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Abstract: Anterior cruciate ligament (ACL) tears are prevalent knee injures, particularly among
active individuals. Accurate and timely diagnosis is essential for determining the optimal treatment
strategy and assessing patient prognosis. Various previous studies have demonstrated the successful
application of deep learning techniques in the field of medical image analysis. This study aimed to
develop a deep learning model for detecting ACL tears in knee magnetic resonance Imaging (MRI) to
enhance diagnostic accuracy and efficiency. The proposed model consists of three main modules: a
Dual-Scale Data Augmentation module (DDA) to enrich the training data on both the spatial and
layer scales; a selective group attention module (SG) to capture relationships across the layer, channel,
and space scales; and a fusion module to explore the inter-relationships among various perspectives
to achieve the final classification. To ensure a fair comparison, the study utilized a public dataset
from MRNet, comprising knee MRI scans from 1250 exams, with a focus on three distinct views:
axial, coronal, and sagittal. The experimental results demonstrate the superior performance of the
proposed model, termed SGNET, in ACL tear detection compared with other comparison models,
achieving an accuracy of 0.9250, a sensitivity of 0.9259, a specificity of 0.9242, and an AUC of 0.9747.

Keywords: anterior cruciate ligament; deep learning; magnetic resonance imaging

1. Introduction

Anterior cruciate ligament (ACL) tears are among the most common knee injuries
worldwide, especially among young and active people. Severe tears require ACL recon-
struction (ACLR) to restore stability, with more than 100,000 cases in the United States
alone each year [1]. ACL can further lead to knee instability, which may progress to os-
teoarthritis and ultimately result in knee replacement surgery [2]. However, even with
ACLR, more than 50% of patients still experience signs of osteoarthritis [3]. Therefore, the
timely and accurate assessment of ACL tears is crucial for selecting the best treatment plan
and effectively evaluating the patient prognosis [4]. It is of significant clinical importance
for patients to regain normal knee stability and normal motor function, and to prevent or
minimize secondary injuries to other knee structures [5]. Common methods for diagnosing
ACL tears typically include clinical examinations, imaging studies, and arthroscopy [6].
Among these methods, arthroscopy is the gold standard for assessing internal knee joint
diseases and other lesions [7]. However, it is relatively expensive and invasive [8]. Clinical
tests, including the anterior drawer, Lachman, and pivot shift tests, are essential in post-
injury assessments. When used together, these clinical tests have been shown to be highly
specific for diagnosing ACL tears, but some experience is required to properly perform and
interpret these tests [9]. Currently, Magnetic Resonance Imaging (MRI) is the best choice
for identifying anterior cruciate ligament tears, but the accuracy of the results can vary, and
it may depend on the level of experience of the reader, even when performed by muscu-
loskeletal radiologists or sports orthopedic surgeons [10,11]. A previous study showed
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that MRIs of the ACL tears had an overall accuracy of 85.0%, a sensitivity of 82.5%, and a
specificity of 92.8% [12]. Notably, the overall accuracy and specificity of ACL diagnosis
can be improved with additional training each year, increasing the risk of misdiagnosis
by inexperienced doctors [13]. For non-musculoskeletal radiologists, general orthopedic
surgeons, or clinical doctors without a specialty in knee joint surgery, the accurate diagnosis
of ACL tears may be challenging [14]. Therefore, making an accurate diagnosis of ACL
tears through knee MRI remains challenging.

Automated systems utilizing deep learning can assist clinicians in reading knee MRI
scans and formulating diagnoses [15]. In clinical diagnosis, detecting tears in the anterior
cruciate ligament (ACL) relies on a composite assessment of oblique structures across
multiple image slices with varying tissue contrasts, using MRI results that include fiber
discontinuities, contour changes, and signal abnormalities within the injured ligament [16].
Deep learning models can automatically learn hierarchical feature representations from raw
image data, capturing complex patterns and details that are difficult to design manually.
This enables deep learning to effectively model subtle visual features present in medical
images and complete the task of capturing subtle relationships in medical image interpreta-
tion [17]. Some studies have demonstrated the effectiveness and efficiency of deep learning
methods in MRI analysis [18–20]. Investigating the capacity of deep learning methods for
detecting ACL tears could establish whether such approaches are beneficial for diagnosing
complex musculoskeletal abnormalities in MRI.

In natural image analysis, attention mechanisms have achieved widespread success
and continue to captivate interest among researchers [21–24]. The attention method simu-
lates human attention by assigning varying levels of importance to different parts of the
input. The operation is conducted on low-level visual details or on high-level semantic
contents. This helps the model discover the most relevant part of the query image. The ap-
plication of attention mechanisms becomes particularly pertinent in medical image analysis
because their structures are inherently intricate and the information is dense. The complex-
ity inherent in medical images can potentially hinder diagnostic accuracy if not properly
navigated. Attention can help the model concentrate more on the task-related region and
extract a better feature representation, thereby enhancing analytical precision.

In this study, inspired by the success of deep learning-based methods in MRI analysis
and attention mechanisms, we developed a deep learning model for detecting ACL tears
in knee MRI examinations. The model consists of three main modules: a Dual-Scale Data
Augmentation module (DDA), a selective group attention (SG) module, and a fusion
module. The following are our work contributions:

(1) We established a deep learning-based method to detect ACL tears using MRI as an input.
(2) This study extends the augmentation strategy to both the spatial scale and layer scale,

in order to address the challenge of limited data.
(3) The proposed method adopts a selective group attention module that examines the

relationships among layers. A fusion module is used to integrate multiple perspectives,
which simulates the clinical diagnosis process, to achieve the final classification.

(4) Several experiments were conducted to compare the proposed method and the baseline
methods. The experimental results demonstrate the superiority of the proposed
method and verify the effectiveness of the modules.

The remainder of this paper is organized as follows: Section 2 introduces related
works. In Section 3, the proposed framework for the classification task is presented.
In Section 4, experiments with a clinical dataset are performed to evaluate the proposed
method. The dataset information, implementation details, and evaluation metrics are also
illustrated. In Sections 5 and 6, the experimental results and discussion are presented.
Conclusions are drawn in Section 7.
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2. Related Works
2.1. Deep Learning in MRI Analysis

Great progress has been made in deep learning-based methods for several MRI-related
tasks. For segmentation, Smarta et al. [25] designed a modified U-Net architecture under
a deep learning framework for the detection and segmentation of brain tumors from MR
images. For classification, EL-Geneedy et al. [18] proposed an analysis pipeline utilizing
a shallow convolution neural network to make a fast and accurate Alzheimer’s disease
diagnosis; Jyotismita et al. [19] designed the Brain Tumor Segmentation and Classification
Network to properly classify three types of brain tumors from MR images. For MRI recon-
struction, Wu et al. [26] used the Swin Transformer as the backbone to restore high-quality
MRI images from undersampled k-space data in an end-to-end manner; Guo et al. [27]
proposed a joint group sparsity-based network for multi-contrast MRI reconstruction, en-
hancing the reconstruction efficiency and accuracy by processing a joint sparsity algorithm.
The successes achieved by deep learning-based models inspired us to incorporate this
technology into the task of MRI-based ACL tear detection.

2.2. Attention

Attention is an important mechanism employed in deep learning methodologies and
is prominently featured in both Convolutional Neural Networks (CNNs) and Transformer
models. It enables the system to selectively focus on different parts of the input, thereby
enhancing its ability to capture salient information and context, leading to improved per-
formance and interpretability. Initially, Dzmitry et al. [21] used attention to allow a model
to automatically (soft-)search for parts that are relevant to predicting a target. Hu et al. [23]
proposed the Squeeze-and-Excitation block to adaptively recalibrate channel-wise feature
responses by explicitly modeling interdependencies between channels. Sanghyun et al. [28]
sequentially inferred attention maps along both channel and spatial dimensions for adap-
tive feature refinement. Ashish et al. [29] proposed the Transformer architecture using a
multi-head self-attention mechanism, which has been one of the most commonly used
architectures in deep learning fields. The multi-head self-attention module was then intro-
duced to the image process by Alexey et al. [30]. However, unlike natural images, medical
images, such as MRI scans, possess a unique structure typically presented as a 3D volume.
The contextual information spanning various depths or layers holds significant importance
for medical image analysis tasks. Inspired by insights from previous research emphasizing
attention mechanisms, we explored cross-layer correlations to enhance model performance
by incorporating an attention module.

3. Method

The framework of the model is illustrated in Figure 1. The proposed model consists
of three main modules: (1) the Dual-Scale Data Augmentation module, (2) the selective
group attention module, and (3) the fusion module. The scan image of each individual
perspective is processed with dual-scale data augmentation and fed into the basic backbone
to generate the original feature map. Then, the selective group attention module is used to
capture relationships across the layer, channel, and space scales. Finally, the fusion module
assembles the predictions made with different input views to obtain the final classification
result. Details of the proposed model are discussed in the following subsections.
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Figure 1. The framework of the model. Each individual perspective of the MRI scan is augmented
using the Dual-Scale Data Augmentation module (Dual-Scale DA) first and then fed into the backbone
to extract feature representations. The red box presents the randomly selected area in the step1 of
Dual-Scale DA module. Then, the features are passed through the Selective Group Attention Module
(SG Module). The aggregation features can be used to make predictions directly and fused in the
Fusion Module to make the final classification.

3.1. Dual-Scale Data Augmentation

The shortage of data has been a persistent challenge in medical image analysis. Data
augmentation offers a promising solution to mitigate this limitation. In contrast to tech-
niques commonly applied to natural images, we modified two methods, erasing and mixup,
to suit the specific structure of the data used in this study. In addition, we also use random
crops as another augmentation method. The augmentation operation is integrated into the
data processing flow used in MRNet [15]. The details are shown in Figure 2.

Step1&2

Erasing Mixup

Step3

Figure 2. The pipeline of data processing. After scanning, there are three perspectives of the images.
For each individual perspective, there are three steps for dual-scale data augmentation as follows:
step 1. random crop; step 2. normalization; and step 3. erasing or mixup. The image is randomly
cropped from the original image (as shown in the top row, where the red box is the cropped area).
Then, the image is normalized with (1). Next, the image is augmented using a multi-scale erasing or
mixup strategy. The patches chosen for the mix-up strategy are selected from other views through
random selection (as shown in yellow box). More details can be found in Section 3.1.

First, for each input dataset with a shape of L × 256 × 256 (L denotes the layer
count), it is randomly cropped from 256 × 256 to 224 × 224. Random cropping is a data-
augmentation technique that involves extracting a random subset from an original image.
This enhances the model’s generalization capabilities because the objects of interest may
not always be fully visible or present at the same scale in training data. Then, the cropped
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image is normalized with the statistics calculated using training data. For each pixel pl,i,j of
the image, the value is changed to p′l,i,j with:

p′l,i,j =
pl,i,j − m

std
, l = 1, . . . L, i, j = 1, . . . , 224, (1)

where m and std refer to the mean and standard deviation of the data, respectively. Stan-
dardizing the data facilitates better feature learning by the model. Next, two augmentation
approaches are applied to the data: erasing and mixup. The augmentations are performed
on both the spatial scale and layer scale. For the spatial augmentation strategy, the eras-
ing/mixup center is randomly selected to ensure that the target area has the size of the input
size × ratio. For the erasing approach, the target area is then set to zero. For the mixup
approach, the target area is then mixed up with the area randomly chosen from other layers
via the same strategy, and for layer-scale, a certain number of layers is randomly selected
from all layers according to a specified ratio for processing. The layers chosen for the
mix-up strategy are selected from other views through random selection. These operations
offer a distinct advantage by enhancing the diversity of the data while preserving the class
information. Random selection is used under Beta distribution.

3.2. Selective Group Attention Module
3.2.1. Group Module

Inspired by EMA [31], we propose a novel cross-layer learning method for establishing
both short- and long-range dependencies on layer-scale. The details are shown in the right
part of Figure 3. The output of the backbone X ∈ RB×L×C×H×W is the input of this
module. It is divided into N crops [C1, C2, . . . CN], where the shape of each sub-crop is
B × L//n × (C × n)× H ×W. B, L, C, H, and W denote the batch size, layer count, channel
count, height, and width of the feature map, respectively. For clarity, later the shape is
referred to as L//n × (C × n)× H × W, omitting the B. This operation forces the module
to investigate the relationship across layers along the channel dimension. The EMA-like
structure utilizes three parallel pathways to extract attention weights from the grouped
feature maps. Two distinct branches capture long-range interactions spatially along the
vertical and horizontal directions with specific 1-D average pooling layers:

Cn H = AvgPoolH(Cn), CnW = AvgPoolW(Cn), n = 1, . . . N. (2)

The attention map learned from two branches is aggregated with the original fea-
ture map, which preserves precise positional information and effectively exploits long-
range dependencies:

A = Conv([Cn H , CnW ]) ∈ RL//N×(C×N)×1×(H+W), (3)

AH , AW = A, (4)

A
′
H = Sigmoid(AH) ∈ RL//N×(C×N)×H×1, (5)

A
′
W = Sigmoid(AW) ∈ RL//N×(C×N)×1×W , (6)

A′ = A
′
H ⊗ A

′
W ∈ RL//N×(C×N)×H×W , (7)

where the permutation operation for multiplication is omitted and ⊗ denotes matrix
multiplication. Formula (4) denotes the separation of A along the vertical and horizontal
directions. The third branch captures the global information using a combination of
a convolution layer and a 2-D averaging pooling layer. Finally, the fusion of context
information with global and local information allows the module to generate more refined
attention for feature maps.
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Figure 3. Illustration of the selective group attention module. On the left is the selective attention
module, which carries out layer selection via the attention mechanism. On the right is the group
module, which establishes the relationship across layers. More details can be found in Section 3.2.

3.2.2. Selective Attention Module

Investigating the relationship among crop groups across different channel and spatial
scales enhances the generation of more focused attention maps for features. However,
the number of layers integrated can significantly impact diagnostic performance. Similar
to how medical experts pinpoint target areas in scan images, our goal is to ensure that
attention maps concentrate effectively on the regions of interest. To address this challenge,
we propose a novel selective attention module for layer selection, as illustrated in the
left-hand side of Figure 3. The original feature map is divided into K crop groups and the
attention is calculated as follows:

Crop Group = [crops1, crops2, . . . , cropsK], (8)

cropsk = aggregatek(input), (9)

where the aggregation operation denotes the group module, which adopts a different
layer size for each group, and “input” denotes the features generated by the backbone.
[F1, F2, . . . , FK] denotes the enhanced feature maps with different aggregations. The en-
hanced feature maps are fed into the ATT block, as shown in Figure 3, to calculate the
attention. First, the outcomes of the individual crop groups F

′
are fused via element-

wise summation:
F
′
= F1 + F2 · · ·+ FK. (10)

Then, a 2-D averaging pooling layer is employed to extract the global informa-
tion. A compact feature F

′′
is created to enable guidance for adaptive selections with

a group of fully-connected layers (FCs), and the final selection is made by the softmax
function (Softmax):

z = Softmax(FC(F
′′
)), (11)

output = sum(z ∗ F
′′
), (12)

where z denotes the attention weights and the weighted summation aims to select the best
crop group.

3.3. Fusion Module

For each individual view, the output of the selective group attention module (SG
module) can be used for final prediction with fully connected layers. However, just as
radiologists often rotate scan images to find more information, we utilize a fusion module to
explore the inter-relationships among various perspectives to achieve the final classification.
There are many methods for investigating the fusion of results from different models
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fed with the same input. Here, we fuse the models’ outcomes fed with different views
according to the fuzzy distance [32]. Let Sa(x), Sc(x), and Ss(x) be the confidence scores of
sample x assigned by the model fed with axial, coronal, and sagittal views, respectively.
For each sample x, and class label j, the distance (P) between the ideal solution vector 1,
and the confidence score can be calculated as follows:

Pj = (1 − Sj
a(x), 1 − Sj

c(x), 1 − Sj
s(x)). (13)

In this study, the Euclidean, Manhattan, and cosine distances are used for the ensemble.
The information from these three measures is combined with the product for each class
as follows:

Ij(x) = PE
j (x)× PM

j (x)× PC
j (x), (14)

where PE
j , PM

j , and PC
j stand for the Euclidean, Manhattan, and cosine distances, respec-

tively. The final prediction is made with the following:

y = argmin{Ij(x)}, (15)

where y is the class label assigned to sample x.

4. Experiment
4.1. Data Preparation

In this study, we used a public dataset called MRNet [15], which was collected at
Stanford University Medical Center. Examinations were performed with GE scanners (GE
Discovery, GE Healthcare, Waukesha, WI) with a standard knee MRI coil and a routine
non-contrast knee MRI protocol. For each case, three views of the data were obtained: axial,
coronal, and sagittal. Here, the case with an ACL tear was defined as positive. The details
of the dataset are shown in Table 1.

Table 1. The demographic information of the dataset.

Statistic Training Validation

Number of exams 1130 120
Number of patients 1088 111
Number of female patients (%) 480 (42.5) 50 (41.7)
Age, mean (SD) 38.3 (16.9) 36.3 (16.9)
Number with ACL tear (%) 208 (18.4) 54 (45.0)
Number w/o ACL tear (%) 922 (81.6) 66 (55.0)

4.2. Implementation

In this study, we employed PyTorch to implement all methodologies on an Ubuntu
18.04 server featuring Nvidia Tesla-V100 graphics processing units (GPUs). All experiments
were conducted on the training and validation sets of the dataset. The training set was
divided into training and tuning subsets at a ratio of 0.8:0.2 for five-fold cross-validation.
To make a substantial and fair comparison, the dataset was split using a stratified k-
fold sampling strategy to maintain the class distribution. We trained the models using a
consistent setting. The initial learning rate was set to 1 × 10−5 and reduced by a factor of
0.8 when the validation loss stopped improving for five epochs. The optimizer used in
this study was Adam, with a weight decay of 0.01. A weighted loss function was used to
calculate the model performance, and further details of the loss function are discussed in
the Discussion Section 6. All the proposed modules were designed to be easily adaptable
to the original backbone. In this study, the backbone employed was MRNet.

4.3. Metrics

To assess the performance of various models, we utilized accuracy, sensitivity, speci-
ficity, and AUC metrics to qualitatively compare their effectiveness. The sensitivity and



Tomography 2024, 10 1270

specificity were calculated and defined by viewing the normal case as negative and an
existing ACL tear as positive.

5. Results

In this section, the experimental results are listed. First, we compared the performances
of different models, including the proposed SGNETmodel, and the MRNet [15], DLD [33],
ELNet [34], VIT [35], and Med3D [36] models. MRNet uses AlexNet as its backbone. DLD
is a deep learning-based ACL tear detector that uses cascade models to locate objects and
perform classification. [34] proposed multi-slice normalization and BlurPool operations
to enhance model performance. Then, we replaced the backbone of the MRNet with VIT
and Med3D. The former was pretrained on the ImageNet22k [37] natural image dataset,
while the latter was pretrained on medical images. Then, we conducted a wide range
of experiments to verify the effectiveness of the proposed modules. In addition, we
performed an ablation study on the parameter settings. The details are outlined in the
subsequent subsections.

5.1. ACL Classification

The quantitative results obtained by different approaches are shown in Table 2. The
proposed method, SGNET, achieved the best results among most metrics, except for speci-
ficity. MRNet achieved the best specificity. This discrepancy may be attributed to the
loss weight configuration during training, as evidenced by MRNet’s poor sensitivity per-
formance of 0.7590. Our proposed model aims to achieve optimal performance in both
positive and negative case classifications. The inferior performance of the VIT model com-
pared to that of other approaches could be attributed to insufficient training data. Visual
transformers typically require a large amount of data for effective training. Replacing the
backbone with Med3D resulted in a significant improvement in performance, suggesting
that pretraining with medical images is beneficial.

Table 2. Comparison of model performance in terms of ACL classification.

Model ACC SEN SPE AUC

MRNet 0.8670 0.7590 0.9680 0.9650
DLD 0.8750 0.8500 0.8900 0.9620
ELNet 0.9000 0.9070 0.8940 0.9560
VIT 0.8500 0.8182 0.8889 0.9043
Med3D 0.8917 0.8788 0.9074 0.9290
SGNET 0.9250 0.9259 0.9242 0.9747

The best results of all experiments are highlighted in bold.

5.2. Module Investigation

To comprehensively evaluate the proposed modules, an extensive array of experi-
ments was conducted, encompassing all three views. As depicted in Figure 4 and Table 3,
the proposed modules resulted in significant improvements in model performance when
fed with each individual view and further enhanced performance through the fusion of
three views. Taking the AUC as the evaluation metric, which balances the classification
accuracy across positive and negative cases while mitigating the impact of class imbalance,
the augmentation techniques yielded improvements of 1.4%, 2.4%, and 3.7% for the axial,
coronal, and sagittal views, respectively. Furthermore, the integration of the SG module
into the architecture demonstrated notable enhancements in performance, with 2.3%, 0.8%,
and 1.5% improvements on the three views, respectively. Finally, the fusion module assem-
bles the outcomes of three individual views into the final prediction, achieving the best
differentiation performance with an AUC of 0.9747. As shown in Table 3, for all three views,
the model with the proposed AUG and SG modules achieved the best accuracy. The fusion
module further improved the performance. Even compared with the best results of the
individual view, the fusion module enabled the proposed model to achieve an improve-
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ment of 2.5% in accuracy and 1.7% in sensitivity, with only a 0.17% decrease in specificity
compared to a highly unbalanced result in the axial view. The results of these experiments
validate the effectiveness of the proposed modules.

Figure 4. The ROC curves for each individual view with different model settings. The left, middle,
and right figures plot the curves for the axial, coronal, and sagittal views, respectively. For each
view, the ROC curve of the complete model (Base + DDA + SG + Fusion) was added for comparison.
“Base” refers to using only an MRNet-like backbone. “DDA” represents the use of the dual-scale
data augmentation strategy. “SG” and “Fusion” denote the leverage of the selective group attention
module and the fusion module, respectively.

Table 3. Investigation of the efficacy of the modules.

View Modules ACC SEN SPE

Base DDA SG Fusion

Axial
✓ 0.8250 0.7424 0.9259 *
✓ ✓ 0.8333 0.8333 0.8333
✓ ✓ ✓ 0.8917 * 0.9091 * 0.8704

Coronal
✓ 0.8083 0.8182 0.7963
✓ ✓ 0.8333 0.8182 0.8519
✓ ✓ ✓ 0.8583 * 0.8333 * 0.8889 *

Sagittal
✓ 0.8333 0.8030 0.8704
✓ ✓ 0.8917 0.9091 * 0.8704
✓ ✓ ✓ 0.9000 * 0.8939 0.9074 *

All ✓ ✓ ✓ ✓ 0.9250 0.9259 0.9242

✓ denotes the use of the specific module. “Base” refers to using only the MRNet-like backbone. “DDA” represents
the use of the dual-scale data augmentation strategy. “SG” and “Fusion” denote the leverage of the selective group
attention module and the fusion module, respectively. The best results for each perspective are noted with “*”. The
best results of all experiments are highlighted in bold.

5.3. Other Ablation Study

First, we conducted ablation studies on different data augmentation strategies. Here,
we used the sagittal view as input. The outcomes were obtained before the fusion modules.
The strategies we tested included the following: 1. erasing; 2. mixup; 3. both combined. We
tested the different parameter settings of the former two approaches and then combined
the best two approaches. The results are shown in Table 4. The erasing strategy achieved
the best results with a ratio of 0.5, while the mixup strategy obtained the best results with
ratio of 0.25. The combination strategy yielded poor performance. One explanation for this
phenomenon is that over-augmentation leads to the loss of crucial information in the input,
thereby adversely affecting the classification performance. According to the results of the
ablation study, a mixup strategy with a ratio of 0.25 and an erasing strategy with a ratio of
0.5 were employed during training.
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Table 4. Comparison of different data augmentation strategies.

Strategy ACC SEN SPE AUC

Erasingrate = 0.25 0.8650 0.8606 0.8704 0.9447
Erasingrate = 0.50 0.8767 0.8545 0.9037 0.9594
Erasingrate = 0.75 0.8683 0.8485 0.8926 0.9403

Mixuprate = 0.25 0.8933 0.8879 0.9000 0.9628
Mixuprate = 0.50 0.8700 0.8697 0.8704 0.9498
Mixuprate = 0.75 0.8117 0.8424 0.7741 0.9044

Erasing + Mixup 0.8667 0.8788 0.8519 0.9400

The best results of all experiments are highlighted in bold.

6. Discussion
6.1. ACL Diagnosis

Making an accurate diagnosis based on MRI is a crucial approach in the clinical
diagnosis of ACL tears, and it relies heavily on the experience of clinicians. Deep learning
methods, which rely on annotated images, can automatically learn the features related to
the classification of MRI and achieve a good performance on this task, thereby assisting
clinicians in making diagnoses. In Section 5.1, the results of the proposed model, SGNET,
and other deep learning-based models are listed in Table 2. MRNet was developed based
on this eponymous dataset; DLD is one of the state-of-the-art methods that employ artificial
intelligence techniques for this task; and ELNet is a modified classic convolution network
that incorporates multi-slice normalization along with BlurPool downsampling to enhance
diagnostic performance. The experimental results shown in Table 2 demonstrate that,
compared with these state-of-the-art methods, the proposed method still achieved the
best performance among the comparisons. Therefore, we believe that this deep learning
network can be considered an effective tool for clinical application in ACL tear detection.
The proposed model performs well on both positive and negative cases, leading to higher
overall accuracy rather than achieving extremely high results on only one metric.

Notably, in the original paper of MRNet [15], the model demonstrated high specificity
for ACL tear detection, with a specificity of 0.9680, but achieved a relatively low sensitivity
of 0.7590. While this high specificity is advantageous for reducing the rate of false-positive
diagnoses, which is clinically significant, it also highlights a weakness stemming from the
unbalanced distribution of data classes. In this study, we trained the model with focal-
loss [38] (L f l) to mitigate this problem in addition to the simple weighted loss (Lwl) that is
employed in MRNet. Mathematically, the total loss (L) is defined as follows:

L = Lwl + L f l , (16)

Lwl = −αtlog(pt), (17)

L f l = −αt(1 − pt)
γlog(pt), (18)

pt =

{
p i f y = 1,

1 − p otherwise,
(19)

at =

{
a i f y = 1,

1 − a otherwise,
(20)

where α is the weight factor for class balancing, p denotes the estimated probability for the
class with label y = 1, and γ is the modulating factor. We reproduced MRNet under the
conditions mentioned above, which are identical to those of the proposed model, yielding
an accuracy of 0.8750, a sensitivity of 0.8636, a specificity of 0.8889, and an AUC of 0.9497.
These experimental findings imply a substantial potential for enhancing the performance of
artificial intelligence-based automated diagnostic techniques. Techniques such as focal loss,
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which address the problem of class imbalance, are highly needed not only in medical image
processing but also in natural image analysis. This area is worthy of further exploration.

Additionally, unlike MRNet and the proposed model, which uses the whole image as
input, DLD [33] employs cascade models for this task: the first model locates the ACL and
the second model classifies the ACL as normal or torn. Medical images are highly complex
and filled with intricate details, posing a challenge for models in terms of extracting
relevant features. By employing a detection model that narrows the region of interest
and filters out superfluous information, it enhances feature extraction and results in better
classification performance in the next step. Thus, the creation of an effective detection
model is anticipated to further bolster the performance of the proposed model. We intend
to undertake relevant research in future work.

6.2. External Test

To verify the robustness of the proposed model, which has important clinical appli-
cations, we conducted an external test on the KneeMRI dataset [39]. This is also a public
dataset. The MR data were retrospectively gathered at the Clinical Hospital Centre in Rijeka,
Croatia, from 2006 until 2014. The type of ACL injury was established in a double-blind
fashion by comparing the retrospectively set diagnosis against the prospective opinion of
another radiologist. After clean-up, the resulting dataset consisted of 917 usable, labelled
exam sequences of left or right knees. The dataset only consists of sagittal examinations, so
the fusion model of the proposed model used a single input in this experiment. The details
of the dataset are shown in Table 5.

Table 5. Data distribution of KneeMRI dataset.

KneeMRI Not-Injured Partially-Injured Completely-Ruptured Total

Count 690 172 55 917
Percentage (%) 75.25 18.75 6.00 100

In this experiment, the partially- and completely-injured cases were considered posi-
tive cases, while the non-injured cases were referred to as negative cases. Without retraining
our model on the external dataset, it achieved an AUC of 0.8657, which is better than the
result (AUC = 0.86) mentioned in [33]. The results are lower than those from the internal
test, suggesting significant potential for improving model robustness. To enhance perfor-
mance, in addition to retraining on the new dataset directly, several techniques are planned
for future work. Domain adaptation could be an effective solution for addressing the gap
between the two datasets. Additionally, leveraging larger models and larger datasets is
currently a popular approach for improving the generalizability of models.

6.3. Data

Aside from the previously mentioned weakness of data class imbalance, the impact of
the dataset is also evident in other experimental outcomes. Table 4 reflects the significance
of data augmentation. When configured with suitable parameters, data augmentation
strategies prove advantageous for model enhancement. Among the comparative method-
ologies, several basic techniques, such as rotation, shift, and flip, which are used on spatial
scales, are also included in MRNet. We performed a comparative experiment using the
basic methods or the proposed Dual-Scale Data Augmentation module. The models were
fed with a sagittal view. As shown in Table 6, the proposed Dual-Scale Data Augmenta-
tion module was effective, surpassing the performance of models utilizing conventional
augmentation techniques.
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Table 6. Comparison of different augmentation methods.

ACC SEN SPE AUC

Basic methods 0.8667 0.8636 0.8704 0.9234
DDA module 0.8833 0.8788 0.8889 0.9405

The best results of all experiments are highlighted in bold.

Additionally, as seen in Table 2, the VIT model failed to achieve good performance,
potentially due to the substantial amount of training data required for a transformer-based
model to converge. Nonetheless, even with a limited dataset, by pretraining the model
on medical image datasets, Med3D obtains good performance compared to the MRNet.
Here, we employed RESNet with a parameter count comparable to that of MRNet, which
serves as the backbone architecture. This highlights the crucial role of model pretraining
on task-related data, emphasizing its efficacy in boosting performance. Collecting and
curating an extensive MRI dataset, especially on knee joint examinations, and appropriately
pretraining models on such datasets are beneficial for improving model performance on
relevant tasks, which will be considered in future studies.

According to the issues and findings mentioned above, in future work, we have iden-
tified several main directions. For data, the tasks include building a larger and more com-
prehensive dataset, and exploring methods to better leverage limited data. For the model,
we plan to identify improved frameworks, such as adjusting the attention module, that can
discover better task-related image representations to enhance classification performance.

7. Conclusions

In summary, this study presents the development and validation of a deep learning
model, SGNET, designed to identify and predict anterior cruciate ligament (ACL) tears
using magnetic resonance imaging (MRI). The model, which integrates a Dual-Scale Data
Augmentation (DDA) module, a selective group attention (SG) module, and a fusion mod-
ule, has demonstrated robust performance in detecting ACL tears across various segments
of the knee on MR images. The recognition accuracy, specificity, and sensitivity metrics
highlight its potential as a reliable diagnostic tool. The application of SGNET holds signif-
icant translational potential, as it may significantly reduce the misdiagnosis rate of ACL
injuries and provide a valuable asset to clinicians by streamlining the diagnostic process.
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Abbreviations
The following abbreviations are used in this manuscript:

MRI magnetic resonance imaging
ACL anterior cruciate ligament
DDA Dual-Scale Data Augmentation module
SG selective group attention
GPU graphics processing unit
ROC receiver operating characteristic
AUC area under the ROC Curve
TP true positive sample
TN true negative sample
FN false negative sample
FP false positive sample
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