Next Issue
Volume 10, September
Previous Issue
Volume 10, July
 
 

Tomography, Volume 10, Issue 8 (August 2024) – 10 articles

Cover Story (view full-size image): Tomography in dentistry is best represented by the dental panoramic radiograph (DPR) and cone-beam computed tomography (CBCT). Although the DPR is older, in this era of aerosol-dispensed viruses, its superior overview of the jaws is complemented by its extra-oral bitewing spin-off to detect caries. CBCT is barely two decades old and has impacted almost every area of dentistry, such as pre-implant planning, endodontics, and the removal of difficult unerupted teeth. The last is displayed on the cover image of a 3-D large field-of-view CBCT. The mandibular canal is plotted (in green) so that it can be identified in cross-sectional reconstructions and thus not violated by subsequent surgery. Both DPR and CBCT are important in the identity of atherosclerosis in the carotids. Artificial intelligence has been applied to both modalities. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 2186 KiB  
Article
Emergency Radiology in the First 24 h of Two Major Earthquakes on the Same Day and Radiologic Evaluation of Trauma Cases
by Mehtap Ilgar and Nurullah Dağ
Tomography 2024, 10(8), 1320-1330; https://doi.org/10.3390/tomography10080099 - 22 Aug 2024
Viewed by 828
Abstract
Background: On 6 February 2023, two major earthquakes occurred in Turkey on the same day. More than 50,000 people died, and more than 100,000 people were injured in these earthquakes. The aim of this study is to contribute to disaster management plans by [...] Read more.
Background: On 6 February 2023, two major earthquakes occurred in Turkey on the same day. More than 50,000 people died, and more than 100,000 people were injured in these earthquakes. The aim of this study is to contribute to disaster management plans by evaluating the functioning of a radiology department and the imaging examinations performed after this disaster. Methods: The functioning of the radiology clinic at Malatya Training and Research Hospital in the first 24 h after the earthquake was evaluated. The images of 596 patients who were admitted to Malatya Training and Research Hospital for earthquake-related trauma between 6 February 2023, at 4:17 a.m. and 7 February 2023, at 4:17 a.m., and who underwent radiography and computed tomography (CT) were retrospectively reviewed. Results: The mean age of the patients was 37.3 ± 20.1 years. A total of 313 (52.5%) patients were male. The most frequently performed imaging test was a CT scan. In total, 437 (73.3%) of 596 patients underwent a CT scan. At least one body part was affected in 160 patients (26.8%). The most commonly affected regions were the thorax, vertebrae, and extremities. Thoracic findings were observed in 52 patients (32.5%), vertebral findings in 52 patients (32.5%), and extremity findings in 46 patients (28.7%). Fractures were the most common finding in our study. Of the 160 patients with pathologic findings, 139 (86.9%) had evidence of fractures. Conclusions: The role of radiology in disasters is important. When disaster preparedness plans are made, radiology departments should be actively involved in these plans. This will ensure the quick and efficient functioning of radiology departments. Full article
Show Figures

Figure 1

8 pages, 327 KiB  
Brief Report
Magnetic Resonance Imaging and 99Tc WBC-SPECT/CT Scanning in Differential Diagnosis between Osteomyelitis and Charcot Neuroarthropathy: A Case Series
by Sara Cecchini, Cristina Gatti, Daniela Fornarelli, Lorenzo Fantechi, Cinzia Romagnolo, Elena Tortato, Anna Rita Bonfigli, Roberta Galeazzi, Fabiola Olivieri, Giuseppe Bronte and Enrico Paci
Tomography 2024, 10(8), 1312-1319; https://doi.org/10.3390/tomography10080098 - 22 Aug 2024
Viewed by 833
Abstract
Background: Distinguishing between Charcot Neuroarthropathy (CN), osteomyelitis (OM), and CN complicated with superimposed OM in diabetic patients is crucial for the treatment choice. Given that current diagnostic methods lack specificity, advanced techniques, e.g., magnetic resonance imaging (MRI) and 99mTc-HMPAO–WBC Single Photon Emission Computed [...] Read more.
Background: Distinguishing between Charcot Neuroarthropathy (CN), osteomyelitis (OM), and CN complicated with superimposed OM in diabetic patients is crucial for the treatment choice. Given that current diagnostic methods lack specificity, advanced techniques, e.g., magnetic resonance imaging (MRI) and 99mTc-HMPAO–WBC Single Photon Emission Computed Tomography (SPECT/CT), are needed. This study addresses the challenges in distinguishing OM and CN. Methods: We included diabetic patients with CN and soft tissue ulceration. MRI and 99mTc-HMPAO–WBC SPECT/CT were used for the diagnosis. The patients were classified into three probability levels for OM (i.e., Definite, Probable, and Unlikely) according to the Consensus Criteria for Diabetic Foot Osteomyelitis (CC-DFO). Results: Eight patients met the eligibility criteria. MRI, supported by SPECT-CT and CC-DFO, showed consistency with the OM diagnosis in three cases. The key diagnostic features included the location of signal abnormalities and secondary features such as skin ulcers, sinus tracts, and abscesses. Notably, cases with inconclusive MRI were clarified by SPECT/CT, emphasizing its efficacy in challenging scenarios. Conclusions: The primary objective of this study was to compare the results of MRI and 99mTc-HMPAO–WBC SPECT/CT with the CC-DFO score in the diabetic foot with CN and suspected OM. Advanced imaging offers a complementary approach to distinguish between CN and OM. This can help delineate the limits of the disease for presurgical planning. While MRI is valuable, 99mTc-HMPAO–WBC SPECT/CT provides additional clarity, especially in challenging cases or when metallic implants affect MRI accuracy. Full article
Show Figures

Figure 1

9 pages, 999 KiB  
Systematic Review
Monitoring the Efficacy of Tafamidis in ATTR Cardiac Amyloidosis by MRI-ECV: A Systematic Review and Meta-Analysis
by Shingo Kato, Mai Azuma, Nobuyuki Horita and Daisuke Utsunomiya
Tomography 2024, 10(8), 1303-1311; https://doi.org/10.3390/tomography10080097 - 16 Aug 2024
Viewed by 1289
Abstract
Background: The usefulness of monitoring treatment effect of tafamidis using magnetic resonance imaging (MRI) extracellular volume fraction (ECV) has been reported. Objective: we conducted a meta-analysis to evaluate the usefulness of this method. Methods: Data from 246 ATTR-CMs from six studies were extracted [...] Read more.
Background: The usefulness of monitoring treatment effect of tafamidis using magnetic resonance imaging (MRI) extracellular volume fraction (ECV) has been reported. Objective: we conducted a meta-analysis to evaluate the usefulness of this method. Methods: Data from 246 ATTR-CMs from six studies were extracted and included in the analysis. An inverse variance meta-analysis using a random effects model was performed to evaluate the change in MRI-ECV before and after tafamidis treatment. The analysis was also performed by classifying the patients into ATTR-CM types (wild-type or hereditary). Results: ECV change before and after tafamidis treatment was 0.33% (95% CI: −1.83–2.49, I2 = 0%, p = 0.76 for heterogeneity) in the treatment group and 4.23% (95% CI: 0.44–8.02, I2 = 0%, p = 0.18 for heterogeneity) in the non-treatment group. The change in ECV before and after treatment was not significant in the treated group (p = 0.76), but there was a significant increase in the non-treated group (p = 0.03). There was no difference in the change in ECV between wild-type (95% CI: −2.65–3.40) and hereditary-type (95% CI: −9.28–4.28) (p = 0.45). Conclusions: The results of this meta-analysis suggest that MRI-ECV measurement is a useful imaging method for noninvasively evaluating the efficacy of tafamidis treatment for ATTR-CM. Full article
Show Figures

Figure 1

9 pages, 984 KiB  
Article
Enhanced Diagnostic Accuracy of Pulmonary Embolism: Integrating Low-Dose CT with V/Q SPECT
by Munassar Dakkam Lasloom and Mohamed Abuzaid
Tomography 2024, 10(8), 1294-1302; https://doi.org/10.3390/tomography10080096 - 16 Aug 2024
Viewed by 837
Abstract
Objective: This study aimed to retrospectively assess the benefits of combining low-dose computed tomography (LDCT) with ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) for the diagnosis of pulmonary embolism (PE). Methods: A retrospective analysis was performed on 92 patients with suspected PE who [...] Read more.
Objective: This study aimed to retrospectively assess the benefits of combining low-dose computed tomography (LDCT) with ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) for the diagnosis of pulmonary embolism (PE). Methods: A retrospective analysis was performed on 92 patients with suspected PE who underwent V/Q SPECT with ldCT (V/Q SPECT CT) between January 2020 and December 2022 at King Khalid Hospital Najran. Data were collected using the hospital’s picture archiving and communication system. Scans were categorized on the basis of perfusion defects, matched or mismatched ventilation, and CT findings. The specificity of V/Q SPECT CT was compared with that of Q SPECT CT. Results: This study included 92 patients (54 females and 38 males; median age, 53 years). The results demonstrated that V/Q SPECT CT had higher specificity (93%) than V/Q SPECT alone (88%). If CT had been used as a ventilation substitute, 21% of patients would have been reported to be positive for PE (8% false-positive), yielding a specificity of 60% for Q SPECT CT. These findings align with the existing literature, although discrepancies in specificity values were noted due to the different study designs and sample sizes. Conclusion: This study highlights the enhanced specificity of V/Q SPECT CT compared to V/Q SPECT and Q SPECT CT alone. Including low-dose CT improves diagnostic accuracy by reducing false positives and providing detailed anatomical information. V/Q SPECT CT offers superior specificity in diagnosing PE compared with V/Q SPECT alone, supporting its use in clinical practice. Full article
Show Figures

Figure 1

17 pages, 941 KiB  
Systematic Review
Ultrasound Imaging of Ankle Retinacula: A Comprehensive Review
by Carmelo Pirri, Nina Pirri, Veronica Macchi, Andrea Porzionato, Raffaele De Caro and Carla Stecco
Tomography 2024, 10(8), 1277-1293; https://doi.org/10.3390/tomography10080095 - 14 Aug 2024
Viewed by 942
Abstract
The retinacula of the ankle are specialized anatomical structures characterized by localized thickenings of the crural fascia that envelop the deep components of the lower leg, ankle and foot. The ankle retinacula include the extensor retinacula, the peroneal retinacula and flexor retinaculum. Despite [...] Read more.
The retinacula of the ankle are specialized anatomical structures characterized by localized thickenings of the crural fascia that envelop the deep components of the lower leg, ankle and foot. The ankle retinacula include the extensor retinacula, the peroneal retinacula and flexor retinaculum. Despite their potential to explain persistent and unexplained pain following an injury, these structures are often overlooked or incorrectly diagnosed. Hence, this comprehensive review was performed aiming to investigate the use and the methodology of US imaging to assess ankle retinacula. The search was performed on PubMed and Web of Science databases from inception to May 2024. The MeSH keywords used were as follows: “Ankle Retinacula”, “Foot Retinacula”, “Superior extensor retinaculum”, “Inferior extensor retinaculum”, “peroneal retinaculum”, “superior peroneal retinaculum”, “inferior peroneal retinaculum”, “flexor retinaculum”, “Ultrasound Imaging”, “Ultrasound”, “Ultrasonography” and “Ultrasound examination”. In total, 257 records underwent screening, resulting in 22 studies meeting the criteria for inclusion after the process of revision. Data heterogeneity prevents synthesis and consistent conclusions. The results showed that advanced US imaging holds promise as a crucial tool to perform an US examination of ankle retinacula, offering static and dynamic insights into ankle retinacula pathology. Understanding normal anatomy and US imaging is essential for accurately identifying injuries. Future research should focus on clinical trials to validate parameters and ensure their reliability in clinical practice. Full article
Show Figures

Figure 1

14 pages, 582 KiB  
Article
Deep Learning-Assisted Automatic Diagnosis of Anterior Cruciate Ligament Tear in Knee Magnetic Resonance Images
by Xuanwei Wang, Yuanfeng Wu, Jiafeng Li, Yifan Li and Sanzhong Xu
Tomography 2024, 10(8), 1263-1276; https://doi.org/10.3390/tomography10080094 - 13 Aug 2024
Viewed by 1026
Abstract
Anterior cruciate ligament (ACL) tears are prevalent knee injures, particularly among active individuals. Accurate and timely diagnosis is essential for determining the optimal treatment strategy and assessing patient prognosis. Various previous studies have demonstrated the successful application of deep learning techniques in the [...] Read more.
Anterior cruciate ligament (ACL) tears are prevalent knee injures, particularly among active individuals. Accurate and timely diagnosis is essential for determining the optimal treatment strategy and assessing patient prognosis. Various previous studies have demonstrated the successful application of deep learning techniques in the field of medical image analysis. This study aimed to develop a deep learning model for detecting ACL tears in knee magnetic resonance Imaging (MRI) to enhance diagnostic accuracy and efficiency. The proposed model consists of three main modules: a Dual-Scale Data Augmentation module (DDA) to enrich the training data on both the spatial and layer scales; a selective group attention module (SG) to capture relationships across the layer, channel, and space scales; and a fusion module to explore the inter-relationships among various perspectives to achieve the final classification. To ensure a fair comparison, the study utilized a public dataset from MRNet, comprising knee MRI scans from 1250 exams, with a focus on three distinct views: axial, coronal, and sagittal. The experimental results demonstrate the superior performance of the proposed model, termed SGNET, in ACL tear detection compared with other comparison models, achieving an accuracy of 0.9250, a sensitivity of 0.9259, a specificity of 0.9242, and an AUC of 0.9747. Full article
Show Figures

Figure 1

25 pages, 2865 KiB  
Review
Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review
by Yutong Wu, Hongjian Gao, Chen Zhang, Xiangge Ma, Xinyu Zhu, Shuicai Wu and Lan Lin
Tomography 2024, 10(8), 1238-1262; https://doi.org/10.3390/tomography10080093 - 12 Aug 2024
Cited by 1 | Viewed by 1728
Abstract
The concept of ‘brain age’, derived from neuroimaging data, serves as a crucial biomarker reflecting cognitive vitality and neurodegenerative trajectories. In the past decade, machine learning (ML) and deep learning (DL) integration has transformed the field, providing advanced models for brain age estimation. [...] Read more.
The concept of ‘brain age’, derived from neuroimaging data, serves as a crucial biomarker reflecting cognitive vitality and neurodegenerative trajectories. In the past decade, machine learning (ML) and deep learning (DL) integration has transformed the field, providing advanced models for brain age estimation. However, achieving precise brain age prediction across all ages remains a significant analytical challenge. This comprehensive review scrutinizes advancements in ML- and DL-based brain age prediction, analyzing 52 peer-reviewed studies from 2020 to 2024. It assesses various model architectures, highlighting their effectiveness and nuances in lifespan brain age studies. By comparing ML and DL, strengths in forecasting and methodological limitations are revealed. Finally, key findings from the reviewed articles are summarized and a number of major issues related to ML/DL-based lifespan brain age prediction are discussed. Through this study, we aim at the synthesis of the current state of brain age prediction, emphasizing both advancements and persistent challenges, guiding future research, technological advancements, and improving early intervention strategies for neurodegenerative diseases. Full article
(This article belongs to the Section Artificial Intelligence in Medical Imaging)
Show Figures

Graphical abstract

16 pages, 5361 KiB  
Review
An Overview of Cone-Beam Computed Tomography and Dental Panoramic Radiography in Dentistry in the Community
by David MacDonald and Vera Telyakova
Tomography 2024, 10(8), 1222-1237; https://doi.org/10.3390/tomography10080092 - 7 Aug 2024
Viewed by 1226
Abstract
This study reviews the two most important and frequently used systems of tomography used in dentistry today. These are the dental panoramic radiograph (DPR) and cone-beam computed tomography (CBCT). The importance of the DPR has been accentuated by the recent COVID-19 pandemic, as [...] Read more.
This study reviews the two most important and frequently used systems of tomography used in dentistry today. These are the dental panoramic radiograph (DPR) and cone-beam computed tomography (CBCT). The importance of the DPR has been accentuated by the recent COVID-19 pandemic, as it does not produce an aerosol. Its clinical importance is derived from its panoramic display of the jaws and associated structures and should be examined for incidental findings that may portend a potentially serious outcome. An important recent spin-off of the DPR is the extra-oral bitewing, which can replace its traditional, uncomfortable and aerosol-generating intra-oral counterpart. Although much has been written about them, this paper reviews their essential attributes and limitations in clinical dentistry. Although attempts have been made to reproduce some of the attributes of CT in CBCT such as Hounsfield Units (HU) and improve the contrast resolution of the soft tissues, these remain elusive. Nevertheless, CBCT’s dataset should be appropriately reconstructed to fully display the clinical feature prompting its prescription. In certain cases, more than one mode of reconstruction is required. Full article
Show Figures

Graphical abstract

17 pages, 4737 KiB  
Article
Novel Deep CNNs Explore Regions, Boundaries, and Residual Learning for COVID-19 Infection Analysis in Lung CT
by Bader Khalid Alshemaimri
Tomography 2024, 10(8), 1205-1221; https://doi.org/10.3390/tomography10080091 - 3 Aug 2024
Viewed by 934
Abstract
COVID-19 poses a global health crisis, necessitating precise diagnostic methods for timely containment. However, accurately delineating COVID-19-affected regions in lung CT scans is challenging due to contrast variations and significant texture diversity. In this regard, this study introduces a novel two-stage classification and [...] Read more.
COVID-19 poses a global health crisis, necessitating precise diagnostic methods for timely containment. However, accurately delineating COVID-19-affected regions in lung CT scans is challenging due to contrast variations and significant texture diversity. In this regard, this study introduces a novel two-stage classification and segmentation CNN approach for COVID-19 lung radiological pattern analysis. A novel Residual-BRNet is developed to integrate boundary and regional operations with residual learning, capturing key COVID-19 radiological homogeneous regions, texture variations, and structural contrast patterns in the classification stage. Subsequently, infectious CT images undergo lesion segmentation using the newly proposed RESeg segmentation CNN in the second stage. The RESeg leverages both average and max-pooling implementations to simultaneously learn region homogeneity and boundary-related patterns. Furthermore, novel pixel attention (PA) blocks are integrated into RESeg to effectively address mildly COVID-19-infected regions. The evaluation of the proposed Residual-BRNet CNN in the classification stage demonstrates promising performance metrics, achieving an accuracy of 97.97%, F1-score of 98.01%, sensitivity of 98.42%, and MCC of 96.81%. Meanwhile, PA-RESeg in the segmentation phase achieves an optimal segmentation performance with an IoU score of 98.43% and a dice similarity score of 95.96% of the lesion region. The framework’s effectiveness in detecting and segmenting COVID-19 lesions highlights its potential for clinical applications. Full article
(This article belongs to the Section Artificial Intelligence in Medical Imaging)
Show Figures

Figure 1

13 pages, 1907 KiB  
Review
A Review of 3D Modalities Used for the Diagnosis of Scoliosis
by Sampath Kumar, Bhaskar Awadhiya, Rahul Ratnakumar, Ananthakrishna Thalengala, Anu Shaju Areeckal and Yashwanth Nanjappa
Tomography 2024, 10(8), 1192-1204; https://doi.org/10.3390/tomography10080090 - 2 Aug 2024
Viewed by 1154
Abstract
Spine radiographs in the standing position are the recommended standard for diagnosing idiopathic scoliosis. Though the deformity exists in 3D, its diagnosis is currently carried out with the help of 2D radiographs due to the unavailability of an efficient, low-cost 3D alternative. Computed [...] Read more.
Spine radiographs in the standing position are the recommended standard for diagnosing idiopathic scoliosis. Though the deformity exists in 3D, its diagnosis is currently carried out with the help of 2D radiographs due to the unavailability of an efficient, low-cost 3D alternative. Computed tomography (CT) and magnetic resonance imaging (MRI) are not suitable in this case, as they are obtained in the supine position. Research on 3D modelling of scoliotic spine began with multiplanar radiographs and later moved on to biplanar radiographs and finally a single radiograph. Nonetheless, modern advances in diagnostic imaging have the potential to preserve image quality and decrease radiation exposure. They include the DIERS formetric scanner system, the EOS imaging system, and ultrasonography. This review article briefly explains the technology behind each of these methods. They are compared with the standard imaging techniques. The DIERS system and ultrasonography are radiation free but have limitations with respect to the quality of the 3D model obtained. There is a need for 3D imaging technology with less or zero radiation exposure and that can produce a quality 3D model for diseases like adolescent idiopathic scoliosis. Accurate 3D models are crucial in clinical practice for diagnosis, planning surgery, patient follow-up examinations, biomechanical applications, and computer-assisted surgery. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop