Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review
Abstract
:1. Introduction
2. Literature Search Strategy
3. Fundamental of Brain Age Predictions Tasks
3.1. Neuroimage Data and Preprocessing Process
3.2. ML and DL Models
3.3. The Evaluation Metric for Brain Age Prediction Tasks
4. A Review of Brain Age Prediction Model
4.1. Brain Age Prediction Using ML Methods
4.1.1. Single-Modality Model
4.1.2. Multimodality Model
4.2. Brain Age Prediction Using DL Methods
4.2.1. CNNs
4.2.2. CNNs with Transformers
5. Discussion
5.1. ML vs. DL
5.2. Construction of a Neuroimaging Dataset Spanning the Entire Age Spectrum
5.3. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, H.; Ge, S.; Wang, H. Prediction of Brain Age Based on the Community Structure of Functional Networks. Biomed. Signal Process. Control 2023, 79, 104151. [Google Scholar] [CrossRef]
- Tanveer, M.; Ganaie, M.A.; Beheshti, I.; Goel, T.; Ahmad, N.; Lai, K.-T.; Huang, K.; Zhang, Y.-D.; Del Ser, J.; Lin, C.-T. Deep Learning for Brain Age Estimation: A Systematic Review. Inf. Fusion 2023, 96, 130–143. [Google Scholar] [CrossRef]
- Chang, Y.; Thornton, V.; Chaloemtoem, A.; Anokhin, A.P.; Bijsterbosch, J.; Bogdan, R.; Hancock, D.B.; Johnson, E.O.; Bierut, L.J. Investigating the Relationship Between Smoking Behavior and Global Brain Volume. Biol. Psychiatry Glob. Open Sci. 2024, 4, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Daviet, R.; Aydogan, G.; Jagannathan, K.; Spilka, N.; Koellinger, P.D.; Kranzler, H.R.; Nave, G.; Wetherill, R.R. Associations between Alcohol Consumption and Gray and White Matter Volumes in the UK Biobank. Nat. Commun. 2022, 13, 1175. [Google Scholar] [CrossRef]
- Hautasaari, P.; Savić, A.M.; Loberg, O.; Niskanen, E.; Kaprio, J.; Kujala, U.M.; Tarkka, I.M. Somatosensory Brain Function and Gray Matter Regional Volumes Differ According to Exercise History: Evidence from Monozygotic Twins. Brain Topogr. 2017, 30, 77–86. [Google Scholar] [CrossRef] [PubMed]
- de Manzano, Ö.; Ullén, F. Same Genes, Different Brains: Neuroanatomical Differences Between Monozygotic Twins Discordant for Musical Training. Cereb. Cortex 2018, 28, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E. Modeling the Rate of Senescence: Can Estimated Biological Age Predict Mortality More Accurately Than Chronological Age? J. Gerontol. Ser. A 2013, 68, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.M.; Harrod, J.B.; Subramanian, S.; Robinson, M.; Chang, K.; Cetin-Karayumak, S.; Dalca, A.V.; Eickhoff, S.; Fox, M.; Franke, L.; et al. How Machine Learning Is Powering Neuroimaging to Improve Brain Health. Neuroinformatics 2022, 20, 943–964. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.H. Multimodality Neuroimaging Brain-Age in UK Biobank: Relationship to Biomedical, Lifestyle, and Cognitive Factors. Neurobiol. Aging 2020, 92, 34–42. [Google Scholar] [CrossRef]
- Franke, K.; Ziegler, G.; Klöppel, S.; Gaser, C. Estimating the Age of Healthy Subjects from T1-Weighted MRI Scans Using Kernel Methods: Exploring the Influence of Various Parameters. NeuroImage 2010, 50, 883–892. [Google Scholar] [CrossRef]
- Xiong, M.; Lin, L.; Jin, Y.; Kang, W.; Wu, S.; Sun, S. Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults. Sensors 2023, 23, 3622. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.L.; Belsky, D.W.; Knodt, A.R.; Ireland, D.; Melzer, T.R.; Poulton, R.; Ramrakha, S.; Caspi, A.; Moffitt, T.E.; Hariri, A.R. Brain-Age in Midlife Is Associated with Accelerated Biological Aging and Cognitive Decline in a Longitudinal Birth Cohort. Mol. Psychiatry 2021, 26, 3829–3838. [Google Scholar] [CrossRef] [PubMed]
- Jawinski, P.; Markett, S.; Drewelies, J.; Düzel, S.; Demuth, I.; Steinhagen-Thiessen, E.; Wagner, G.G.; Gerstorf, D.; Lindenberger, U.; Gaser, C.; et al. Linking Brain Age Gap to Mental and Physical Health in the Berlin Aging Study II. Front. Aging Neurosci. 2022, 14, 791222. [Google Scholar] [CrossRef] [PubMed]
- Berger, I.; Slobodin, O.; Aboud, M.; Melamed, J.; Cassuto, H. Maturational Delay in ADHD: Evidence from CPT. Front. Hum. Neurosci. 2013, 7, 67013. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.C.V.; El Marroun, H.; Sammallahti, S.; Vernooij, M.W.; Muetzel, R.L.; Santos, S.; Jaddoe, V.W.V. Patterns of Fetal and Infant Growth and Brain Morphology at Age 10 Years. JAMA Netw. Open 2021, 4, e2138214. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhang, G.; Wang, J.; Tian, M.; Wu, S. Utilizing Transfer Learning of Pre-Trained AlexNet and Relevance Vector Machine for Regression for Predicting Healthy Older Adult’s Brain Age from Structural MRI. Multimed. Tools Appl. 2021, 80, 24719–24735. [Google Scholar] [CrossRef]
- Lin, L.; Jin, C.; Fu, Z.; Zhang, B.; Bin, G.; Wu, S. Predicting Healthy Older Adult’s Brain Age Based on Structural Connectivity Networks Using Artificial Neural Networks. Comput. Methods Programs Biomed. 2016, 125, 8–17. [Google Scholar] [CrossRef]
- Varzandian, A.; Razo, M.A.S.; Sanders, M.R.; Atmakuru, A.; Di Fatta, G. Classification-Biased Apparent Brain Age for the Prediction of Alzheimer’s Disease. Front. Neurosci. 2021, 15, 673120. [Google Scholar] [CrossRef] [PubMed]
- Pardakhti, N.; Sajedi, H. Brain Age Estimation Based on 3D MRI Images Using 3D Convolutional Neural Network. Multimed. Tools Appl. 2020, 79, 25051–25065. [Google Scholar] [CrossRef]
- Jirsaraie, R.J.; Kaufmann, T.; Bashyam, V.; Erus, G.; Luby, J.L.; Westlye, L.T.; Davatzikos, C.; Barch, D.M.; Sotiras, A. Benchmarking the Generalizability of Brain Age Models: Challenges Posed by Scanner Variance and Prediction Bias. Hum. Brain Mapp. 2023, 44, 1118–1128. [Google Scholar] [CrossRef]
- Soumya Kumari, L.K.; Sundarrajan, R. A Review on Brain Age Prediction Models. Brain Res. 2024, 1823, 148668. [Google Scholar] [CrossRef] [PubMed]
- Seitz-Holland, J.; Haas, S.S.; Penzel, N.; Reichenberg, A.; Pasternak, O. BrainAGE, Brain Health, and Mental Disorders: A Systematic Review. Neurosci. Biobehav. Rev. 2024, 159, 105581. [Google Scholar] [CrossRef] [PubMed]
- Muksimova, S.; Umirzakova, S.; Mardieva, S.; Cho, Y.-I. Enhancing Medical Image Denoising with Innovative Teacher–Student Model-Based Approaches for Precision Diagnostics. Sensors 2023, 23, 9502. [Google Scholar] [CrossRef] [PubMed]
- Khadse, V.M.; Mahalle, P.N.; Shinde, G.R. Statistical Study of Machine Learning Algorithms Using Parametric and Non-Parametric Tests: A Comparative Analysis and Recommendations. Int. J. Ambient Comput. Intell. IJACI 2020, 11, 80–105. [Google Scholar] [CrossRef]
- Cole, J.H.; Ritchie, S.J.; Bastin, M.E.; Valdés Hernández, M.C.; Muñoz Maniega, S.; Royle, N.; Corley, J.; Pattie, A.; Harris, S.E.; Zhang, Q.; et al. Brain Age Predicts Mortality. Mol. Psychiatry 2018, 23, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, S.A.; Hänggi, J.; Mérillat, S.; Jäncke, L. Age Prediction on the Basis of Brain Anatomical Measures. Hum. Brain Mapp. 2017, 38, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Xu, X.; Lin, L.; Sun, S.; Wu, S. A Review of the Application of Three-Dimensional Convolutional Neural Networks for the Diagnosis of Alzheimer’s Disease Using Neuroimaging. Rev. Neurosci. 2023, 34, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Beck, D.; de Lange, A.-M.G.; Maximov, I.I.; Richard, G.; Andreassen, O.A.; Nordvik, J.E.; Westlye, L.T. White Matter Microstructure across the Adult Lifespan: A Mixed Longitudinal and Cross-Sectional Study Using Advanced Diffusion Models and Brain-Age Prediction. NeuroImage 2021, 224, 117441. [Google Scholar] [CrossRef]
- Engemann, D.A.; Kozynets, O.; Sabbagh, D.; Lemaître, G.; Varoquaux, G.; Liem, F.; Gramfort, A. Combining Magnetoencephalography with Magnetic Resonance Imaging Enhances Learning of Surrogate-Biomarkers. eLife 2020, 9, e54055. [Google Scholar] [CrossRef]
- Tesli, N.; Bell, C.; Hjell, G.; Fischer-Vieler, T.; I Maximov, I.; Richard, G.; Tesli, M.; Melle, I.; Andreassen, O.A.; Agartz, I.; et al. The Age of Violence: Mapping Brain Age in Psychosis and Psychopathy. NeuroImage Clin. 2022, 36, 103181. [Google Scholar] [CrossRef]
- Ballester, P.L.; Suh, J.S.; Ho, N.C.W.; Liang, L.; Hassel, S.; Strother, S.C.; Arnott, S.R.; Minuzzi, L.; Sassi, R.B.; Lam, R.W.; et al. Gray Matter Volume Drives the Brain Age Gap in Schizophrenia: A SHAP Study. Schizophrenia 2023, 9, 1–8. [Google Scholar] [CrossRef]
- Xifra-Porxas, A.; Ghosh, A.; Mitsis, G.D.; Boudrias, M.-H. Estimating Brain Age from Structural MRI and MEG Data: Insights from Dimensionality Reduction Techniques. NeuroImage 2021, 231, 117822. [Google Scholar] [CrossRef]
- More, S.; Antonopoulos, G.; Hoffstaedter, F.; Caspers, J.; Eickhoff, S.B.; Patil, K.R. Brain-Age Prediction: A Systematic Comparison of Machine Learning Workflows. NeuroImage 2023, 270, 119947. [Google Scholar] [CrossRef]
- Ly, M.; Yu, G.Z.; Karim, H.T.; Muppidi, N.R.; Mizuno, A.; Klunk, W.E.; Aizenstein, H.J. Improving Brain Age Prediction Models: Incorporation of Amyloid Status in Alzheimer’s Disease. Neurobiol. Aging 2020, 87, 44–48. [Google Scholar] [CrossRef]
- Han, J.; Kim, S.Y.; Lee, J.; Lee, W.H. Brain Age Prediction: A Comparison between Machine Learning Models Using Brain Morphometric Data. Sensors 2022, 22, 8077. [Google Scholar] [CrossRef]
- Lee, W.H.; Antoniades, M.; Schnack, H.G.; Kahn, R.S.; Frangou, S. Brain Age Prediction in Schizophrenia: Does the Choice of Machine Learning Algorithm Matter? Psychiatry Res. Neuroimaging 2021, 310, 111270. [Google Scholar] [CrossRef]
- Kalc, P.; Dahnke, R.; Hoffstaedter, F.; Gaser, C.; Initiative, A.D.N. BrainAGE: Revisited and Reframed Machine Learning Workflow. Hum. Brain Mapp. 2024, 45, e26632. [Google Scholar] [CrossRef]
- Wu, F.; Ma, H.; Guan, Y.; Tian, L. Manifold-Based Unsupervised Metric Learning, with Applications in Individualized Predictions Based on Functional Connectivity. Biomed. Signal Process. Control 2023, 79, 104081. [Google Scholar] [CrossRef]
- Popescu, S.G.; Glocker, B.; Sharp, D.J.; Cole, J.H. Local Brain-Age: A U-Net Model. Front. Aging Neurosci. 2021, 13, 761954. [Google Scholar] [CrossRef]
- Borkar, K.; Chaturvedi, A.; Vinod, P.K.; Bapi, R.S. Ayu-Characterization of Healthy Aging from Neuroimaging Data with Deep Learning and rsfMRI. Front. Comput. Neurosci. 2022, 16, 940922. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ma, H.; Guan, Y.; Liu, J.; Huang, H.; Zhang, Y.; Tian, L. A Siamese Network With Node Convolution for Individualized Predictions Based on Connectivity Maps Extracted From Resting-State fMRI Data. IEEE J. Biomed. Health Inform. 2023, 27, 5418–5429. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Hernandez, P.A.; Laffitte Nodarse, C.; Peraza, J.A.; Cole, J.H.; Cruz-Almeida, Y. Toward MR Protocol-Agnostic, Unbiased Brain Age Predicted from Clinical-Grade MRIs. Sci. Rep. 2023, 13, 19570. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Shen, X.; Huang, J.; Ju, H.; Chen, Y.; Yin, T. Brain Age Prediction Based on Resting-State Functional MRI Using Similarity Metric Convolutional Neural Network. IEEE Access 2023, 11, 57071–57082. [Google Scholar] [CrossRef]
- Besson, P.; Parrish, T.; Katsaggelos, A.K.; Bandt, S.K. Geometric Deep Learning on Brain Shape Predicts Sex and Age. Comput. Med. Imaging Graph. 2021, 91, 101939. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhang, X.-D.; Chen, C.; He, L.-F.; Li, F.-F.; Lu, Z.-N.; Man, W.-Q.; Zhao, Y.-J.; Chang, Z.-X.; Wu, Y.; et al. Dynamic Evolution of Brain Structural Patterns in Liver Transplantation Recipients: A Longitudinal Study Based on 3D Convolutional Neuronal Network Model. Eur. Radiol. 2023, 33, 6134–6144. [Google Scholar] [CrossRef] [PubMed]
- Ballester, P.L.; da Silva, L.T.; Marcon, M.; Esper, N.B.; Frey, B.N.; Buchweitz, A.; Meneguzzi, F. Predicting Brain Age at Slice Level: Convolutional Neural Networks and Consequences for Interpretability. Front. Psychiatry 2021, 12, 598518. [Google Scholar] [CrossRef] [PubMed]
- Kuchcinski, G.; Rumetshofer, T.; Zervides, K.A.; Lopes, R.; Gautherot, M.; Pruvo, J.-P.; Bengtsson, A.A.; Hansson, O.; Jönsen, A.; Sundgren, P.C.M. MRI BrainAGE Demonstrates Increased Brain Aging in Systemic Lupus Erythematosus Patients. Front. Aging Neurosci. 2023, 15, 1274061. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, K.; Desrosiers, C.; Lombaert, H. Learnable Pooling in Graph Convolutional Networks for Brain Surface Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 864–876. [Google Scholar] [CrossRef]
- Gautherot, M.; Kuchcinski, G.; Bordier, C.; Sillaire, A.R.; Delbeuck, X.; Leroy, M.; Leclerc, X.; Pruvo, J.-P.; Pasquier, F.; Lopes, R. Longitudinal Analysis of Brain-Predicted Age in Amnestic and Non-Amnestic Sporadic Early-Onset Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 729635. [Google Scholar] [CrossRef]
- Hwang, I.; Yeon, E.K.; Lee, J.Y.; Yoo, R.-E.; Kang, K.M.; Yun, T.J.; Choi, S.H.; Sohn, C.-H.; Kim, H.; Kim, J. Prediction of Brain Age from Routine T2-Weighted Spin-Echo Brain Magnetic Resonance Images with a Deep Convolutional Neural Network. Neurobiol. Aging 2021, 105, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, Y.; Shi, Y.; Feng, J.; Feng, R.; Guan, X.; Xu, X.; Zhang, Y.; Jin, C.; Wei, H. Brain Age Prediction Based on Quantitative Susceptibility Mapping Using the Segmentation Transformer. IEEE J. Biomed. Health Inform. 2024, 28, 1012–1021. [Google Scholar] [CrossRef]
- Feng, X.; Lipton, Z.C.; Yang, J.; Small, S.A.; Provenzano, F.A. Estimating Brain Age Based on a Uniform Healthy Population with Deep Learning and Structural Magnetic Resonance Imaging. Neurobiol. Aging 2020, 91, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Bashyam, V.M.; Erus, G.; Doshi, J.; Habes, M.; Nasrallah, I.M.; Truelove-Hill, M.; Srinivasan, D.; Mamourian, L.; Pomponio, R.; Fan, Y.; et al. MRI Signatures of Brain Age and Disease over the Lifespan Based on a Deep Brain Network and 14 468 Individuals Worldwide. Brain 2020, 143, 2312–2324. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.M.; Beyer, F.; Lapuschkin, S.; Goltermann, O.; Loeffler, M.; Müller, K.-R.; Villringer, A.; Samek, W.; Witte, A.V. Towards the Interpretability of Deep Learning Models for Multi-Modal Neuroimaging: Finding Structural Changes of the Ageing Brain. NeuroImage 2022, 261, 119504. [Google Scholar] [CrossRef]
- Couvy-Duchesne, B.; Faouzi, J.; Martin, B.; Thibeau–Sutre, E.; Wild, A.; Ansart, M.; Durrleman, S.; Dormont, D.; Burgos, N.; Colliot, O. Ensemble Learning of Convolutional Neural Network, Support Vector Machine, and Best Linear Unbiased Predictor for Brain Age Prediction: ARAMIS Contribution to the Predictive Analytics Competition 2019 Challenge. Front. Psychiatry 2020, 11, 593336. [Google Scholar] [CrossRef]
- Poloni, K.M.; Ferrari, R.J. A Deep Ensemble Hippocampal CNN Model for Brain Age Estimation Applied to Alzheimer’s Diagnosis. Expert Syst. Appl. 2022, 195, 116622. [Google Scholar] [CrossRef]
- Kianian, I.; Sajedi, H. Brain Age Estimation with a Greedy Dual-Stream Model for Limited Datasets. Neurocomputing 2024, 596, 127974. [Google Scholar] [CrossRef]
- Hepp, T.; Blum, D.; Armanious, K.; Schölkopf, B.; Stern, D.; Yang, B.; Gatidis, S. Uncertainty Estimation and Explainability in Deep Learning-Based Age Estimation of the Human Brain: Results from the German National Cohort MRI Study. Comput. Med. Imaging Graph. 2021, 92, 101967. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, R.; Zhang, C.; Williams, B.; Jiang, Z.; Li, C.-T.; Chazot, P.; Pavese, N.; Bouridane, A.; Beghdadi, A. Robust Brain Age Estimation Based on sMRI via Nonlinear Age-Adaptive Ensemble Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2146–2156. [Google Scholar] [CrossRef]
- Joo, Y.; Namgung, E.; Jeong, H.; Kang, I.; Kim, J.; Oh, S.; Lyoo, I.K.; Yoon, S.; Hwang, J. Brain Age Prediction Using Combined Deep Convolutional Neural Network and Multi-Layer Perceptron Algorithms. Sci. Rep. 2023, 13, 22388. [Google Scholar] [CrossRef]
- He, S.; Pereira, D.; David Perez, J.; Gollub, R.L.; Murphy, S.N.; Prabhu, S.; Pienaar, R.; Robertson, R.L.; Ellen Grant, P.; Ou, Y. Multi-Channel Attention-Fusion Neural Network for Brain Age Estimation: Accuracy, Generality, and Interpretation with 16,705 Healthy MRIs across Lifespan. Med. Image Anal. 2021, 72, 102091. [Google Scholar] [CrossRef]
- Wood, D.A.; Kafiabadi, S.; Busaidi, A.A.; Guilhem, E.; Montvila, A.; Lynch, J.; Townend, M.; Agarwal, S.; Mazumder, A.; Barker, G.J.; et al. Accurate Brain-age Models for Routine Clinical MRI Examinations. NeuroImage 2022, 249, 118871. [Google Scholar] [CrossRef] [PubMed]
- Dular, L.; Pernuš, F.; Špiclin, Ž. Extensive T1-Weighted MRI Preprocessing Improves Generalizability of Deep Brain Age Prediction Models. Comput. Biol. Med. 2024, 173, 108320. [Google Scholar] [CrossRef] [PubMed]
- Dular, L.; Špiclin, Ž. BASE: Brain Age Standardized Evaluation. NeuroImage 2024, 285, 120469. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Joo, Y.; Ha, E.; Song, Y.; Yoon, S.; Shin, T. Brain Age Prediction Using Multi-Hop Graph Attention Combined with Convolutional Neural Network. Bioengineering 2024, 11, 265. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Tai, T.-M.; Lee, P.-L.; Tseng, C.-W.; Chen, C.-Y.; Chen, L.-K.; Lee, C.-K.; Chou, K.-H.; See, S.; Lin, C.-P. Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework. Front. Psychiatry 2021, 12, 626677. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, J.; Xin, J.; Zhang, Y.; Xie, H.; Tang, Y. 3DCNN Predicting Brain Age Using Diffusion Tensor Imaging. Med. Biol. Eng. Comput. 2023, 61, 3335–3344. [Google Scholar] [CrossRef]
- He, S.; Grant, P.E.; Ou, Y. Global-Local Transformer for Brain Age Estimation. IEEE Trans. Med. Imaging 2022, 41, 213–224. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, Z.; Guan, H.; Wu, Z.; Zhu, H.; Jiang, J.; Wen, W.; Tao, D.; Liu, T. Brain Age Estimation From MRI Using Cascade Networks With Ranking Loss. IEEE Trans. Med. Imaging 2021, 40, 3400–3412. [Google Scholar] [CrossRef]
- Leonardsen, E.H.; Peng, H.; Kaufmann, T.; Agartz, I.; Andreassen, O.A.; Celius, E.G.; Espeseth, T.; Harbo, H.F.; Høgestøl, E.A.; Lange, A.-M.d.; et al. Deep Neural Networks Learn General and Clinically Relevant Representations of the Ageing Brain. NeuroImage 2022, 256, 119210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, R.; Beheshti, I.; Liu, X.; Zheng, G.; Wang, Y.; Zhang, Z.; Zheng, W.; Yao, Z.; Hu, B. Improving Brain Age Prediction with Anatomical Feature Attention-Enhanced 3D-CNN. Comput. Biol. Med. 2024, 169, 107873. [Google Scholar] [CrossRef] [PubMed]
- Bellantuono, L.; Marzano, L.; La Rocca, M.; Duncan, D.; Lombardi, A.; Maggipinto, T.; Monaco, A.; Tangaro, S.; Amoroso, N.; Bellotti, R. Predicting Brain Age with Complex Networks: From Adolescence to Adulthood. NeuroImage 2021, 225, 117458. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Gong, W.; Beckmann, C.F.; Vedaldi, A.; Smith, S.M. Accurate Brain Age Prediction with Lightweight Deep Neural Networks. Med. Image Anal. 2021, 68, 101871. [Google Scholar] [CrossRef] [PubMed]
- Armanious, K.; Abdulatif, S.; Shi, W.; Salian, S.; Küstner, T.; Weiskopf, D.; Hepp, T.; Gatidis, S.; Yang, B. Age-Net: An MRI-Based Iterative Framework for Brain Biological Age Estimation. IEEE Trans. Med. Imaging 2021, 40, 1778–1791. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Huang, Y.; Zhang, Z.; Dong, S.; Xue, L.; Niu, M.; Li, Y.; Shi, Z.; Wang, Y.; Zhang, H.; et al. OTFPF: Optimal Transport Based Feature Pyramid Fusion Network for Brain Age Estimation. Inf. Fusion 2023, 100, 101931. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Available online: https://arxiv.org/abs/1409.1556v6 (accessed on 7 July 2024).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Available online: https://arxiv.org/abs/1512.03385v1 (accessed on 7 July 2024).
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. Available online: https://arxiv.org/abs/1409.4842v1 (accessed on 7 July 2024).
- Chollet, F. Xception: Deep Learning With Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. Available online: https://arxiv.org/abs/1608.06993v5 (accessed on 8 July 2024).
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Available online: https://arxiv.org/abs/1905.11946v5 (accessed on 8 July 2024).
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Available online: https://arxiv.org/abs/1505.04597v1 (accessed on 10 July 2024).
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model. IEEE Trans. Neural Netw. 2009, 20, 61–80. [Google Scholar] [CrossRef]
- Lin, L.; Xiong, M.; Zhang, G.; Kang, W.; Sun, S.; Wu, S. Initiative Alzheimer’s Disease Neuroimaging A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification. Sensors 2023, 23, 1914. [Google Scholar] [CrossRef]
- Minar, M.R.; Naher, J. Recent Advances in Deep Learning: An Overview. Available online: https://arxiv.org/abs/1807.08169v1 (accessed on 15 July 2024).
- Alzheimer’s Disease Neuroimaging Initiative (ADNI). Available online: https://www.neurology.org/doi/10.1212/WNL.0b013e3181cb3e25 (accessed on 16 July 2024).
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Thompson, P.M.; Jahanshad, N.; Ching, C.R.K.; Salminen, L.E.; Thomopoulos, S.I.; Bright, J.; Baune, B.T.; Bertolín, S.; Bralten, J.; Bruin, W.B.; et al. ENIGMA and Global Neuroscience: A Decade of Large-Scale Studies of the Brain in Health and Disease across More than 40 Countries. Transl. Psychiatry 2020, 10, 1–28. [Google Scholar] [CrossRef]
Reference | Dataset | Age Range | Age Span | Subject | Data Modality | Models | MAE (years) | R-Values |
---|---|---|---|---|---|---|---|---|
Beck et al. [31] | TOP, StrokeMRI | 18–95 | 77 | 702 | dMRI | DT model to stack XGBoost | 6.99 | 0.85 |
Engemann et al. [32] | CamCAN | 18–88 | 70 | 674 | T1 MRI, fMRI, Magnetoencephalography (MEG) | RF model to stack RR | 6.75 | - |
Tesli et al.* [33] | TOP, StrokeMRI | 12–92 | 80 | 586 | T1 MRI | RF, XGBoost | 6.6 | 0.68 |
Ballester et al. [34] | COBRE, MCIC, UCLA, TOPSY, CAN-BIND | 16–65 | 49 | 471 | fMRI | XGBoost | 5.61 | 0.8 |
Han et al.* [1] | Simulated dataset, CoRR, NKI | 12–85 | 73 | 125 | fMRI | SVR, RVR, Lasso, EN, RR, XGBoost | 5.14 | 0.87 |
Xifra-Porxas et al. [35] | CamCAN | 18–88 | 70 | 613 | T1 MRI, MEG | RF model to stack GRP | 4.88 | 0.94 |
More et al.* [36] | CamCAN, IXI, eNKI, 1000 Brains, CoRR, OASIS-3, MyConnectcome, ADNI | 18–88 | 70 | 2953 | T1 MRI | RR, Lasso, EN, and 5 other ML methods | 4.75 | 0.95 |
Ly et al. [37] | ADNI, IXI, OASIS-3 | 20–85 | 65 | 1248 | T1 MRI | GPR | 4.65 | 0.6 |
Han et al.* [38] | HCP, CamCAN, IXI | 18–88 | 70 | 2281 | T1 MRI | Lasso, RR, EN, and 24 other ML methods | 2.75 | 0.43 |
Lee et al.* [39] | HCP, CamCAN, ISMMS, COBRE | 18–87 | 69 | 1584 | T1 MRI | RR, Lasso, EN, and 3 other ML methods | 2.6 | - |
Kalc et al. [40] | UKB, IXI, OASIS-3, Cam-CAN, SALD, NKI, ADNI, SZ samples | 18–90 | 72 | 40,070 | T1 MRI | GRP | 1.97 | 0.95 |
Reference | Dataset | Age Range | Age Span | Subject | Data Modality | Models | MAE (years) | R-Values |
---|---|---|---|---|---|---|---|---|
Wu et al. [41] | CamCAN | 18–88 | 70 | 600 | fMRI | Ensemble model (FNN, KNN) | 8.89 | 0.79 |
Popescu et al. [42] | ABIDE, Beijing Normal University, Berlin School of Brain Mind, CADDementia, Cleveland Clinic, ICBM, IXI, MCIC, MIRIAD, NEO2012, NKI, OASIS, WUS, TRAIN-39, BAHC, DLBS, CamCAN, SALD, Wayne state, OASIS-3, AIBL | 18–97 | 79 | 3873 | T1 MRI | 3D U-Net | 8.09 | 0.78 |
Borkar et al. [43] | CamCAN | 20–88 | 68 | 638 | fMRI | 2D ResNet | 6.8 | 0.87 |
Xu et al. [44] | CamCAN | 18–88 | 70 | 600 | fMRI | 2D Siamese Network | 6.2 | 0.9 |
Valdes-Hernandez et al. [45] | UF Health System | 15–95 | 80 | 1559 | T1 MRI, T2 MRI | 2D GoogleNet | 5.86 | 0.92 |
Ding et al. [46] | SLIM | 19–80 | 61 | 494 | fMRI | 3D Ensemble model (SFCN, Siamese network) | 5.33 | 0.79 |
Pardakhti et al. [19] | IXI, ADNI-I | 20–86 | 66 | 609 | T1 MRI | 3D VGGNet | 5.15 | - |
Besson et al. [47] | ABIDE II, Age-ility, CamCan, CoRR, DLBS, BGSP, HCP, IXI, MPI-LMBB, NKI, SALD | 7–89 | 82 | 6410 | T1 MRI | GCN | 4.58 | 0.93 |
Cheng et al. [48] | IXI, SALD, NKI, CoRR, UKB, PNC, 973, HCP, Organ Transplantation Center, Tianjin First Central Hospital | 8–80 | 72 | 3743 | T1 MRI | 3D VGGNet | 4.45 | 0.96 |
Ballester et al. [49] | PAC2019 | 17–90 | 73 | 3298 | T1 MRI | 2D ResNet | 4.44 | - |
Kuchcinski et al. [50] | IXI, HCP, OBRE, MCIC, NMorphCH, NKI-RS, PPMI, ADNI | 18–70 | 52 | 1503 | T1 MRI | 3D VGGNet | 4.4 | - |
Gopinath et al. [51] | Mindboggle-101, ADNI-I | 20–61 | 41 | 101 | T1 MRI | GCN | 4.35 | - |
Gautherot et al. [52] | IXI, HCP, COBRE, MCIC, NMorphCH, NKI-RS | 18–85 | 67 | 2065 | T1 MRI | 3D VGGNet | 4.34 | 0.92 |
Hwang et al. [53] | Seoul National University Hospital, IXI | 19–88 | 69 | 2360 | T2 MRI | 2D VGGNet | 4.22 | 0.86 |
Chen et al. [54] | - | 18–80 | 62 | 712 | T1 MRI, Quantitative susceptibility mapping (QSM) | 3D U-Net with Transformer | 4.12 | 0.97 |
Feng et al. [55] | ADNI, AIBL, NIFD, IXI, BGSP, OASIS-1, OASIS-2, SALD, SLIM, PPMI, SchizConnect, DLBS, CoRR, CamCAN | 18–97 | 69 | 6794 | T1 MRI | 3D VGGNet | 4.06 | 0.97 |
Bashyam et al. [56] | ADC, AIBL, BLSA, CARDIA, GAP, PAC, PING, PNC, PennPMC, SHIP | 3–95 | 92 | 14,468 | T1 MRI | 2D GoogleNet | 3.7 | - |
Hofmann et al. [57] | The LIFE Adult study | 18–82 | 64 | 2016 | T1 MRI, susceptibility-weighted magnitude images (SWI), Fluid-attenuated inversion recovery images (FLAIR) | 3D VGGNet | 3.37 | - |
Duchesne et al. [58] | PAC2019 | 17–90 | 73 | 2640 | T1 MRI | 3D Ensemble model (Best Linear Unbiased Predictor, SVR, VGGNet, ResNet, and GoogleNet) | 3.33 | - |
Poloni et al. [59] | IXI, ADNI | min = 20, max > 70 | - | 1189 | T1 MRI | 3D EfficientNet | 3.31 | 0.95 |
Kianian et al. [60] | IBID, IXI | 19–77 | 58 | 869 | T1 MRI | 2D XceptionNet | 3.25 | - |
Hepp et al. [61] | GNC | 20–72 | 52 | 10,691 | T1 MRI | 3D ResNet | 3.21 | - |
Zhang et al. [62] | PAC2019 | 16–90 | 74 | 2641 | T1 MRI | 3D Ensemble model (VGGNet, ResNet, GoogleNet, SVR) | 3.19 | 0.95 |
Joo et al. [63] | FCP1000, INDI, IXI OASIS-3, OpenNeuro, CamCAN | 18–86 | 68 | 3004 | T1 MRI | 3D Ensemble model (VGGNet, Multi-layer Perception) | 3.18 | 0.97 |
He et al. [64] | MGHBCH, NIH-PD, ABIDE-I, BGSP, BeijingEN, IXI, DLBS, OASIS-3, ABCD, HBN, CoRR | 0–97 | 97 | 16,705 | T1 MRI | 3D ResNet with Transformer | 3 | 0.98 |
Wood et al. [65] | KCH, GSTT, IXI | 18–95 | 77 | 23,865 | T1 MRI, T2 MRI, diffusion-weighted images (DWI) | 3D DenseNet | 2.97 | 0.97 |
Dular et al. [66,67] | ABIDE, ADNI, CamCAN. CC-359, FCP1000, IXI, OASIS-2, UKB, OASIS-1 | 18–95 | 77 | 4313 | T1 MRI | 3D VGGNet | 2.96 | 0.98 |
Lim et al. [68] | OpenNeuro, COBRE, OpenfMRI, INDI, IXI, FCP1000, XNAT | 20–70 | 50 | 2788 | T1 MRI | 3D ResNet with Transformer | 2.82 | 0.97 |
Kuo et al. [69] | PAC2019 | 17–90 | 73 | 3143 | T1 MRI, T2 MRI | 3D ResNet | 2.81 | 0.97 |
Wang et al. [70] | COBRE, Beijing-Enhanced, CamCAN, HCP, SLIM, PPMI | 17–60 | 43 | 2406 | DTI | 3D GoogleNet | 2.79 | 0.93 |
He et al. [71] | BGSP, OASIS-3, NIH-PD, ABIDE-I, IXI, DLBS, HBN, CoRR | 0–97 | 97 | 8379 | T1 MRI | 2D VGGNet with Transformer | 2.7 | 0.99 |
Cheng et al. [72] | OASIS, ADNI-1, PAC2019 | 17–98 | 81 | 6586 | T1 MRI | 3D DenseNet | 2.43 | 0.99 |
Leonardsen et al. [73] | HBN, ADHD200, PING, ABIDE, SLIM, ABIDE-2, Beijing, AOMIC, CoRR, MPI-LMBB, HCP, FCP1000, NKI, IXI, Oslo, ADNI, AIBL Roc-land, SALD, DLBS, CamCAN, UKB, OASIS-3, OpenNeuro | 3–96 | 93 | 56,095 | T1 MRI | 3D SFCN | 2.23 | - |
Zhang et al. [74] | FCP1000, ADNI, DLBS, IXI, NRTC, OASIS, PPMI, SALD | 20–80 | 60 | 2382 | T1 MRI | 3D VGGNet with Transformer | 2.2 | - |
Bellantuono et al. [75] | ABIDE | 7–64 | 57 | 1016 | T1 MRI | FNN | 2.19 | 0.89 |
Peng et al. [76] | UKB, PAC2019 | 17–90 | 73 | 17,801 | T1 MRI | 3D SFCN | 2.14 | - |
Armanious et al. [77] | IXI | 20–86 | 66 | 562 | T1 MRI | 3D GoogleNet | 1.96 | 0.98 |
Fu et al. [78] | ABIDE I, ABIDE II, ADNI, BGSP, CoRR, DLBS, ICBM, IXI, NKI, OASIS-3, OpenfMRI, SALD | 3–97 | 94 | 12,909 | T1 MRI | 3D OTFPF | 1.85 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Gao, H.; Zhang, C.; Ma, X.; Zhu, X.; Wu, S.; Lin, L. Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review. Tomography 2024, 10, 1238-1262. https://doi.org/10.3390/tomography10080093
Wu Y, Gao H, Zhang C, Ma X, Zhu X, Wu S, Lin L. Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review. Tomography. 2024; 10(8):1238-1262. https://doi.org/10.3390/tomography10080093
Chicago/Turabian StyleWu, Yutong, Hongjian Gao, Chen Zhang, Xiangge Ma, Xinyu Zhu, Shuicai Wu, and Lan Lin. 2024. "Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review" Tomography 10, no. 8: 1238-1262. https://doi.org/10.3390/tomography10080093
APA StyleWu, Y., Gao, H., Zhang, C., Ma, X., Zhu, X., Wu, S., & Lin, L. (2024). Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review. Tomography, 10(8), 1238-1262. https://doi.org/10.3390/tomography10080093