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Abstract: Tumor hypoxia is a negative prognostic factor in many tumors and is predictive of metastatic
spread and poor responsiveness to both chemotherapy and radiotherapy. Purpose: To assess the
feasibility of using 18F-Fluoroazomycin arabinoside (FAZA) PET/MR to image tumor hypoxia in
patients with locally advanced rectal cancer (LARC) prior to and following neoadjuvant chemoradio-
therapy (nCRT). The secondary objective was to compare different reference tissues and thresholds
for tumor hypoxia quantification. Patients and Methods: Eight patients with histologically proven
LARC were included. All patients underwent 18F-FAZA PET/MR prior to initiation of nCRT, four
of whom also had a second scan following completion of nCRT and prior to surgery. Tumors were
segmented using T2-weighted MR. Each voxel within the segmented tumor was defined as hypoxic
or oxic using thresholds derived from various references: ×1.0 or ×1.2 SUVmean of blood pool [BP]
or left ventricle [LV] and SUVmean +3SD for gluteus maximus. Correlation coefficient (CoC) between
HF and tumor SUVmax/reference SUVmean TRR for the various thresholds was calculated. Hypoxic
fraction (HF), defined as the % hypoxic voxels within the tumor volume was calculated for each
reference/threshold. Results: For all cases, baseline and follow-up, the CoCs for gluteus maximus
and for BP and LV (×1.0) were 0.241, 0.344, and 0.499, respectively, and HFs were (median; range)
16.6% (2.4–33.8), 36.8% (0.3–72.9), and 30.7% (0.8–55.5), respectively. For a threshold of ×1.2, the CoCs
for BP and LV as references were 0.611 and 0.838, respectively, and HFs were (median; range) 10.4%
(0–47.6), and 4.3% (0–20.1%), respectively. The change in HF following nCRT ranged from (−18.9%)
to (+54%). Conclusions: Imaging of hypoxia in LARC with 18F-FAZA PET/MR is feasible. Blood
pool as measured in the LV appears to be the most reliable reference for calculating the HF. There is a
wide range of HF and variable change in HF before and after nCRT.

Keywords: hypoxia; rectal cancer; PET/MRI; 18F-FAZA

1. Introduction

Colorectal cancer is the second cause of cancer deaths worldwide and is the leading
cause of death in men under 50 years of age [1]. Rectal cancer comprises approximately
30% of all colorectal cancers. Early-stage tumors are treated with upfront surgery, while
locally advanced rectal cancers (LARC) require multimodal therapy often consisting of
neoadjuvant chemoradiotherapy and then total mesorectal excision [2–6]. In LARC, neoad-
juvant chemoradiotherapy results in improved local tumor control and overall survival,
especially in those achieving complete response to therapy. Multiple factors can impact
response to neoadjuvant therapy, including epigenetic factors and tumor hypoxia, which
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is more prevalent in advanced tumors [7,8]. Hypoxia occurs in solid tumors in areas
where the consumption of oxygen outpaces the delivery from the vascular system. It
is a negative prognostic factor in many tumors and is predictive of metastatic spread
and poor responsiveness to both chemotherapy and radiotherapy [9–12]. Hypoxia limits
radiation-induced DNA damage by reducing DNA double-strand breaks, the most lethal
form of DNA damage [9]. Hypoxia-induced chemoresistance is multifactorial and includes
decreased drug activity with reduced oxygen, pH changes, reduced proliferation, induc-
tion of prosurvival gene expression, and difficulty in drug diffusion from vasculature [9].
Specific to colorectal cancer, increased activity of transcription factor hypoxia inducible
factor 1α (HIF-1a) reduces the efficacy of 5-Fluorouracil, the backbone of chemotherapy
in colorectal cancer and a radiosensitizer in the context of concurrent chemoradiotherapy
(CRT) [10]. Although a direct correlation to response to CRT has not been clinically proven,
studies have demonstrated a poorer disease-specific survival in patients with rectal cancer
expressing HIF-1a [12]. Furthermore, CD 133+ cancer stem-like cells (cCSCs) have been
shown to be protected in the hypoxic regions of colorectal cancers, providing a permissive
environment for tumor recurrence [12]. Hence, there is a rationale for the identification of
hypoxic rectal cancers for prognostication and stratification of response to chemotherapy.

Several tracers have been used to noninvasively image tumor hypoxia, including 18F-1-
α-D-[5-fluoro-5-deoxyarabinofuranosyl]-2-nitroimidazole (18F-FAZA), a second-generation
2-nitroimidazole with lipophilicity which enables it to enter cells. When in a hypoxic envi-
ronment, it is reversibly reduced to reactive oxygen radicals and trapped within cells, en-
abling imaging and quantification of hypoxia [13,14]. Pimonidazole, an extrinsic marker of
hypoxia, is a 2-nitroimidazole compound that is selectively reduced and covalently bound
to intracellular macromolecules in areas of hypoxia (pO2 < 10 mm Hg) [15,16]. Preclini-
cal data using pimonidazole in colorectal-cancer-patient-derived xenografts have shown
variable amounts of hypoxia (0–40%) within these tumors. Autoradiography showed
significant correlation between the presence of 18F-FAZA and pimonidazole histochemical
staining in tissue sections in these xenograft models. The hypoxic fraction within these
lines, estimated using 18F-FAZA PET, correlated well with the degree of hypoxia measured
by flow cytometry. Furthermore, rectal tumor models with higher baseline 18F-FAZA
uptake grew faster compared to those with lower baseline 18F-FAZA uptake after CRT,
suggesting that the more hypoxic tumors responded less to CRT [17]. These preclinical
studies suggest that 18F-FAZA-PET imaging prior to therapy initiation may serve as an
effective clinical biomarker to identify rectal tumor hypoxia. Identification of the presence
of hypoxia in rectal cancer prior to neoadjuvant or primary CRT may have prognostic
significance and, with the emergence of hypoxia-activated prodrugs, may also have future
therapeutic implications [18–28].

The primary goal of this clinical trial was to determine the feasibility of using the
18F-FAZA-PET/MR to image primary tumor hypoxia in patients with rectal cancer prior to
and following neoadjuvant CRT. The secondary objectives were to determine the optimal
method for calculating the hypoxic fraction and to determine whether tumor 18F-FAZA
uptake changes following CRT.

2. Patients and Methods

This institutional ethics review board approved prospective, single-arm pilot study
(NCT02624115) including patients with histologically proven locally advanced rectal can-
cer. Written informed consent was obtained from all participants. The inclusion criteria
were 1. Age ≥ 18 years; 2. Histologic proven locally advanced rectal cancer (T3-T4, or N1)
based on clinical assessment and standard staging procedures (clinical exam, endoscopy,
MRI); 3. Intention to treat with neoadjuvant CRT prior to surgery, according to the current
institutional treatment policies; 4. A negative urine or serum pregnancy test within the
two-week interval immediately prior to imaging in women of child-bearing age. Exclusion
criteria included: 1. Contraindication for MR as per current institutional guidelines; 2. In-
ability to lie supine for an hour; 3. Pregnancy. Demographic data, including age and gender,
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histology, and clinical stage were tabulated. Surgical pathology and outcome data (PFS,
OS) were tabulated. All eligible study participants received 18F-FAZA PET/MR prior to
initiation of neoadjuvant concurrent chemotherapy and radiotherapy, as per standard of
care and again following completion of CRT prior to surgery. All patients had a follow-up
period > 5 years.

2.1. PET/MR Imaging
18F-FAZA PET/MR imaging of the pelvis was performed using the mMR-Biograph

scanner (Siemens, Erlangen, Germany) for 130 ± 18.5 min (mean ± SD) after injection
of 469 ± 83 MBq of 18F-FAZA. PET had a 25.8 cm axial field of view in the z-direction,
with 1 bed position to cover the entire pelvis, with acquisition time of 20 min/bed. PET
image reconstruction was performed using conventional ordinary Poisson-ordered sub-
set maximum expectation maximization (OP-OSEM) with 3 iterations, 21 subsets, and
FWHM = 4.5 filtering. To assess feasibility of left ventricle as a reference for calculating
hypoxic fraction, an additional single bed position over the chest was obtained to include
the heart, with acquisition time of 5 min/bed position. MRI-based attenuation correction
maps were generated from a 2-point Dixon gradient-echo sequence in the coronal plane, as
described elsewhere [29]. MR was performed with a vendor-standard torso phased array
surface coil. The protocol included 1-T2-weighted fast-spin echo sequences in three planes
(sagittal, coronal, and axial), TE/TR = 103/4000, resolution = 0.625 × 0.625 × 4 mm3; 2-high-
resolution oblique T2-weighted FSE, TE/TR = 80/4930, resolution = 0.625 × 0.625 × 3 mm3;
3-axial T1-weighted images, axial diffusion weighted image sequence (b-value = 0, 100
and 800 s/mm2); and 4-multiphasic gadolinium contrast-enhanced T1-weighted imaging
sequences, including late arterial, venous, and delayed phases (TE/TR = 1.59/4.44, reso-
lution = 0.75 × 0.75 × 4 mm3). The oblique T2-weighted imaging sequence was angled
perpendicular to the long axis of the rectal tumor. Patients received an intravenous bolus
of gadobutrol (Gadovist; Bayer AG, Leverkusen, Germany) at the recommended dose
(0.1 mL/kg of body weight). To reduce colonic motility, all patients received 20 mg of
antiperistaltic agent hyoscine butylbromide (Buscopan, Boehringer Ingelheim, Ingelheim,
Germany) 30 min before the examination.

2.2. Data Interpretation and Calculation of Hypoxic Fraction

PET in general, and 18F-FAZA PET in particular, lack anatomical resolution, limiting
assessment of tracer uptake in the tumor on PET images. PET/MR allows for simultaneous
acquisition of PET and MR data, enabling segmentation of rectal tumors on MR and using
the derived mask to segment the tumor volume on the 18F-FAZA PET images. For this
purpose, T2-weighted MR images of the rectal tumor were used for tumor delineation and
segmentation. An experienced abdominal radiologist, blinded to the PET data, contoured
the entire primary rectal tumor on MR and the gluteus maximus muscles bilaterally on
6 consecutive slices [30]. The MR-derived tumor contours were propagated onto the PET
images. Chronic hypoxia SUV distribution has been previously shown to best fit a Gaussian
distribution [31]. To correct for spillover of radiotracer signal from the bladder, which may
result in positively skewed tracer uptake distribution in tumors adjacent to the bladder, a
systematic approach was used to remove voxels in the tumor contributing to higher uptake
than an assumed Gaussian distribution in a method previously described [30].

To determine the hypoxic volume or hypoxic fraction, quantitative measures of hy-
poxia within a tumor (a threshold based on a reference tissue) are needed. Blood pool
activity on 18F-FAZA PET has been previously validated as a surrogate for blood sampling
in a cohort of patients with cervical cancer. In that study, blood samples were counted in a
gamma well counter that was cross-calibrated to the scanner, allowing generation of blood
sample-derived SUV. Image-derived left ventricular SUVmean and blood sample-derived
SUVmean were highly correlated (Pearson correlation coefficient R = 0.996) [31]. We cal-
culated HF using methodology adapted from Mortensen et al. [30]. In the current study,
we interrogated the use of the following references: blood pool as measured in the iliac
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artery (=BP), blood pool as measured in the left ventricle (=LV), and muscle as measured in
the gluteus maximus muscle (contracted by 4 mm to avoid partial volume effects = GMc)
(Figure 1). Each tumor voxel was defined as either oxic or hypoxic using thresholds of
×1.0 or ×1.2 SUVmean in the references BP and LV or SUVmean GMc +3SD, as previously
described [32,33]. The hypoxic fraction (HF) was defined as the ratio of the hypoxic voxels
to the total number of voxels in the tumor.
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Figure 1. Segmentation method guided with T2-weighted MR image fused with 18FAZA PET image
(A) and corresponding ROI in 18F-FAZA PET image alone (B). Segmentation method. Axial T2-
weighted MR image at the level of mid-rectum with tumor segmented (blue contour) and gluteus
maximum muscle segmented bilaterally (orange contour).

2.3. Statistical Analysis

To establish the suitable reference that can represent HF, the tumor (SUVmax)-to-
reference (SUVmean) ratio (TRR) for each reference was compared to HF using Pearson
correlation testing. The test was performed on data at both thresholds, ×1.0 and ×1.2.

3. Results

There were 14 patients screened for the trial over a 26-month period (see patient
flowchart in Figure 2), with 8 consenting patients with locally advanced adenocarcinoma
of the rectum who underwent baseline 18F-FAZA PET/MR. All patients were men with a
mean age of 64.3 years (range: 45–76). Of these, four patients also completed 18F-FAZA
PET/MR following chemoradiotherapy. Demographic data, including clinical and surgical
stage, pathology regression grade, and clinical outcome data, are depicted in Table 1. In
Table 2, tumor volume, SUVmax, and SUVmean (±SD) for tumor and reference regions are
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presented. Following chemoradiotherapy, tumor volume decreased by an average of 69.8%
(from baseline to follow-up).
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Figure 2. Patient flowchart. NAC = neoadjuvant chemoradiotherapy. * Patient did not undergo
surgery and were excluded from follow-up.

Table 1. Demographic and outcome data.

Patient
ID Age Gender Clinical

Stage
Pathology

Stage TRG Follow-Up

4 69 M cT3N1M0 ypT3N1c Grade 3 LR; 14 months

5 45 M cT2N1M0 ypT2pN0 Grade 1 NED; 5 years

6 47 M cT3N1M0 ypT3pN1a Grade 2 NED; 5 years

7 74 M cT3N1M1 ypT3N1a N/A NED; 5 years

8 76 M cT3N2M0 N/A N/A N/A

9 70 M cT3N1M0 ypT2pN0 N/A NED; 5 years

10 69 M cT2N1M0 ypT0 Grade 0 NED; 5 years

11 64 M cT3N2M1 N/A N/A PD; 3 months
TRG = tumor regression grade (AJCC): grade 0 = no residual disease; grade 1 = near complete response/minimal
residual disease; grade 2 = moderate response (residual cancer outgrown by fibrosis); grade 3 = poor response,
minimal regression. LR = local recurrence; NED = no evidence of disease recurrence; PD = progressive dis-
ease (systemic).
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Table 2. Measured tumor volume, SUVmax, and SUVmean and standard deviation (SD) for references
and tumor at baseline and following neoadjuvant chemoradiotherapy.

Volume (mL) SUVmax SUVmean ± SD

Tumor Tumor GMc BP LV

Ba
se

lin
e

P4 41.43 1.96 0.94 ± 0.19 0.86 ± 0.10 0.92 ± 0.09 0.93 ± 0.10

P5 20.35 1.30 0.55 ± 0.23 0.77 ± 0.11 1.22 ± 0.18 1.37 ± 0.17

P6 22.88 1.43 0.74 ± 0.17 0.84 ± 0.11 0.67 ± 0.06 0.80 ± 0.11

P7 16.70 2.42 1.13 ± 0.34 1.01 ± 0.13 1.46 ± 0.11 1.54 ± 0.17

P8 18.80 2.88 3.14 ± 2.56 1.18 ± 0.19 1.21 ± 0.22 1.43 ± 0.18

P9 2.03 1.45 1.02 ± 0.25 0.93 ± 0.09 1.14 ± 0.20 1.13 ± 0.14

P10 6.05 1.45 0.88 ± 0.17 0.89 ± 0.12 1.35 ± 0.20 1.34 ± 0.22

P11 60.96 2.31 1.48 ± 0.31 1.16 ± 0.18 1.26 ± 0.17 1.59 ± 0.17

Fo
llo

w
-u

p

P4 12.80 0.95 0.65 ± 0.10 0.81 ± 0.09 0.84 ± 0.10 0.99 ± 0.11

P5 7.19 1.34 0.96 ± 0.16 0.88 ± 0.15 1.11 ± 0.16 1.36 ± 0.16

P6 4.67 1.56 0.97 ± 0.15 1.09 ± 0.12 1.06 ± 0.08 1.26 ± 0.12

P10 2.07 1.66 1.39 ± 0.13 0.92 ± 0.09 1.33 ± 0.25 1.29 ± 0.13

References: BP = blood pool; GMc = contracted gluteus maximus muscle; LV = left ventricle; SD = standard deviation.

3.1. Hypoxic Fractions at Baseline

The distribution of HFs for each of the references and thresholds used are displayed in
Table 3 for baseline (n = 8) and following nCRT in Table 4 (n = 4). For GMc (+3SD) and for
BP and LV with a threshold of 1.0, the baseline HFs were (median; range) 16.6% (2.4–33.8),
36.8% (0.3–72.9), and 30.7% (0.8–55.5), respectively. For a threshold of ×1.2, the baseline
HFs for BP and LV were (median; range) 10.4% (0–47.6), and 4.3% (0–20.1%), respectively.

Table 3. Distribution of baseline hypoxic fraction (%).

Threshold
SUVmean Reference

Patient Number

P4 P5 P6 P7 P8 P9 P10 P11

+3SD GMc 11.8 1.2 0.5 22.4 21.3 33.8 2.4 27.9

×1.0 BP 57.6 0.3 66.3 16.2 33.4 40.2 0.3 72.9

LV 55.5 0 40.2 10.1 21.5 40.5 0.8 39.9

×1.2 BP 18.6 0 38.1 2.1 27.0 0.7 0 47.6

LV 15.4 0 7.2 1.0 20.1 1.4 0 9.2

References: BP = blood pool; GMc = contracted gluteus maximus muscle; LV = left ventricle. Threshold: ×1.0 or
×1.2 of reference SUVmean for BP and LV or GMc SUVmean +3SD.

Table 4. Distribution of hypoxic fraction (%) following neoadjuvant chemoradiotherapy.

Threshold
SUVmean Reference

Patient Number

P4 P5 P6 P10

+3SD GMc 0 0.8 0.8 94.6

×1.0 BP 3.3 18.9 25.2 67.2

LV 0 0 3.6 78.5

×1.2 BP 0.3 3.3 7.3 0

LV 0 0 0.4 10.5
GMc = contracted gluteus maximus; BP = blood pool; LV = left ventricle; SD = standard deviation. Thresholds of
×1.0 and ×1.2 SUVmean for BP or LV and SUVmean +3SD for GMc.
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3.2. Comparison of Reference Tissues

For baseline and following neoadjuvant chemoradiotherapy, for a threshold of ×1.0,
the correlation coefficients between HF and TRR for GMc (muscle), BP, and LV as refer-
ences were 0.241, 0.344, and 0.499, respectively (Figure 3A). For a threshold of ×1.2, the
correlation coefficients between HF and TRR for BP and LV as references were 0.611 and
0.838, respectively (Figure 3B).
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Figure 3. Correlation between TRR and hypoxic fraction using threshold of ×1.0 (A) and a threshold
of ×1.2 (B) for both baseline and following neoadjuvant chemoradiotherapy cases.

At the threshold of ×1.0, the Pearson correlation between TRR and HF was the
strongest for the LV reference (R = 0.499; p-value = 0.09) over other references and followed
by the BP reference (R = 0.344; p-value = 0.29). Meanwhile, a weak correlation between
HF and TRR for GMc was measured to be R = 0.241, p-value = 0.45. For threshold ×1.2,
the correlation for LV was statistically significantly strong (R = 0.837; p-value = 0.0007) in
comparison to a moderate correlation for BP reference (R = 0.61; p-value = 0.035). These
results suggest that at ×1.2 threshold, the LV as a reference is more stable to represent
the HF.

3.3. Change in 18F-FAZA Uptake and Tumor HF Following Neoadjuvant Chemoradiotherapy

The HF for the various thresholds following nCRT is presented in Table 4, and the
change in tumor SUVmax/reference SUVmean using the various reference regions follow-
ing nCRT is depicted in Table 5. Using BP or LV as references, there were two patients
whose HF decreased after neoadjuvant therapy and two whose HF increased. Both patients
whose HF increased had complete or near-complete pathologic response to therapy (grade
0 or 1).
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Table 5. Relative change in tumor SUVmax/reference SUVmean (%) following neoadjuvant chemora-
diotherapy for various references.

Threshold
SUVmean Reference

Patient Number

P4 P5 P6 P10

+3SD GMc −47.7 −9.6 −15.9 11.3

×1.0 BP −46.6 13.7 −31 15.8

LV −54 4.5 −30.5 18.9
GMc = contracted gluteus maximus; BP = blood pool; LV = left ventricle; SD = standard deviation. Threshold of
×1.0 SUVmean for BP or LV and SUVmean +3SD for GMc.

4. Discussion

In patients with locally advanced rectal cancer prior to neoadjuvant therapy, 18F-
FAZA PET/MR shows variable degrees of tumor hypoxia. This observation is based on
comparison of radiotracer uptake within tumors to reference tissues, blood, or muscle.
Using the optimal reference for calculating the hypoxic fraction is crucial. Although blood
pool has been previously suggested to be the most reliable, regional skeletal muscle has
been used by researchers as a reference due to ease of sampling [34]. In our sample, the
most reliable reference standard appeared to be blood with measurements obtained by
placing a region of interest over the iliac artery or the left ventricle. As previously observed
by Han et al. [30,34], the LV seemed the most reliable reference, with a correlation coefficient
of 0.499 and 0.838 for a threshold of ×1.0 and ×1.2, respectively. Blood pool activity as
obtained from the iliac artery appears to be a suitable alternative, especially if scan time
constraints limit sampling of the left ventricle. The threshold used to define hypoxia is
important and directly impacts the defined hypoxic volume. The higher the threshold, the
lower the correlation coefficients with HF, suggesting decreased reliability. Correlation
with an external reference standard would be needed to validate the suggested threshold.

A prior study using pimonidazole staining to identify hypoxia in pathology specimens
in 20 patients with colorectal tumors showed variable hypoxia with HF ranging from 2.2 to
37.8% [9]. The only prior study to report the use of 18F-FAZA in rectal cancer was reported
by Havelund et al. using a PET/CT scanner [35]. The authors concluded that hypoxia
in rectal cancer at baseline can be assessed using 18F-FAZA. They quantified the uptake
of radiotracer in the tumor after correcting for signal spill from bladder using the ratio
between the tumor SUVmax and the normal intestinal SUVmean. Similarly, in our patient
cohort using 18F FAZA PET/MR, there was variable hypoxia in locally advanced rectal
adenocarcinomas. The use of 18F-FAZA PET/MR allowed us to measure and characterize
the change in the tumor volume following radiotherapy (Table 2). We assessed various
thresholds. When using LV with a threshold of ×1.0 as reference, HF ranged from <1%
to 55.5% (median, 30.7%). A further observation from our study was variable change in
hypoxia following nCRT. Interestingly, two patients with increased hypoxia following
therapy had complete or near-complete pathologic response to therapy, suggesting that the
hypoxia imaged following radiotherapy may be due to radiotherapy-induced inflammation
(radiation-induced proctitis) rather than residual hypoxic tumor. Chronic inflammation,
including radiation-induced proctitis, may result in fibrosis, obliterative endarteritis, and
tissue hypoxia [36]. These findings suggest that following therapy, hypoxia measured
on PET needs to be interpreted with caution and in conjunction with tumor regression.
Hypoxia imaging with PET offers several advantages. It is minimally invasive, reproducible,
and, as we have shown, can be repeated to assess tumor hypoxia before and after a
therapeutic intervention. The advantage of PET/MR is the ability to simultaneously obtain
PET and MR data enabling accurate delineation of tumor and radiotracer uptake within the
tumor. This is especially important at sites which may alter their morphology and location
in a short period of time (e.g., due to peristalsis), such as the rectum. MR also enables
assessment of morphological response to nCRT, which appears to also be important in the
interpretation of PET-measured hypoxia after radiotherapy.
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Aside from prognostication, identification of hypoxia within LARC may have thera-
peutic implications. Hypoxia-activated prodrugs, currently under research, are compounds
which under hypoxic conditions can be selectively reduced by specific reductases to form
cytotoxic agents that target hypoxic tumor cells, with little toxicity to normal tissues [37].
Preclinical studies using patient-derived colorectal cancer xenografts have shown that
18F-FAZA PET can be used as a biomarker for hypoxia to identify patients that would
benefit most from addition of hypoxia-activated prodrugs [17]. The researchers showed
that the addition of evofosfamide, a hypoxia-activated prodrug, to chemoradiotherapy
better inhibited tumor growth and decreased the fraction of cancer-initiating cells [17].
Further trials in humans are needed to confirm the clinical value of this potential novel
therapeutic approach in terms of patient outcomes.

There are several limitations to our study. First, the study population was limited,
especially the subgroup of patients with pre- and post-CRT data. This was due to dif-
ficulty in recruiting patients with a newly diagnosed malignancy prior to a prolonged
multimodality treatment protocol who were agreeable to commit to two additional research
imaging sessions. Despite the limited patient population, we were able to confirm the prior
observations of variable hypoxia in rectal tumors as shown in pimonidazole staining of
clinical pathology specimens and from patient-derived human xenografts [17,35]. Second,
we did not have an objective reference standard such as pimonidazole staining in tumors
or intraoperative O2 intratumor measurements. Nonetheless, our data showing variability
of hypoxia in tumors prior to therapy are in line with a previous series using pimonidazole
staining in pathology specimens. Third, although we have shown a wide variability in HF
in locally advanced rectal cancers, the clinically relevant threshold of HF as a predictor
of poor response to CRT remains uncertain. This would be difficult to determine even in
larger scale prospective trials, as there are multiple variables that impact therapy response
and patient outcomes.

5. Conclusions

In conclusion, non-invasive imaging of hypoxia in locally advanced rectal cancers
with 18F-FAZA PET/MR imaging is feasible. Blood pool as measured in the left ventricle is
the most reliable reference for calculating the HF. There is a wide range of HFs and variable
change in HF before and after neoadjuvant CRT. The use of 18F-FAZA PET/MR imaging
should be considered in future trials assessing clinical utility of hypoxia-targeting drugs in
patients with rectal cancer.
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