HR/HER2 subtype are listed in Table
S4. The optimal model for the prediction of RCB-III using the FTVR and clinicopathologic
data was based on GBM with an estimated AUC of 0.64 ± 0.03. After the shape feature
variables were added together with the FTVR and clinicopathologic data, a higher AUC
was achieved (0.76 ± 0.04, p < 0.001) by random forest. Boxplots of the AUCs for the models
with and without the shape are shown in Figure 3. The AUCs for the prediction of the
pCR and RCB-0/-I using the ML models estimated in the full cohort (n = 910) and in the
sub-cohorts defined by HR/HER2 subtype are listed in Tables S5 and S6.
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Figure 3. Boxplots of area under the receiver operating characteristic curve (AUC) for prediction of
residual disease with and without shape features. AUCs were evaluated by optimal machine learning
models independently in 20 stratified subsamples of the analysis cohort (n = 910) for the prediction of
RCB-III. Model—without shape: FTVR and clinicopathologic data were used in the predictive model.
Model—with shape: shape features were added to the predictive model together with FTVR and
clinicopathologic data.

The associations between the individual MRI variables (FTVR and shape features)
and RCB-III according to a univariate analysis can be found in Figure S3. The Spearman’s
correlation coefficients between the FTV and shape features calculated at T0 and T1 are
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listed in Table S7. The variable importance for the prediction of RCB-III using shape features
together with FTVR and clinicopathologic data by random forest is shown in Figure 4,
which shows that the most important variable was the ratio of the surface area to volume.
The surface area to volume ratio was one of the radiomic shape features analyzed in this
study (see Table S2 for the full list), and the ratio represented the change in this shape
feature between T0 and T1. The beeswarm plots with overlaid boxplots of the surface area
to volume ratio for the RCB-III and non RCB-III groups are shown in Figure 5, which also
shows the plots for the FTVR. The FTVR was ranked fourth among the top ten contributing
variables, and it was significantly higher in the RCB-III group (0.74 [0.51, 0.97]) than in the
non-RCB-III group (0.49 [0.26, 0.76]), p < 0.001. The surface area to volume ratio was lower in
the RCB-III group (1.10 [1.00, 1.26]) than in the non-RCB-III group (1.27 [1.09, 1.58]), p < 0.001.
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Figure 5. Beeswarm plots with overlaid boxplot of MRI features. (a) Functional tumor volume
(FTV) ratio between pretreatment and early treatment. (b) Ratio of surface area to volume between
pretreatment and early treatment. Number of patients in the RCB-III group was 141, with 769 patients
in the nRCB-III group (RCB-0, -I, or -II).

Figure 6a shows an example of the RCB-0 cases. The FTVR at T1 was 0.99, which
indicated that the FTV did not change after three weeks of NAC. However, the surface
area to volume ratio increased from 0.68 at T0 to 0.87 at T1, resulting in a ratio of 1.28. This
example illustrates that, in good responders, the surface area to volume ratio increased
even when the FTV remained the same. Figure 6b shows an example of the RCB-III cases.
The FTVR was 0.67 but the surface area to volume ratio remained the same (0.38 at T0 and
0.38 at T1). This suggests that, even if the tumor is reduced in size but retains its original
shape after three weeks of NAC, it might still indicate a poor response.
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pretreatment (T0) and early treatment (T1) time points are shown. Functional tumor volume (FTV)
tumor masks were generated by voxels within the region-of-interest box in yellow that had an early
percent enhancement (PE) above 70% and are shown superimposed on the representative slices.
Colors within FTV tumor masks represent different levels of signal enhancement ratio (SER)—blue: 0
to 0.9; purple: 0.9 to 1.0; green: 1.0 to 1.3; red: 1.3 to 1.75; white: 1.75 and higher. Three-dimensional
surface rendering of the preprocessed tumor mask is shown next to the representative slice. (a) An
example of a patient with RCB-0. (b) An example of a patient with RCB-III.
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3.3. Additive Value of Shape Features by HR/HER2 Subtype

The same four ML models were built separately in the HR/HER2 sub-cohorts, and
boxplots of the AUCs for the models with and without the shape, evaluated in the individ-
ual sub-cohorts, are shown in Figure 7. In HR-/HER2+, the number of RCB-IIIs was too
low (n = 4, 5%), so the results in this sub-cohort were omitted.
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Figure 7. Boxplots of area under the receiver operating characteristic curve (AUC) for prediction of
residual disease with and without shape features. AUCs were evaluated by optimal machine learning
models independently in 20 stratified subsamples of the analysis cohort (n = 910) for the prediction of
RCB-III in (a) HR+/HER2−, (b) triple-negative, and (c) HR+/HER2+. Model—without shape: FTVR

and clinicopathologic data were used in the predictive model. Model—with shape: shape features
were added to the predictive model together with FTVR and clinicopathologic data.

In the HR+/HER2− sub-cohort, the total number of patients was 358, and 81 (23%) of
them were estimated as RCB-III at surgery. The optimal model for the prediction of RCB-III
using the FTVR and clinicopathologic data was based on the random forest algorithm, with
an estimated AUC of 0.56 ± 0.05. After the shape feature variables were added together
with the FTVR and clinicopathologic data, a higher AUC was achieved (0.70 ± 0.06) by the
random forest, p < 0.001.

In the triple-negative sub-cohort, the total number of patients was 330, and 36 (11%) of
them were estimated as RCB-III at surgery. The optimal model for the prediction of RCB-III
using the FTVR and clinicopathologic data was based on GBM, with an estimated AUC
of 0.65 ± 0.06. After the shape feature variables were added together with the FTVR and
clinicopathologic data, a higher AUC was achieved (0.73 ± 0.06) by the GBM, p < 0.001.

In the HR+/HER2+ sub-cohort, the total number of patients was 147, and 20 (14%) of
them were estimated as RCB-III at surgery. The optimal model for the prediction of RCB-III
using the FTVR and clinicopathologic data was based on the elastic net, with an estimated
AUC of 0.84 ± 0.07. After the shape feature variables were added together with the FTVR
and clinicopathologic data, a higher AUC was achieved (0.87 ± 0.06) by the random forest,
p = 0.073.

4. Discussion

This retrospective study leveraged both the imaging and pathological data from the
multicenter I-SPY trial and investigated the additive value of radiomic shape features for
the FTV from DCE-MRI at pretreatment and after 3 weeks of NAC in the prediction of
pathologic outcomes. Our results showed that, when adding radiomic shape features,
the AUCs of the predictive models increased in predicting the worst outcome (RCB-III)
substantially from 0.64 to 0.76. We also performed the same analysis by breast cancer
subtype, defined by HR and HER2 status, and substantial improvements in predicting
RCB-III after adding shape features were observed in HR+/HER2- (from 0.56 to 0.70) and
triple negatives (from 0.65 to 0.73).
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Established in the multicenter I-SPY clinical trial, the FTV is a quantitative imaging
marker for the NAC treatment response in women with stage II or III breast cancer [9].
The FTV is currently used as one of the biomarkers in the I-SPY 2 randomization engine
to adaptively assign patients to treatment drug arms and to redirect treatment [26,27].
Features that could assist the FTV in predicting pathologic outcomes at early treatment time
points would be valuable to improve the performance of MRI-based models. Although
the performance of the FTV in predicting the pCR has been reported multiple times over
the years [9,28–30], the assessment of the FTV in predicting the RCB-III outcome has not
been previously discussed. Recently, FTVs measured from 3-week and 6-week MRI have
been used to identify inferior responses to NAC by predicting RCB-II/-III in the I-SPY 2
trial [26].

Radiomic analysis is a fast-evolving field of research for radiology and oncology,
and radiomic feature extraction is often performed on intensity-based images to quantify
the tumor size, shape, texture, and heterogeneity. A large number of image features,
including shape features, can be extracted altogether using automated software packages.
Associations between radiomic shape features and the treatment response in breast cancer
and other types of cancer have been reported previously [31–35]. In a multicenter study
of 320 tumors by Granzier et al. [31], a predictive model combining selected pretreatment
MRI-based radiomics, including sphericity, and clinical data achieved an AUC of 0.73 in
predicting the pCR. Similar shape features (tumor volume, sphericity, and compacity) were
found to be predictive of the treatment response to neoadjuvant chemotherapy and tumor
recurrence in patients with locally advanced rectal cancer, according to a study by Park
et al. [35].

However, the present study was not a typical study that used radiomic features to
predict pathologic outcomes. Instead, only radiomic shape features were extracted using
existing tumor segmentations generated by FTV calculation, and they were used to quantify
the tumor morphology.

This study observed a substantial improvement in predicting RCB-III after shape fea-
tures were combined with the FTV and demographic data, suggesting that shape features
may be associated with drug resistance, especially for HR+/HER2- and triple-negative
tumors. Patients with HR+/HER2-, HR+/HER2+, or triple-negative tumors experienced
significantly poorer survival when their residual disease was classified as RCB-III com-
pared to those with other RCB classifications, according to a multicenter pooled study of
5161 patients [36]. Therefore, identifying RCB-III early on may aid in the customization
of therapeutic strategies to improve patient outcomes. Our results regarding the variable
importance demonstrated that most of the top contributing MRI variables were from the
early treatment time point, not the pretreatment one. This finding suggests that the tumor
morphology or a change in the tumor morphology in DCE-MRI can be more accurate in
identifying tumors that are resistant to NAC shortly after treatment initiation compared to
before treatment.

While the minimal reduction in tumor size indicated by the FTV could suggest re-
sistance to treatment, our findings indicate that radiomic shape features could offer extra
insights into this resistance. The surface area to volume ratio measured between T0 and
T1 was ranked as the top contributor based on our variable importance analysis for the
prediction of RCB-III, suggesting that non-responding tumors not only maintained their
tumor sizes but also tended to maintain their shapes compared to other RCB classes after
3 weeks of NAC. This finding aligns with studies of tumor shrinkage patterns in DCE-MRI
during NAC, in which tumor shrinkage patterns were categorized into groups based on
concentric shrinkage or non-concentric shrinkage [37,38]. Fukada et al. found statistically
significant differences in both the disease-free survival (DFS) and overall survival (OS)
between the shrinkage patterns observed in MRI during NAC for low-grade luminal breast
cancer [37]. Wang et al. found that the diffuse decrease pattern in HR+/HER2- and stable
disease in HER2+ and triple-negative breast cancer could serve as indicators of the response
to NAC in their stratified analysis by HR/HER2 subtype [38]. However, both studies were
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based on the visual assessment of the enhancement patterns on DCE-MRI, which could
be subjective.

This study had a few limitations. The data in this study were from a multicenter clinical
trial with variability in imaging protocol compliance. A recent study published from I-SPY
2 suggests that protocol compliance and longitudinal variations in FTV segmentation can
affect the predictive performance of the FTV [30,39]. Since the tumor masks were generated
based on voxels used for FTV calculation, these factors could have affected our analysis
as well. Furthermore, our patient population was treated by drug combinations. This
treatment heterogeneity could also cause the tumor response to be more heterogeneous,
which would make the prediction process more challenging. The current study focused on
the relative additive value of radiomic shape features, so we expected a minimal impact on
our results. Our cohort was limited by the I-SPY 2 data availability and the targeted drugs
used in the trial, so the pathologic outcome rates may be different from the population
who receive standard NAC, especially for the best and worst outcomes. However, AUC
evaluation is not affected by outcome prevalence, so this limitation should not affect the
model’s generalizability. Lastly, this study only included shape features, a small subset of
the large number of radiomic features that can be extracted from DCE-MRI, which may
limit the additive value of radiomic features. A future study to evaluate the additive value
of a comprehensive set of radiomic features with the FTV in predicting the response to
NAC is warranted.

5. Conclusions

In conclusion, this multicenter retrospective study showed that tumor morphologic
features extracted from FTV tumor masks can add value to the FTV in the prediction of RCB-
based outcomes early in NAC, particularly for the prediction of RCB-III, the worst residual
disease. This improved performance could significantly impact patient care, as it could
allow for the timely redirection of patients with poor responses to more effective treatments,
thereby increasing their chances of achieving a pCR and improving their prognosis. Future
investigation is warranted to assess the tradeoff between false positives and false negatives
when the MRI-based model is used in the clinical decision-making for treatment redirection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tomography10110134/s1, Table S1: I-SPY 2 DCE-MRI acquisition
parameters; Table S2: List of 3D shape features extracted using Pyradiomics; Table S3: List of
hyperparameters tuned for machine learning algorithms; Table S4: Model evaluation for predicting
residual disease defined by RCB-III; Table S5: Model evaluation for predicting pCR; Table S6: Model
evaluation for predicting residual disease defined by RCB-II and RCB-III; Table S7: Spearman’s
correlation coefficients between FTV and shape features; Figure S1: Illustration of nested cross-
validation for machine learning models; Figure S2: Boxplots of area under the receiver operating
characteristic curve (AUC) of predicting residual disease with and without shape features; Figure S3:
Plots of coefficients and p-values for predicting RCB-III.

Author Contributions: Conceptualization, W.L., L.J.E. and N.M.H.; Methodology, W.L., E.D.G., J.K.
and N.O.; Software, E.D.G.; Validation, N.N.L. and W.L.; Formal Analysis, W.L., N.N.L. and R.N.;
Investigation, W.L., N.N.L. and R.N.; Resources, N.M.H., L.J.v.V. and L.J.E.; Data Curation, L.J.W.,
J.E.G., E.R.P., B.N.J., L.J.E. and N.M.H.; Writing—Original Draft Preparation, W.L. and E.R.P.; Writing—
Review and Editing, N.N.L., N.O., J.E.G., R.A.M., J.K., M.J.M.M. and B.L.; Visualization, N.N.L.;
Supervision, N.M.H.; Project Administration, J.E.G.; Funding Acquisition, W.L., M.J.M.M., L.J.v.V.,
L.J.E. and N.M.H. All authors have read and agreed to the published version of the manuscript.

Funding: This study was partially supported by NIH/NCI grants: R01 CA132870, U01 CA225427,
P01 CA210961, R01 CA255442.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Institutional Review Board of the University of
California, San Francisco (Protocol Code: 161317; Approval Date: 12 April 2016).

https://www.mdpi.com/article/10.3390/tomography10110134/s1
https://www.mdpi.com/article/10.3390/tomography10110134/s1


Tomography 2024, 10 1843

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: The data presented in this study are openly available in the Cancer
Imaging Archive at 10.7937/TCIA.D8Z0-9T85.

Acknowledgments: The authors would like to acknowledge all I-SPY patients and their families
for participating in the trial. The authors thank the members of the I-SPY 2 Trial Imaging Working
Group, the I-SPY 2 Trial Investigators Network, and the study coordinators from all participating
sites for their contributions to the project.

Conflicts of Interest: L.J.E. is on the Blue Cross Medical Advisory Panel, is an uncompensated board
member of Quantum Leap Healthcare Collaborative, and is an Investigator who initiated trial for
high-risk DCIS funded by Moderna for DCIS phase 1 study. L.J.v.V. is part-time employee and stocks
Agendia NV, advisor and stock options Exai Inc. N.M.H. receives institutional research funding
from NIH. B.N.J. received author royalties from UpToDate, received WorldClassCME honoraria for
lectures, received Medicolegal consulting payment, serves as Board of Directors for Society of Breast
Imaging, Board of Trustees for RSNA R&E Foundation, and Deputy Editor for Radiology: Imaging
Cancer. All authors declare no conflicts of interest regarding this study.

References
1. Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.; Reynolds, K.L.; Smith, B.L.; Alexander, B.; Moy, B.; Isakoff, S.J.; et al.

Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A
Comprehensive Meta-Analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [CrossRef] [PubMed]

2. Yee, D.; DeMichele, A.M.; Yau, C.; Isaacs, C.; Symmans, W.F.; Albain, K.S.; Chen, Y.-Y.; Krings, G.; Wei, S.; Harada, S.; et al.
Association of Event-Free and Distant Recurrence-Free Survival With Individual-Level Pathologic Complete Response in
Neoadjuvant Treatment of Stages 2 and 3 Breast Cancer: Three-Year Follow-up Analysis for the I-SPY2 Adaptively Randomized
Clinical Trial. JAMA Oncol. 2020, 6, 1355–1362. [CrossRef] [PubMed]

3. Symmans, W.F.; Peintinger, F.; Hatzis, C.; Rajan, R.; Kuerer, H.; Valero, V.; Assad, L.; Poniecka, A.; Hennessy, B.; Green, M.; et al.
Measurement of Residual Breast Cancer Burden to Predict Survival after Neoadjuvant Chemotherapy. J. Clin. Oncol. 2007, 25,
4414–4422. [CrossRef] [PubMed]

4. Provenzano, E.; Bossuyt, V.; Viale, G.; Cameron, D.; Badve, S.; Denkert, C.; MacGrogan, G.; Penault-Llorca, F.; Boughey, J.;
Curigliano, G.; et al. Standardization of Pathologic Evaluation and Reporting of Postneoadjuvant Specimens in Clinical Trials of
Breast Cancer: Recommendations from an International Working Group. Mod. Pathol. 2015, 28, 1185–1201. [CrossRef] [PubMed]

5. Bossuyt, V.; Provenzano, E.; Symmans, W.F.; Boughey, J.C.; Coles, C.; Curigliano, G.; Dixon, J.M.; Esserman, L.J.; Fastner, G.;
Kuehn, T.; et al. Recommendations for Standardized Pathological Characterization of Residual Disease for Neoadjuvant Clinical
Trials of Breast Cancer by the BIG-NABCG Collaboration. Ann. Oncol. 2015, 26, 1280–1291. [CrossRef]

6. Symmans, W.F.; Yau, C.; Chen, Y.-Y.; Balassanian, R.; Klein, M.E.; Pusztai, L.; Nanda, R.; Parker, B.A.; Datnow, B.; Krings, G.; et al.
Assessment of Residual Cancer Burden and Event-Free Survival in Neoadjuvant Treatment for High-Risk Breast Cancer: An
Analysis of Data From the I-SPY2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 1654–1663. [CrossRef]

7. Symmans, W.F.; Yau, C.; Chen, Y.-Y.; Datnow, B.; Wei, S.; Feldman, M.D.; Ritter, J.; Duan, X.; Chen, B.; Tickman, R.; et al. Residual
Cancer Burden (RCB) as Prognostic in the I-SPY 2 TRIAL. J. Clin. Oncol. 2018, 36 (Suppl. S15), 520. [CrossRef]

8. Symmans, W.F.; Wei, C.; Gould, R.; Yu, X.; Zhang, Y.; Liu, M.; Walls, A.; Bousamra, A.; Ramineni, M.; Sinn, B.; et al. Long-Term
Prognostic Risk After Neoadjuvant Chemotherapy Associated With Residual Cancer Burden and Breast Cancer Subtype. J. Clin.
Oncol. 2017, 35, 1049–1060. [CrossRef]

9. Hylton, N.M.; Blume, J.D.; Bernreuter, W.K.; Pisano, E.D.; Rosen, M.A.; Morris, E.A.; Weatherall, P.T.; Lehman, C.D.; Newstead,
G.M.; Polin, S.; et al. Locally Advanced Breast Cancer: MR Imaging for Prediction of Response to Neoadjuvant Chemotherapy—
Results from ACRIN 6657/I-SPY TRIAL. Radiology 2012, 263, 663–672. [CrossRef]

10. Reig, B.; Lewin, A.A.; Du, L.; Heacock, L.; Toth, H.K.; Heller, S.L.; Gao, Y.; Moy, L. Breast MRI for Evaluation of Response to
Neoadjuvant Therapy. Radiographics 2021, 41, 665–679. [CrossRef]

11. Öztürk, V.S.; Polat, Y.D.; Soyder, A.; Tanyeri, A.; Karaman, C.Z.; Taşkın, F. The Relationship Between MRI Findings and Molecular
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