18F-Fluoroazomycin Arabinoside (FAZA) PET/MR as a Biomarker of Hypoxia in Rectal Cancer: A Pilot Study
Abstract
:1. Introduction
2. Patients and Methods
2.1. PET/MR Imaging
2.2. Data Interpretation and Calculation of Hypoxic Fraction
2.3. Statistical Analysis
3. Results
3.1. Hypoxic Fractions at Baseline
3.2. Comparison of Reference Tissues
3.3. Change in 18F-FAZA Uptake and Tumor HF Following Neoadjuvant Chemoradiotherapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stoffel, E.M.; Murphy, C.C. Epidemiology and Mechanisms of the Increasing Incidence of Colon and Rectal Cancers in Young Adults. Gastroenterology 2020, 158, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Noticewala, S.S.M.; Das, P.M. Current State of Neoadjuvant Therapy for Locally Advanced Rectal Cancer. Cancer J. 2024, 30, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.J.; Kennedy, E.B.; Berlin, J.; Brown, G.; Chalabi, M.; Cho, M.T.; Cusnir, M.; Dorth, J.; George, M.; Kachnic, L.A.; et al. Management of Locally Advanced Rectal Cancer: ASCO Guideline. J. Clin. Oncol. 2024, 42, JCO2401160. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aguilar, J.; Patil, S.; Gollub, M.J.; Kim, J.K.; Yuval, J.B.; Thompson, H.M.; Verheij, F.S.; Omer, D.M.; Lee, M.; Dunne, R.F.; et al. Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy. J. Clin. Oncol. 2022, 40, 2546–2556. [Google Scholar] [CrossRef]
- Conroy, T.; Bosset, J.F.; Etienne, P.L.; Rio, E.; François, É.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 702–715. [Google Scholar] [CrossRef]
- Schrag, D.; Shi, Q.; Weiser, M.R.; Gollub, M.J.; Saltz, L.B.; Musher, B.L.; Goldberg, J.; Baghdadi, T.A.; Goodman, K.A.; McWilliams, R.R.; et al. Preoperative treatment of locally advanced rectal cancer. N. Engl. J. Med. 2023, 389, 322–334. [Google Scholar] [CrossRef]
- Stockton, J.D.; Tee, L.; Whalley, C.; James, J.; Dilworth, M.; Wheat, R.; Nieto, T.; S-CORT Consortium; Geh, I.; Barros-Silva, J.D.; et al. Complete response to neoadjuvant chemoradiotherapy in rectal cancer is associated with RAS/AKT mutations and high tumour mutational burden. Radiat. Oncol. 2021, 16, 129. [Google Scholar] [CrossRef]
- Kamran, S.C.; Lennerz, J.K.; Margolis, C.A.; Liu, D.; Reardon, B.; Wankowicz, S.A.; Van Seventer, E.E.; Tracy, A.; Wo, J.Y.; Carter, S.L.; et al. Integrative molecular characterization of resistance to neoadjuvant chemoradiation in rectal cancer. Clin. Cancer Res. 2019, 25, 5561–5571. [Google Scholar] [CrossRef]
- Bristow, R.G.; Hill, R.P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer 2008, 8, 180–192. [Google Scholar] [CrossRef]
- Ravizza, R.; Molteni, R.; Gariboldi, M.B.; Marras, E.; Perletti, G.; Monti, E. Effect of HIF-1 modulation on the response of two- and three-dimensional cultures of human colon cancer cells to 5-fluorouracil. Eur. J. Cancer 1990, 45, 890–898. [Google Scholar] [CrossRef]
- Mao, Q.; Zhang, Y.; Fu, X.; Xue, J.; Guo, W.; Meng, M.; Zhou, Z.; Mo, X.; Lu, Y. A tumor hypoxic niche protects human colon cancer stem cells from chemotherapy. J. Cancer Res. Clin. Oncol. 2013, 139, 211–222. [Google Scholar] [CrossRef]
- Saigusa, S.; Tanaka, K.; Toiyama, Y.; Yokoe, T.; Okugawa, Y.; Koike, Y.; Fujikawa, H.; Inoue, Y.; Miki, C.; Kusunoki, M. Clinical significance of CD133 and hypoxia inducible factor-1α gene expression in rectal cancer after preoperative chemoradiotherapy. Clin. Oncol. 2011, 23, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Savi, A.; Incerti, E.; Fallanca, F.; Bettinardi, V.; Rossetti, F.; Monterisi, C.; Compierchio, A.; Negri, G.; Zannini, P.; Gianolli, L.; et al. First Evaluation of PET-Based Human Biodistribution and Dosimetry of 18F-FAZA, a Tracer for Imaging Tumor Hypoxia. J. Nucl. Med. 2017, 58, 1224–1229. [Google Scholar] [CrossRef] [PubMed]
- Nunn, A.; Linder, K.; Strauss, H.W. Nitroimidazoles and imaging hypoxia. Eur. J. Nucl. Med. 1995, 22, 265–280. [Google Scholar] [CrossRef]
- Hoskin, P.J.; Carnell, D.M.; Taylor, N.J.; Smith, R.E.; Stirling, J.J.; Daley, F.M.; Saunders, M.I.; Bentzen, S.M.; Collins, D.J.; D’Arcy, J.A.; et al. Hypoxia in prostate cancer: Correlation of BOLD-MRI with pimonidazole immunohistochemistry—Initial observations. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1065–1071. [Google Scholar] [CrossRef]
- Nordsmark, M.; Loncaster, J.; Aquino-Parsons, C.; Chou, S.-C.; Gebski, V.; West, C.; Lindegaard, J.C.; Havsteen, H.; Davidson, S.E.; Hunter, R.; et al. The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: A prospective international multi-center study. Radiother. Oncol. 2006, 80, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Haynes, J.; McKee, T.D.; Haller, A.C.; Wang, Y.; Leung, C.; Gendoo, D.M.; Lima-Fernandes, E.; Kreso, A.; Wolman, R.; Szentgyorgyi, E.; et al. Administration of Hypoxia-Activated Prodrug Evofosfamide after Conventional Adjuvant Therapy Enhances Therapeutic Outcome and Targets Cancer-Initiating Cells in Preclinical Models of Colorectal Cancer. Clin. Cancer Res. 2018, 24, 2116–2127. [Google Scholar] [CrossRef] [PubMed]
- Zeman, E.M.; Brown, J.M.; Lemmon, M.J.; Hirst, V.K.; Lee, W.W. SR-4233: A New Bioreductive Agent with High Selective Toxicity for Hypoxic Mammalian Cells. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1239–1242. [Google Scholar] [CrossRef]
- Laderoute, K.; Wardman, P.; Rauth, A.M. Molecular Mechanisms for the Hypoxia-Dependent Activation of 3-Amino-1,2,4-Benzotriazine-1,4-Dioxide (Sr 4233). Biochem. Pharmacol. 1988, 37, 1487–1495. [Google Scholar] [CrossRef]
- Kotandeniya, D.; Ganley, B.; Gates, K.S. Oxidative DNA Base Damage by the Antitumor Agent 3-amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine). Bioorg. Med. Chem. Lett. 2022, 12, 2325–2329. [Google Scholar] [CrossRef]
- Evans, J.W.; Yudoh, K.; Delahoussaye, Y.M.; Brown, J.M. Tirapazamine Is Metabolized to Its DNA-Damaging Radical by Intranuclear Enzymes. Cancer Res. 1998, 58, 2098–2101. [Google Scholar] [PubMed]
- Aboagye, E.O.; Dillehay, L.E.; Bhujwalla, Z.M.; Lee, D. Hypoxic Cell Cytotoxin Tirapazamine Induces Acute Changes in Tumor Energy Metabolism and pH: A 31p Magnetic Resonance Spectroscopy Study. Radiat. Oncol. Investig. 1998, 6, 249–254. [Google Scholar] [CrossRef]
- Hong, B.; Lui, V.W.Y.; Hui, E.P.; Ng, M.H.L.; Cheng, S.-H.; Sung, F.L.; Tsang, C.-M.; Tsao, S.-W. Hypoxia-Targeting by Tirapazamine (Tpz) Induces Preferential Growth Inhibition of Nasopharyngeal Carcinoma Cells with Chk1/2 Activation. Investig. New Drugs 2011, 29, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Shibamoto, Y.; Sasai, K.; Oya, N.; Murata, R.; Takagi, T.; Hiraoka, M.; Abe, M. Comparison of In Vivo Efficacy of Hypoxic Cytotoxin Tirapazamine and Hypoxic Cell Radiosensitizer Ku-2285 in Combination with Single and Fractionated Irradiation. Jpn. J. Cancer Res. 1996, 87, 98–104. [Google Scholar] [CrossRef]
- Nytko, K.J.; Grgic, I.; Bender, S.; Ott, J.; Guckenberger, M.; Riesterer, O.; Pruschy, M. The Hypoxia-Activated Prodrug Evofosfamide in Combination with Multiple Regimens of Radiotherapy. Oncotarget 2017, 8, 23702–23712. [Google Scholar] [CrossRef]
- Zhang, L.; Marrano, P.; Wu, B.; Kumar, S.; Thorner, P.; Baruchel, S. Combined Antitumor Therapy with Metronomic Topotecan and Hypoxia-Activated Prodrug, Evofosfamide, in Neuroblastoma and Rhabdomyosarcoma Preclinical Models. Clin. Cancer Res. 2016, 22, 2697–2708. [Google Scholar] [CrossRef]
- Stokes, A.; Hart, C.; Quarles, C.C. Hypoxia Imaging with PET Correlates with Antitumor Activity of the Hypoxia-Activated Prodrug Evofosfamide (TH-302) in Rodent Glioma Models. Tomography 2016, 2, 229–237. [Google Scholar] [CrossRef]
- Spiegelberg, L.; van Hoof, S.J.; Biemans, R.; Lieuwes, N.G.; Marcus, D.; Niemans, R.; Theys, J.; Yaromina, A.; Lambin, P.; Verhaegen, F.; et al. Evofosfamide Sensitizes Esophageal Carcinomas to Radiation without Increasing Normal Tissue Toxicity. Radiother. Oncol. 2019, 141, 247–255. [Google Scholar] [CrossRef]
- Delso, G.; Fürst, S.; Jakoby, B.; Ladebeck, R.; Ganter, C.; Nekolla, S.G.; Schwaiger, M.; Ziegler, S.I. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J. Nucl. Med. 2011, 52, 1914–1922. [Google Scholar] [CrossRef]
- Han, K.; Shek, T.; Vines, D.; Driscoll, B.; Fyles, A.; Jaffray, D.; Keller, H.; Metser, U.; Pintilie, M.; Xie, J.; et al. Measurement of Tumor Hypoxia in Patients with Locally Advanced Cervical Cancer Using Positron Emission Tomography with 18F-Fluoroazomyin Arabinoside. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1202–1209. [Google Scholar] [CrossRef]
- Wang, K.; Yorke, E.; Nehmeh, S.A.; Humm, J.L.; Ling, C.C. Modeling acute and chronic hypoxia using serial images of 18F-FMISO PET. Med. Phys. 2009, 36, 4400–4408. [Google Scholar] [CrossRef]
- Mortensen, L.S.; Johansen, J.; Kallehauge, J.; Primdahl, H.; Busk, M.; Lassen, P.; Alsner, J.; Sørensen, B.S.; Toustrup, K.; Jakobsen, S.; et al. FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: Results from the DAHANCA 24 trial. Radiother. Oncol. 2012, 105, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Muzi, M.; Peterson, L.M.; O’Sullivan, J.N.; Fink, J.R.; Rajendran, J.G.; McLaughlin, L.J.; Muzi, J.P.; Mankoff, D.A.; Krohn, K.A. 18F-Fluoromisonidazole quantification of hypoxia in human cancer patients using image-derived blood surrogate tissue reference regions. J. Nucl. Med. 2015, 56, 1223–1228. [Google Scholar] [CrossRef]
- Metran-Nascente, C.; Yeung, I.; Vines, D.C.; Metser, U.; Dhani, N.C.; Green, D.; Milosevic, M.; Jaffray, D.; Hedley, D.W. Measurement of Tumor Hypoxia in Patients with Advanced Pancreatic Cancer Based on 18F-Fluoroazomyin Arabinoside Uptake. J. Nucl. Med. 2016, 57, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Havelund, B.M.; Holdgaard, P.C.; Rafaelsen, S.R.; Mortensen, L.S.; Theil, J.; Bender, D.; Pløen, J.; Spindler, K.-L.G.; Jakobsen, A. Tumour hypoxia imaging with 18F-fluoroazomycinarabinofuranoside PET/CT in patients with locally advanced rectal cancer. Nucl. Med. Commun. 2013, 34, 155–161. [Google Scholar] [CrossRef]
- Monteiro, A.M.; Costa, D.A.; Mareco, V.; Amaro, C.E. The effectiveness of hyperbaric oxygen therapy for managing radiation-induced proctitis—Results of a 10-year retrospective cohort study. Front. Oncol. 2023, 13, 1235237. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, L.; Li, X.-F. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front. Oncol. 2021, 11, 700407. [Google Scholar] [CrossRef]
Patient ID | Age | Gender | Clinical Stage | Pathology Stage | TRG | Follow-Up |
---|---|---|---|---|---|---|
4 | 69 | M | cT3N1M0 | ypT3N1c | Grade 3 | LR; 14 months |
5 | 45 | M | cT2N1M0 | ypT2pN0 | Grade 1 | NED; 5 years |
6 | 47 | M | cT3N1M0 | ypT3pN1a | Grade 2 | NED; 5 years |
7 | 74 | M | cT3N1M1 | ypT3N1a | N/A | NED; 5 years |
8 | 76 | M | cT3N2M0 | N/A | N/A | N/A |
9 | 70 | M | cT3N1M0 | ypT2pN0 | N/A | NED; 5 years |
10 | 69 | M | cT2N1M0 | ypT0 | Grade 0 | NED; 5 years |
11 | 64 | M | cT3N2M1 | N/A | N/A | PD; 3 months |
Volume (mL) | SUVmax | SUVmean ± SD | |||||
---|---|---|---|---|---|---|---|
Tumor | Tumor | GMc | BP | LV | |||
Baseline | P4 | 41.43 | 1.96 | 0.94 ± 0.19 | 0.86 ± 0.10 | 0.92 ± 0.09 | 0.93 ± 0.10 |
P5 | 20.35 | 1.30 | 0.55 ± 0.23 | 0.77 ± 0.11 | 1.22 ± 0.18 | 1.37 ± 0.17 | |
P6 | 22.88 | 1.43 | 0.74 ± 0.17 | 0.84 ± 0.11 | 0.67 ± 0.06 | 0.80 ± 0.11 | |
P7 | 16.70 | 2.42 | 1.13 ± 0.34 | 1.01 ± 0.13 | 1.46 ± 0.11 | 1.54 ± 0.17 | |
P8 | 18.80 | 2.88 | 3.14 ± 2.56 | 1.18 ± 0.19 | 1.21 ± 0.22 | 1.43 ± 0.18 | |
P9 | 2.03 | 1.45 | 1.02 ± 0.25 | 0.93 ± 0.09 | 1.14 ± 0.20 | 1.13 ± 0.14 | |
P10 | 6.05 | 1.45 | 0.88 ± 0.17 | 0.89 ± 0.12 | 1.35 ± 0.20 | 1.34 ± 0.22 | |
P11 | 60.96 | 2.31 | 1.48 ± 0.31 | 1.16 ± 0.18 | 1.26 ± 0.17 | 1.59 ± 0.17 | |
Follow-up | P4 | 12.80 | 0.95 | 0.65 ± 0.10 | 0.81 ± 0.09 | 0.84 ± 0.10 | 0.99 ± 0.11 |
P5 | 7.19 | 1.34 | 0.96 ± 0.16 | 0.88 ± 0.15 | 1.11 ± 0.16 | 1.36 ± 0.16 | |
P6 | 4.67 | 1.56 | 0.97 ± 0.15 | 1.09 ± 0.12 | 1.06 ± 0.08 | 1.26 ± 0.12 | |
P10 | 2.07 | 1.66 | 1.39 ± 0.13 | 0.92 ± 0.09 | 1.33 ± 0.25 | 1.29 ± 0.13 |
Threshold SUVmean | Reference | Patient Number | |||||||
---|---|---|---|---|---|---|---|---|---|
P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | ||
+3SD | GMc | 11.8 | 1.2 | 0.5 | 22.4 | 21.3 | 33.8 | 2.4 | 27.9 |
×1.0 | BP | 57.6 | 0.3 | 66.3 | 16.2 | 33.4 | 40.2 | 0.3 | 72.9 |
LV | 55.5 | 0 | 40.2 | 10.1 | 21.5 | 40.5 | 0.8 | 39.9 | |
×1.2 | BP | 18.6 | 0 | 38.1 | 2.1 | 27.0 | 0.7 | 0 | 47.6 |
LV | 15.4 | 0 | 7.2 | 1.0 | 20.1 | 1.4 | 0 | 9.2 |
Threshold SUVmean | Reference | Patient Number | |||
---|---|---|---|---|---|
P4 | P5 | P6 | P10 | ||
+3SD | GMc | 0 | 0.8 | 0.8 | 94.6 |
×1.0 | BP | 3.3 | 18.9 | 25.2 | 67.2 |
LV | 0 | 0 | 3.6 | 78.5 | |
×1.2 | BP | 0.3 | 3.3 | 7.3 | 0 |
LV | 0 | 0 | 0.4 | 10.5 |
Threshold SUVmean | Reference | Patient Number | |||
---|---|---|---|---|---|
P4 | P5 | P6 | P10 | ||
+3SD | GMc | −47.7 | −9.6 | −15.9 | 11.3 |
×1.0 | BP | −46.6 | 13.7 | −31 | 15.8 |
LV | −54 | 4.5 | −30.5 | 18.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metser, U.; Kohan, A.; O’Brien, C.; Wong, R.K.S.; Ortega, C.; Veit-Haibach, P.; Driscoll, B.; Yeung, I.; Farag, A. 18F-Fluoroazomycin Arabinoside (FAZA) PET/MR as a Biomarker of Hypoxia in Rectal Cancer: A Pilot Study. Tomography 2024, 10, 1354-1364. https://doi.org/10.3390/tomography10090102
Metser U, Kohan A, O’Brien C, Wong RKS, Ortega C, Veit-Haibach P, Driscoll B, Yeung I, Farag A. 18F-Fluoroazomycin Arabinoside (FAZA) PET/MR as a Biomarker of Hypoxia in Rectal Cancer: A Pilot Study. Tomography. 2024; 10(9):1354-1364. https://doi.org/10.3390/tomography10090102
Chicago/Turabian StyleMetser, Ur, Andres Kohan, Catherine O’Brien, Rebecca K. S. Wong, Claudia Ortega, Patrick Veit-Haibach, Brandon Driscoll, Ivan Yeung, and Adam Farag. 2024. "18F-Fluoroazomycin Arabinoside (FAZA) PET/MR as a Biomarker of Hypoxia in Rectal Cancer: A Pilot Study" Tomography 10, no. 9: 1354-1364. https://doi.org/10.3390/tomography10090102
APA StyleMetser, U., Kohan, A., O’Brien, C., Wong, R. K. S., Ortega, C., Veit-Haibach, P., Driscoll, B., Yeung, I., & Farag, A. (2024). 18F-Fluoroazomycin Arabinoside (FAZA) PET/MR as a Biomarker of Hypoxia in Rectal Cancer: A Pilot Study. Tomography, 10(9), 1354-1364. https://doi.org/10.3390/tomography10090102