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Abstract: Background: Postoperative cognitive dysfunction (POCD) is a common complication of the
central nervous system in elderly surgical patients. Structural MRI and arterial spin labelling (ASL)
techniques found that the grey matter volume and cerebral perfusion in some specific brain areas are
associated with the occurrence of POCD, but the results are inconsistent, and the predictive accuracy
is low. We hypothesised that the combination of cortical grey matter volumetry and cerebral blood
flow yield higher accuracy than either of the methods in discriminating the elderly individuals who
are susceptible to POCD after abdominal surgery. Materials and Methods: Participants underwent
neuropsychological testing before and after surgery. Postoperative cognitive dysfunction (POCD)
was defined as a decrease in cognitive score of at least 20%. ASL-MRI and T1-weighted imaging
were performed before surgery. We compared differences in cerebral blood flow (CBF) and cortical
grey matter characteristics between POCD and non-POCD patients and generated receiver operating
characteristic curves. Results: Out of 51 patients, 9 (17%) were diagnosed with POCD. CBF in the
inferior frontal gyrus was lower in the POCD group compared to the non-POCD group (p < 0.001),
and the volume of cortical grey matter in the anterior cingulate gyrus was higher in the POCD group
(p < 0.001). The highest AUC value was 0.973. Conclusions: The combination of cortical grey matter
volumetry and cerebral perfusion based on ASL-MRI has improved efficacy in the early warning of
POCD to elderly abdominal surgical patients.

Keywords: postoperative cognitive dysfunction; arterial spin labelling; cerebral blood flow; cortical
segmentation; cortical grey matter

1. Introduction

Postoperative cognitive dysfunction (POCD), as a common perioperative complication
of the central nervous system, primarily affects memory, attention and executive skills in
elderly cohorts after surgery [1,2]. In Western countries, the prevalence of POCD is up to
38% [1,2], but it is only 13.1% in China, according to a cohort study [3]. However, this does
not mean that the actual incidence of POCD in China is lower than that in Europe and the
United States. To a large extent, the awareness of POCD in China, both among medical
staff and the public, is significantly lower than that in Western countries, so the awareness
of perioperative cognitive function assessment, screening and monitoring of patients is
obviously insufficient, resulting in a significantly higher rate of missed diagnoses of POCD
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than that in developed countries. POCD can lead to a lot of problems such as prolonging
the duration in hospital, increasing the cost of postoperative care, affecting the quality of
life [4] and even increasing the postoperative mortality within one year [5].

Nowadays, the diagnostic method of POCD is to compare preoperative and post-
operative cognition using neuropsychological tests and clinical assessments [6]. Many
neuropsychological tests are used to detect POCD, such as Mini-Mental State Examination
(MMSE), Montreal Cognitive Assessment (MoCA), Hopkins Verbal Learning Test (HVLT),
Trail Making Test A and B (TMT A and B), Stroop Colour and Word test (SCWT) and so
on [7]. However, there are some disadvantages of neuropsychological tests. Firstly, it is
hard for patients to complete neuropsychological tests after surgery because of surgical
trauma, anaesthesia or medications [6]. Secondly, apart from the usual quick bedside tests,
such as MMSE and MoCA, we often need some other validated neuropsychological tests
in addition, which often results in a heavy workload and difficult patient cooperation [8].
During the assessment process, due to the learning effect, some patients will respond
according to their previous experience during the postoperative evaluation, which leads to
the evaluation results being better than their actual situation [9].

Anaesthesia and surgery can affect cognition in many ways. Firstly, inflammation
plays a vital role in conducting the occurrence of POCD; surgical trauma can cause a
release of danger-associated molecular patterns (DAMPs), including high-mobility group 1
(HMGB1) and S100A8, and lead to a pro-inflammatory cascade, which contributes to the
inflammation of the nervous system and disruption of the blood–brain barrier (BBB) [10,11].
Secondly, cerebral perfusion fluctuations are very common during major surgery, and
the brain can keep a stable cerebral perfusion with cerebrovascular autoregulation [12].
When the mean arterial pressure (MAP) is higher or lower than the limit of the autoregula-
tion zone, or the cerebrovascular autoregulation is impaired, it can lead to injuries of the
brain [13,14]. Thirdly, microemboli can obstruct some smaller arteries, arterioles and capil-
laries during a surgical operation, such as cross-clamping or canulation/decannulation, or
from a cardiotomy suction [7], which contributes to POCD. Additionally, the neurotoxicity
of volatile anaesthetics also contributes to the occurrence of POCD; volatile anaesthesia
can change the morphology of neurons, increase caspase-3 expression and culminate in
neuronal apoptosis [7,15]. Another hypothesis is that POCD may reflect a kind of acceler-
ation of Alzheimer’s disease (AD) or cerebrovascular disease pathology [4,16–18]. Anne
et al. discovered that the atrophy of AD-related neocortical regions [19], including the
medial temporal lobe, temporal pole, inferior temporal pole and apical pole [20], is linked
to long-term cognitive decline at 36 months after surgery.

Based on structural MRI, the volume of grey matter in some brain areas were found to
be associated with POCD. POCD commonly appears as a decline in memory and executive
abilities. These mental tasks are chiefly managed by high-level cortical regions, including
areas like the prefrontal cortex and temporal lobes, as well as the thalamus. These brain
areas collaborate to handle sophisticated cognitive functions; the impairment of them may
lead to POCD [21]. Maekawa et al. found that POCD patients have lower pre-existing
volumes of bilateral hippocampal and entorhinal cortex [22]. Johnathon and his colleagues
reported that patients with POCD showed a smaller volume of the thalamus [23]. Sato et al.
conducted a study of breast cancer chemotherapy patients and found that breast cancer
chemotherapy patients had poor performance in attention, measured by the Dual-Choice
Auditory Task experiment (D-CAT), which was significantly correlated with the patients’
postoperative thalamic volume [24]. However, in some conditions, the outcomes might
not be consistent across studies. For example, the study by Marinus et al. did not find the
same result about the thalamus [25]. And there are also contradictions in Maekawa’s [22]
and Price’s [26] results on preoperative hippocampal and entorhinal cortex volumes. The
lack of uniform neuropsychological test batteries between these studies may be a possible
reason for those inconsistent results.

Kant et al. expounded that the correlation between cerebrovascular disease and
POCD is greater in terms of incidence rate compared with neurodegenerative diseases [27].



Tomography 2024, 10 1381

Arterial spin labelling (ASL) is a non-invasive technique that measures cerebral blood
flow (CBF) by magnetically tagging the body’s own arterial water to serve as a tracer.
This labelled water subsequently diffuses into the brain tissue, allowing for the effective
measurement of blood flow [28], which is an advanced technology with the advantages of
non-invasiveness and absence of exposure to ionising radiation [29]. However, there are
few scholars that have used this tech to detect POCD. Only one study performed by Xue
et al. found that their POCD group showed lower CBF in several specific brain regions
and higher CBF in the triangularis of the inferior frontal gyrus compared to the non-POCD
group (p < 0.001) [30]. And, Tammy and colleagues discovered a positive correlation
between CBF in the posterior cingulate and praecuneus regions and the performance of
language functions, as well as attention [31]. Lin et al. found that postoperative cognitive
improvements in patients who underwent carotid endarterectomy based on MMSE and
MoCA were associated with cerebral perfusion normalisation, measured by ASL-MRI [32].
The studies of detection and prediction of POCD with ASL are few, so it is hard to judge
the efficacy of ASL in the diagnosis and prediction of POCD.

Another advantage of MRI is multiparametric imaging. Single-modal MR imaging has
various disadvantages. Structural MRI alone just provides differences in morphology, and is
short on information on the function and metabolic activity of tissues; however, the change
in morphology is a long process and it may not be conducive to early diagnosis [33,34].
And ASL imaging has difficulties in assessing subtle changes in brain structure because
the spatial and temporal resolution is limited and there is a lack of a suite of uniform
parameters to perform this examination. Another barrier of ASL in clinical practice is
its low signal-to-noise ratio, which leads to lower image quality [35–37]. Henry et al.
have performed a study to combine the parameters of CBF in posterior cingulate gyri and
hippocampal volumes to detect Alzheimer’s disease in cognitively normal elderly adults.
The highest area-under-curve value was 0.944, by combining cerebral blood flow at the
middle cingulate gyrus and normalised right and left hippocampal volumes [38]. However,
there is still no study which combinates multiple parameters to predict the occurrence of
POCD at present. Moreover, many previous experiments have not evaluated its diagnostic
and early-warning efficacy.

In this research, our goal is to identify the differences between structural-MRI cortical
volumetry and CBF, as measured by ASL-MRI. We also aim to assess how effective cortical
grey matter volumetry, ASL-MRI-derived CBF and their combination are in distinguishing
early POCD in elderly patients undergoing abdominal surgery. Pre-surgical MR examina-
tion can provide baseline information on patients in order to find early predictors of POCD;
in addition, postoperative MRI may be affected by surgery and anaesthesia in the short
term and does not reflect the long-term cognitive status of the patient. From the aspect of
clinical practicability, preoperative MRI is easier to obtain and less intrusive to the patient.
We hypothesise that combining preoperative structural-MRI cortical grey matter volumetry
with preoperative ASL-MRI perfusion could be more effective in diagnosis than using each
method individually.

2. Materials and Methods
2.1. Study Population

All patients collected in this current study are those scheduled for laparoscopic surgery
through gastrointestinal surgery, anorectal surgery, hepatobiliary surgery and urology from
September 2021 to January 2024. This investigation was approved by the Ethics Committee
of the First Affiliated Hospital of Ningbo University (approval number: 107A-02). We
obtained informed consent from every participant after a full protocol explanation. The
principles of the Declaration of Helsinki were adhered to by the authors.

Eligibility criteria were as follows: (1) age ≥ 60 years; (2) patients undergoing la-
paroscopic or open abdominal surgery (surgery duration > 2 h); (3) non-illiterate patients
(education level ≥ 1 year); (4) patients without colour blindness, visual impairment or
hearing impairment; (5) informed consent from participants.
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Exclusion criteria were as follows: (1) left-handed or ambidextrous because of func-
tional differences between the left and right hemispheres, which may influence the findings;
(2) pre-existing cognitive impairment diseases (such as Alzheimer’s disease, Parkinson’s
disease, etc.) in order to eliminate the confounding factors of preoperative cognitive dys-
function as much as possible; (3) pre-existing psychiatric disorders; (4) patients with severe
depression or anxiety, because it can affect the result of the neuropsychological tests (NPTs)
and it may be hard for them to cooperate with us; (5) pre-existing neurological diseases
that could cause cognitive impairment, such as extensive cerebral infarction, encephalitis,
brain tumours, traumatic brain injury, etc.; (6) other systemic diseases that could cause
cognitive impairment, such as neurosyphilis, HIV/AIDS, severe anaemia, vitamin B12 or
folate deficiency, hepatic encephalopathy, carbon monoxide poisoning, etc.; (7) history of
drug or alcohol abuse; (8) contraindications for MRI; (9) poor quality of MR images (e.g.,
artifacts, incomplete scans); (10) inability to cooperate to complete neuropsychological
assessment scales.

2.2. Study Processes

The experimental workflow is shown in Figure 1. All patients underwent pre- and
postoperative cognitive assessment and preoperative MRI scanning 1 to 3 days before
the abdominal surgery. An experienced radiologist evaluated the MR image quality and
excluded those with pre-existing neurological diseases. The baseline neuropsychological
tests (NPTs) would be performed one day before the surgery. The second NPTs would be
performed 30 days postoperatively.
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Figure 1. Experimental workflow.

Neuropsychological evaluation was conducted by the same well-trained neuropsy-
chologist at two time points for patients. In addition, subjects were first screened to exclude
subjects with pre-exiting cognitive impairment. Patients who had MCI, AD or PD and
other diseases affecting cognition were not tested any further.

2.3. Neuropsychological Evaluation and POCD Definition

The test battery consisted of 6 tests: a Clock-Drawing Test (CDT) to measure visuospa-
tial and executive function, which are associated with the parietal and temporal lobe [39];
a verbal fluency test (VFT) to measure the language function and attention, which are
associated with the frontal and temporal lobe [40]; the Trail Making Test A and B (TMT A
and B) for assessing executive function, which is associated with frontal lobe abilities [41];
a Forward and Backward Digit Span Test (DST forward and backward) to assess memory
function and attention, which are associated with the anterior cingulate gyrus and inferior
temporal gyrus; a Stroop Colour and Word Test (SCWT), which is a test of attention that
can activate the anterior cingulate, insula, premotor and inferior frontal regions [42]; and a
Mini-Mental State Examination (MMSE) for a global cognition assessment which includes
6 cognitive domains: memory, orientation, registration, attention, language and visual
construction ability [43]. In addition, we used the Instrumental Activities of Daily Living
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(IADL) Scale and Pittsburgh Sleep Quality Index (PSQI) to assess the patients’ ability to live
independently and the status of their sleeping. Different versions of the consent scale were
adopted preoperatively and postoperatively to eliminate the effect of the patient’s learning.

The criteria of cognitive decline were applied to the test results [44,45]:

1. If the score of a certification test after surgery is reduced by 20% compared with the
score before surgery, it can be judged that the cognitive function of this dimension
has declined;

2. POCD can be diagnosed if the cognitive score of one or more postoperative items
decreases by 20% or more compared with the preoperative level.

2.4. MRI Scan

All participants underwent MRI scans using three 1.5 T MRI machines (GE Healthcare,
Chicago, IL, USA; Siemens, Munich, Germany; United Imaging, Shanghai, China), each
outfitted with a 32-channel head coil. For volumetric studies, a whole-brain T1-weighted
3D magnetisation-prepared rapid gradient echo (MPRAGE) was executed, featuring a
TR/TE of 9.7/10 ms, a flip angle of 13◦ and a slice thickness of 1 mm. The field of
view was set to 240 mm × 240 mm, with a 256 × 256 matrix size, resulting in a voxel
size of 0.9375 mm × 0.9375 mm × 1 mm. In total, 140 slices were acquired over a 5 min
scan duration. Additionally, a 3D pseudocontinuous arterial spin-labelling (3D-pCASL)
procedure, with background suppression, was conducted to measure whole-brain cerebral
blood flow (CBF). This included a TR/TE of 4500/10 ms, flip angle of 180◦ and slice
thickness of 4 mm across a 240 mm × 240 mm field of view and a 256 × 256 matrix,
producing a voxel size of 0.9375 mm × 0.9375 mm × 1 mm with 32 slices, NEX of 2,
1500 ms labelling time and 1800 ms post-labelling delay. The total scan lasted 4 min and
30 s.

Participants were instructed to remain awake, relax with their eyes closed and keep
their heads still during the scans. They underwent standard clinical screening for MRI
safety and potential contraindications beforehand.

During the image collection, all scans were checked for artifacts to ensure quality.
While other sequences such as fluid-attenuated inversion recovery, three-dimensional T2
and diffusion imaging were also collected, they were not included in the current analysis.

2.5. MRI Analysis
2.5.1. ASL Perfusion Image

The ASL-MRI processing streamline is shown in Figure 2. Firstly, the 3D-pCASL image
was converted to the Neuroimaging Informatics Technology Initiative (NIFTI) format, then,
the extracerebral tissue of all CBF images was removed using the Swiss Skull Stripper module
of the 3D slicer software, which could provide a success rate of registration at the beginning.
The later preprocessing and statistical analyses were performed with SPM12 (statistical
parametric mapping software, Wellcome Trust Centre for Neuroimaging, London, UK),
implemented in MATLAB 2021 (Mathworks, Natick, MA, USA). The CBF maps were
registered onto structural T1-weighted images and then normalised onto the reference
image: a Montreal Neurological Institute (MNI) template. After normalisation, the CBF
values of the whole brain were standardised using the Mean Division method in DPABI
to eliminate individual differences. The CBF maps were then spatially smoothed with an
isotropic 8 mm full width at half-maximum Gaussian filter.
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Figure 2. ASL-MRI processing streamline. (A) Image format conversion: all the imaging of patients
are converted from Dicom format to NIFTI format. (B) Skull removal: removing the extracerebral
parts of the CBF images. (C) Registering the CBF map onto the T1 images and normalising them
to the Montreal Neurological Institute (MNI) template. (D) Standardisation of CBF values of the
whole brain with the mean division method. (E) Spatially smoothing of CBF maps: spatial-filtering
techniques are applied to smooth the feature map to eliminate local noise while maintaining the
global trend.

2.5.2. High-Resolution 3D-T1WI Image

The processing of cortical segmentation is shown in Figure 3. Firstly, the structural
T1 image were converted to the Neuroimaging Informatics Technology Initiative (NIFTI)
format. Next, using the “Display” function in the SPM12 software, the images were
imported and positional correction performed by placing the original structural image data
in a standard coordinate space. Then, all the 3D-T1WI were processed with the automated
procedures in the Computational Anatomy Toolbox (CAT12) with SPM12 based on the
MATLAB 2021 platform (MathWorks, Natick, MA, USA). The workflow for segmentation
in CAT12 encompasses initial voxel-based processing followed by surface-based processing.
During the voxel-based stage, 3D-T1-weighted images underwent denoising, bias-field
correction and skull stripping. After correcting local intensities, the images were segmented
into grey matter and white matter, as referenced in [46]. These tissue segments were then
aligned to the MNI standard space through spatial normalisation. Finally, the grey matter
(GM) maps were enhanced using an isotropic Gaussian filter with an 8 mm full width at
half maximum for spatial smoothing.
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Figure 3. Cortical segmentation streamline. (A) Image format conversion: All the images of patients
are converted from Dicom format to NIFTI format. (B) Reorientation of structural imaging into a
standard coordinate space. (C) Normalising the T1 images to the Montreal Neurological Institute
(MNI) template, then separating them into three parts including grey matter, white matter and whole
brain. (D) Spatial smoothing of cortical grey matter maps: spatial-filtering techniques are applied to
smooth the feature map to eliminate local noise while maintaining the global trend.



Tomography 2024, 10 1385

After the voxel-based processing, the surface-based processing was performed. The
process of 3D morphological construction of the brain surface is shown in Figure 4. The
estimation of cortical thickness and the reconstruction of the central surface were carried
out simultaneously through the utilisation of a projection-based thickness method in a
single step [47]. Following the initial surface reconstruction, topological imperfections were
rectified utilising spherical harmonics [48]. This was succeeded by a surface enhancement
process, leading to the ultimate formation of the central surface mesh. Subsequent to
this, the individual central surfaces were aligned to the Freesurfer ‘FsAverage’ template
through spherical mapping with minimal distortions [49]. Then the surface structures
were resampled and smoothened to produce the surface maps of “Sulcus depth”, “Fractal
dimension” and “Thickness”.
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Figure 4. Surface morphological construction processing, image preprocessing and anatomical
structure segmentation have been completed in the previous step. (A) Thickness estimate of cortical
grey matter: Anatomical models are used to estimate the thickness of the cortex, and the method
for thickness measurement is based on distance transformation. (B) Reconstruction of brain surface:
The outer and inner surfaces of the brain are extracted from the segmented anatomical structures,
topological correction and 3D modelling are performed and the reconstructed surface structure
is visualised. (C) Resample and Smoothing of map of “Sulcus depth”, “Fractal dimension” and
“Thickness”: The initial values of each feature (such as gyral depth, fractal dimension and thickness)
are calculated and a map is generated, then initial data are resampled into standard space and spatial
filtering techniques are applied to smooth the feature map to eliminate local noise while maintaining
the global trend.

2.6. Statistical Analysis

Using SPSS26 software for the statistical analysis of demographic data and cognitive
scores, all continuous variables are presented in the form of “median, interquartile range”.
For normally distributed data, a two-sample t-test is used, while for skewed data, the
Mann–Whitney U test is employed. Categorical variables are presented in the form of
“count, percentage”, and statistical analysis is conducted using the Chi-square test. The
aim is to explore the differences in demographic characteristics and preoperative cognitive
performance between POCD patients and NPOCD patients.

Using SPM12 software, the voxel-wise two-sided t-test was carried out to compare
cerebral perfusion across the whole brain as well as the grey matter’s volume, cortical
thickness, fractal dimension, or sulcus depth between the POCD and NPOCD groups. For
the VBM analysis, total intracranial volume was included as a covariate since SBM analysis
does not typically scale with brain size. Significance was established with a p-value of <0.05,
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applying cluster-level family-wise error correction for multiple comparisons, or at an
uncorrected p-value of <0.001 to identify subtle atrophic changes [50].

After comparing the abnormal-perfusion brain regions obtained from the voxel-based
imaging statistical analysis between the POCD and non-POCD groups, DPABI 4.3 software
was used to create a mask from these regions as regions of interest (ROIs). The local CBF
values and grey matter volume for each subject was extracted using the mask as the ROI.
Then, in SPSS26, binary logistic regression was performed on the CBF values and grey
matter volume of the brain regions obtained. A receiver operating characteristic curve
(ROC curve) was generated and the area under the curve (AUC) was calculated to assess
the diagnostic performance of these imaging features in distinguishing between POCD and
non-POCD individuals.

3. Results
3.1. Participants and Clinical Data

The study included 74 patients, as detailed in Figure 5. Of these, 51 patients completed
both the preoperative MRI scans and neuropsychological tests at two timepoints. Within
this group, there were 15 females and 36 males. Postoperative cognitive dysfunction (POCD)
was identified in 9 out of the 51 patients (17.65%) by the 30th day following surgery.

Tomography 2024, 10, FOR PEER REVIEW 8 
 

 

software was used to create a mask from these regions as regions of interest (ROIs). The 
local CBF values and grey matter volume for each subject was extracted using the mask 
as the ROI. Then, in SPSS26, binary logistic regression was performed on the CBF values 
and grey matter volume of the brain regions obtained. A receiver operating characteristic 
curve (ROC curve) was generated and the area under the curve (AUC) was calculated to 
assess the diagnostic performance of these imaging features in distinguishing between 
POCD and non-POCD individuals. 

3. Results 
3.1. Participants and Clinical Data 

The study included 74 patients, as detailed in Figure 5. Of these, 51 patients com-
pleted both the preoperative MRI scans and neuropsychological tests at two timepoints. 
Within this group, there were 15 females and 36 males. Postoperative cognitive dysfunc-
tion (POCD) was identified in 9 out of the 51 patients (17.65%) by the 30th day following 
surgery. 

 
Figure 5. Flow diagram for study assessments. NPTs, neuropsychological tests; MRI, magnetic res-
onance imaging; POCD, postoperative cognitive dysfunction; NPOCD, non-POCD. 

The differences in demographic characteristics between the POCD and non-POCD 
groups are shown in Table 1. Firstly, in terms of educational years, those of the POCD-
group patients were significantly lower than in the NPOCD group (p < 0.05). According to 
the Pittsburgh Sleep Quality Index scores reflecting the quality of sleep in the past month, 
the POCD-group patients’ scores were significantly higher than those of the NPOCD 
group (p < 0.05), indicating poorer sleep quality in the POCD group compared to the non-
POCD group. Additionally, based on the Instrumental Activities of Daily Living (IADL) 
scale scores reflecting the patients’ daily life abilities, this study found that the daily life 
abilities of the POCD patients were weaker than those of non-POCD patients. Interest-
ingly, the daily exercise time of POCD patients was significantly higher than that of non-
POCD patients. 

  

Figure 5. Flow diagram for study assessments. NPTs, neuropsychological tests; MRI, magnetic
resonance imaging; POCD, postoperative cognitive dysfunction; NPOCD, non-POCD.

The differences in demographic characteristics between the POCD and non-POCD
groups are shown in Table 1. Firstly, in terms of educational years, those of the POCD-group
patients were significantly lower than in the NPOCD group (p < 0.05). According to the
Pittsburgh Sleep Quality Index scores reflecting the quality of sleep in the past month, the
POCD-group patients’ scores were significantly higher than those of the NPOCD group
(p < 0.05), indicating poorer sleep quality in the POCD group compared to the non-POCD
group. Additionally, based on the Instrumental Activities of Daily Living (IADL) scale
scores reflecting the patients’ daily life abilities, this study found that the daily life abilities
of the POCD patients were weaker than those of non-POCD patients. Interestingly, the daily
exercise time of POCD patients was significantly higher than that of non-POCD patients.
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Table 1. Demographics.

POCD (n = 9) NPOCD (n = 42) p Value

Age (year, median, IQR) 72 (64–78) 72 (66–77) 0.605 a

Sex(male, %) 6, 66.67% 30, 71.43% 0.778 c

Smoke (%) 3, 33.33% 11, 26.19% 0.981 c

Alcohol (%) 4, 44.44% 12, 28.57% 0.592 c

Hypertension (%) 8, 88.89% 21, 50% 0.077 c

Diabetes (%) 3, 33.33% 4, 9.52% 0.166 c

Anaesthesia (%) 3, 33.33% 11, 26.19% 0.981 c

Education (year, median, IQR) 6 (2–6) 6 (6–9) 0.008 b*
Exercise (min/d, median, IQR) 90 (30–240) 25 (0–67.50) 0.011 b*
IADL (median, IQR) 0 (0–1) 0 (0–0) 0.024 b*
PSQI (median, IQR) 7 (5–8) 3 (0–6) 0.040 b*

IQR: Interquartile range, SD: standard deviation, IADL: Instrumental Activities of Daily Living, PSQI: Pittsburgh
Sleep Quality Index, * p < 0.05, a: Independent Samples t-test, b: Mann–Whitney U test, c: Chi-square test.

The neuropsychological test scores are showed in Table 2 for both baseline and 30 days
after surgery. The preoperative scores of the VFT of the POCD patients were significantly
lower than those of the NPOCD group (p < 0.05), but the preoperative scores of the other
NPTS were similar between the two groups (p > 0.05).

Table 2. Summary statistics of patients with and without POCD from different cognitive
function tests.

POCD (n = 9) NPOCD (n = 42) p Value

MMSE
preoperative, median (IQR) 23.5 (20–26) 28 (27–29) 0.13 b

postoperative, median (IQR) 26 (20–27) 28 (26.75–29) 0.015 b*
difference, median (IQR) 0 (0–3.5) 0 (0–0.25) 0.12 b

CDT
preoperative, median (IQR) 1 (1–1) 1 (0–3) 0.698 b

postoperative, median (IQR) 1 (0–1.5) 1 (0–3) 0.419 b

difference, median (IQR) 0 (0–1) 0 (0–0) 0.558 b

VFT
preoperative, median (IQR) 5 (1–10) 10 (6–11) 0.019 b*
postoperative, median (IQR) 3 (0–6.5) 9.5 (7.5–12) <0.001 a#

difference, median (IQR) 0 (0–2) 0 (−1–1) 0.022 b*

TMT A
preoperative, median (IQR) 97 (65–120) 101 (76.5–120) 0.334 b

postoperative, median (IQR) 120 (94.5–144.5) 101.5 (77.5–120) 0.085 b

difference, median (IQR) −14 [(−57.5)–(−0.5)] 0 (−1–1.25) 0.08 b

TMT B
preoperative, median (IQR) 300 (128–300) 287.5 (170–300) 0.729 b

postoperative, median (IQR) 300 (300–300) 272.5 (165–300) <0.001 b#

difference, median (IQR) 0 (−156–0) 0 (−2–1.25) 0.043 b*

DST
preoperative, median (IQR) 11 (9–11.5) 10 (8–12) 0.773 a

postoperative, median (IQR) 10 (7.5–11) 10 (8–12) 0.588 a

difference, median (IQR) 0 (0–2) 0 (−1–1) 0.106 b

Stroop test
preoperative, median (IQR) 11 (7.5–18) 15 (10–18.25) 0.18 a

postoperative, median (IQR) 9 (6–19) 15 (10–18.25) 0.186 a

difference, median (IQR) 0 (0–1) 0 (0–1) 0.989 b

MMSE: Mini-Mental State Examination, CDT: Clock-Drawing Test, VFT: Verbal Fluency Test, TMT A and B: Trail
Making Test A and B, DST: Forward and Backward Digit Span Test, Stroop: Stroop Colour and Word Test, IQR:
interquartile range, SD: standard deviation, * p < 0.05, # p < 0.01, a: Independent Samples t-test, b: Mann–Whitney
U test.
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In the postoperative cognitive assessment results, the POCD group performed signifi-
cantly worse than the NPOCD group in the MMSE, VFT and TMT B tests (p < 0.05). This
indicates that, in our study, patients with POCD primarily exhibited major impairments in
language and executive functions, which aligns with clinical presentations reported in the
literature [51].

3.2. Voxel-Based Analyses of CBF Maps Based on ASL

Among the 51 patients, a total of 42 sets of CBF images were collected, with 9 sets
belonging to POCD patients and 33 sets belonging to non-POCD patients. A two-sample t-
test comparing perfusion differences between the two groups of subjects showed statistical
significance. The brain regions with significantly decreased perfusion were mainly located
in the left inferior frontal gyrus. According to Brodmann Area (BA) partitioning, the regions
with decreased perfusion were mainly in BA47 (left inferior frontal gyrus), which included
14 voxels. Compared to the non-POCD group, patients in the POCD group showed
significant perfusion reduction in the left inferior frontal gyrus (0.38 ± 0.34 vs. 0.77 ± 0.19,
p < 0.001) (see Figure 6, anatomical location and description as shown in Table 3). No
significant areas of high perfusion were observed in POCD patients in other brain regions,
and the differences in perfusion in other brain regions were not statistically significant.
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Figure 6. Differences in cerebral blood flow (CBF) between the POCD and NPOCD groups. Voxel-
wise comparison of the partial volume-corrected ASL revealed decreased CBF in the left inferior
frontal gyrus. The voxel-based comparison results are overlain on the Montreal Neurologic Institute
standard brain images in the coronal, axial and sagittal planes. Due to the correction for multiple
comparisons resulting in a large cluster of brain regions, only selected sections showing brain regions
with statistical differences are displayed. No significant differences were observed in the overlapping
brain regions. The colour gradient from blue to red represents varying levels of blood flow, with blue
indicating low flow and red indicating high flow.

Table 3. Areas of different perfusion in the POCD compared to the NPOCD group.

Brain Area
Peak MNI Coordinate

Cluster Size
Statistical
Value (T)x y z

Left inferior
frontal gyrus −52 46 16 14 −4.3251
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3.3. VBM Analysis of Cortical Grey Matter Based on 3D-T1WI

Among the 51 patients, a total of 51 sets of high-resolution thin-layer T1-weighted
structural images were collected, with 9 sets belonging to POCD patients and 42 sets
belonging to non-POCD patients. A two-sample t-test comparing cortical grey matter
volume differences between the two groups of subjects showed statistical significance.
The brain regions with significantly increased grey matter volume were mainly located
in the right anterior cingulate gyrus. According to Brodmann Area (BA) partitioning, the
regions with increased grey matter volume were mainly in BA24 (right anterior cingulate
gyrus), which included 11 voxels. Compared to the non-POCD group, patients in the POCD
group had a slightly larger cortical grey matter volume in the right anterior cingulate gyrus
(0.23 ± 0.05 vs. 0.17 ± 0.03, p < 0.001) (see Figure 7, anatomical location and description
as shown in Table 4). No significant cortical grey matter atrophy was observed in other
brain regions of the POCD patients, and the differences in cortical grey matter volume in
the other brain regions were not statistically significant.
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Figure 7. Differences in grey matter volume between the POCD and NPOCD groups. Voxel-wise
comparison of the partial volume-corrected 3D-T1 revealed the volume of the right anterior cingulate
gyrus (ACC) in patients with postoperative cognitive dysfunction (POCD) is slightly larger than
that in patients without postoperative cognitive dysfunction (NPOCD). The colour gradient from
blue to red represents varying levels of blood flow, with blue indicating low flow and red indicating
high flow.

Table 4. Areas of different GM volume in the POCD compared to the NPOCD group.

Brain Area
Peak MNI Coordinate

Cluster Size Statistical Value (T)
x y z

Right anterior cingulate gyrus 3 30 9 11 3.5365

3.4. SBM Analysis of Cortical Grey Matter Based on 3D-T1WI

Among the 51 sets of high-resolution thin-layer T1-weighted structural images col-
lected, the surface maps of “Sulcus depth”, “Fractal dimension” and “Thickness” of every
patient were evaluated. We found no significant association between global or regional
“Sulcus depth”, “Fractal dimension” and “Thickness” and POCD incidence. This absence
of association was robust with the inclusion of other covariates, such as age and years
of education.



Tomography 2024, 10 1390

3.5. Predictive Performance of Single Parameter and Combination

As is shown in Figure 8, ROC curves were created and their AUC values were calcu-
lated, which is based on the individual and combined data of the left inferior frontal gyrus
CBF and anterior cingulate cortex (ACC) volume. The AUC for the left inferior frontal
gyrus CBF was 0.862, and for ACC volume, it was 0.798. However, the combined AUC for
the left inferior frontal gyrus CBF and ACC volume was the highest at 0.973.
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Figure 8. Single parameters and combination. CBF_Fro: CBF in the left inferior frontal gyrus;
rVol_ACC: the normalised volume ratio of right anterior cingulate gyrus; Combination: combination
of the two parameters.

The cutoff values, sensitivity, specificity, Youden index and AUC for the individual
parameter models are shown in Table 5: for the left inferior frontal gyrus CBF value
(CBF_Fro): sensitivity of 0.889 and specificity of 0.727; for the anterior cingulate cortex
volume (rVol_ACC): sensitivity of 0.667 and specificity of 0.909. The combined AUC for
CBF_Fro and rVol_ACC is 0.973, demonstrating high sensitivity (1.0) and specificity (0.939).

Table 5. Sensitivity, specificity, cut-off values (based on Youden index) and AUC for single and
combined parameter models.

Cut-Off Sensitivity Specificity Youden Index
AUC

Mean 95%CI

CBF_Fro 0.17 0.889 0.727 0.616 0.862 0.735, 0.988
rVol_ACC 0.29 0.667 0.909 0.576 0.798 0.608, 0.988
Combination 0.23 1 0.939 0.939 0.973 0.930, 1.000

4. Discussion

POCD manifests subtly in various ways, including memory decline, attention and
concentration issues and language and communication difficulties [51]. Structural MRI
scans are now routine, and ASL, a non-invasive and low-cost examination, provides an
effective method for assessing early cognitive decline while only extending the scanning
session by a few minutes. This study utilises MRI (structural and ASL) to predict POCD.
While MRI is relatively expensive, the early identification of high-risk patients could
potentially reduce long-term healthcare costs associated with POCD. The combined use
of cortical grey matter volumetry and ASL-MRI showed superior predictive performance
(AUC 0.973) compared to single modalities. This suggests a potential for more accurate
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patient stratification, which could improve resource allocation. The study focused on
patients ≥60 years; given the higher risk of POCD in older adults, maintaining this age
criterion seemed appropriate. The inclusion of patients undergoing laparoscopic or open
abdominal surgery lasting >2 h could be a good selection criterion, as longer surgeries may
increase POCD risk. We believe in the future, the time for MRI exams for high-risk patients
will be shortened with the development of the technology.

Our research results showed that POCD patients had fewer years of education and
lower IADL scores. Lower educational level is a known risk factor for POCD, suggesting
that these patients had a reduced cognitive reserve (CR) [4]. Baseline cognitive impairment
was also an important risk factor for POCD. Two studies about orthopaedic surgery and
coronary angiography, respectively, highlighted that the existence of pre-existing cognitive
impairment independently predicted the occurrence of POCD three months following the
procedures [1,52]. POCD patients had higher Pittsburgh Sleep Quality Index scores. Poor
sleep quality could be another screening criterion.

The cognitive function tests in Table 2 show several significant differences between
POCD and non-POCD groups, particularly in postoperative assessments. These cognitive
assessment results indicated that POCD patients primarily exhibited impairments in lan-
guage and executive functions, which is consistent with clinical manifestations reported
in the literature [50]. Mini-Mental State Examination (MMSE) scores were significantly
lower in the POCD group (26 vs. 28, p = 0.015). A two-point difference, while statistically
significant, may not always be clinically meaningful. However, it suggests a general decline
in global cognitive function in POCD patients. Both the preoperative (5 vs. 10, p = 0.019)
and postoperative (3 vs. 9.5, p < 0.001) scores of the Verbal Fluency Test (VFT) were sig-
nificantly lower in the POCD group. The substantial difference suggests POCD patients
have marked difficulties in word retrieval and executive function, which could significantly
impact daily communication and decision-making abilities. The postoperative scores of
TMT B were significantly different (300 vs. 272.5, p < 0.001). The marked difference suggests
POCD patients have significant impairment in executive function, which could affect their
ability to plan, organise and adapt to new situations. The pattern of deficits, particularly in
VFT and TMT B, indicates that POCD in this cohort primarily affects executive function
and language abilities. These impairments could have substantial impacts on patients’
daily functioning, decision-making capacity and quality of life. The results underscore the
importance of comprehensive postoperative cognitive assessment and the need for targeted
interventions to address these specific cognitive domains in POCD patients.

A large body of research indicates that reduced CBF is a sensitive marker of early
cognitive impairment [53]. While the link with POCD remains unclear, a kind of hypoth-
esis suggests that blood circulation disorders, including microcirculation disorders and
insufficient cerebral blood flow, may occur during the surgical process, which may lead to
inadequate blood supply to the brain and affect cognitive function [7]. In our study, we
found that POCD subjects without pre-exiting cognitive dysfunction exhibited decreased
cerebral blood flow in the left inferior frontal gyrus comparing with NPOCD. According to
the results of the cognitive assessment in this experiment, the impairment of cognition in
POCD patients was located in language and executive function, which is roughly similar to
a previous report [51]. Those two functions are closely related to the prefrontal lobe [54].

Sena et al. found that Parkinson’s disease (PD) patients with dementia also showed
a hypoperfusion in the left inferior frontal gyrus (IFG) compared with PD patients with
normal cognition [55]. IFG is a part of the frontoparietal network (FPN), and the activity of
the FPN is associated with advanced cognitive function [56]. Wang et al. also found that the
CBF is reduced in the bilateral IFG of PD patients with mild cognitive impairment during
a 2-year follow-up, and the reduced CBF is strongly related to executive function [57].
This hypoperfusion can lead to cognitive impairment partly due to the neurovascular unit
dysfunction, disrupted neurotransmitter circuits and mitochondrial energy deficiency [58].
However, Xue et al. found a hyperperfusion in the left inferior frontal gyrus of POCD
patients, which is opposite to ours [30]. The possible reason is that the patients in our cohort
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were older and less educated than Xue’s patients, which could lead to more cerebrovascular
burden and less cognitive reserve (CR).

Secondly, the cortical grey matter volume in the right anterior cingulate cortex (ACC)
of POCD is slightly bigger than that of NPOCD. The result probably is a compensatory
manifestation. The ACC has very close connections with adjacent brain regions relating
to emotions, cognition and executive control and motor control with prominent projec-
tions [59,60]. From our research results, it is evident that the patients in the POCD group
show significant declines in language ability and executive function postoperatively, which
may be related to reduced cerebral blood flow perfusion in the right inferior frontal triangle
area. However, the Trail Making Test Part B (TMT B) scores of preoperative POCD patients,
which provide a measure of cognitive function associated with the sequencing and set-
shifting, did not show a significant decrease. Therefore, the larger volume of grey matter
in the ACC cortex of POCD patients may be a compensatory effect against the reduced
cerebral blood flow in the right inferior frontal triangle area. In fact, the result of Wang’s
study also showed that a negative correlation between the CBF of the right ACC and the
TMT B score [57].

Thirdly, in contrast to previous studies that focused on a single medical imaging
technique, this study evaluated the diagnostic performance of single parameters and com-
binations. The AUC for ASL-MRI was 0.862 and the AUC for the right ACC normalised
volume was 0.798. From the results, it can be observed that the diagnostic performance of
ASL-MRI was superior to cortical grey matter volume. Additionally, this study found that
the combination of MRI cortical GM volume and ASL-MRI improved diagnostic efficacy
compared to single parameters (AUC of 0.973). Based on positron emission tomography
(PET) and structural-MRI technologies, Takashi et al. found that the AUC for the combined
application of PET and MRI (AUC = 0.985) was bigger than that of a single technology [61].
Compared to single-modality magnetic resonance imaging (MRI) techniques, the combina-
tion of multiple MRI modalities can significantly enhance the diagnostic and predictive
efficacy of imaging techniques for neurodegenerative diseases.

Finally, based on the results of the SBM analysis, no significant statistical differences
were found between the two groups of patients in terms of cortical thickness, depth of brain
sulci and complexity of cortical structure. VBM provides a perspective on local differences
in brain structure, allowing for the identification of changes in specific regions, while SBM
offers a more comprehensive view of structural variations, enabling the recognition of
changes in overall structural patterns, including correlations between different regions.
Possible reasons to consider are the following: (1) Data quality has a significant impact on
the results of SBM. If the data quality is poor or contains noise, SBM may not accurately
identify structural pattern changes. VBM has relatively lower requirements for data quality
as it mainly focuses on local volume and density differences. (2) The characteristics and
quantity of the samples also affect the results of VBM and SBM. If there are specific types of
structural differences in the samples, VBM may be more likely to detect these differences.
However, SBM may require a larger sample size and more structural variations to accurately
identify overall structural patterns.

This study has several limitations. Firstly, it is a single-centre study with a small sam-
ple size, which may affect the statistical power of the results; thus, bigger and multicentre
studies should be performed to prove our results in the future. Secondly, although this
project is a longitudinal study, data collection is still in progress, and currently only the
results of preoperative and one-month postoperative assessments have been analysed. We
have excluded the patients with pre-existing cognitive impairment diseases according to
medical records and the baseline cognitive performance, as well as patients with massive
cerebral infarctions and cerebral tumours according to the MR imaging. But, the discrimina-
tion between POCD and other cognitive impairment diseases as a real challenge still needs
further experiments to prove. Moreover, from a single preoperative MRI examination, it is
hard to establish a causal relationship between brain structural/functional changes and
POCD; we need one or more postoperative MR images in order to observe the dynamic
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changes and decouple the surgical effects and other confounding factors; combine them
with multi-dimensional data, such as clinical, imaging and molecular biology, to construct
a more comprehensive pathogenesis model of POCD; or use twin control or propensity
score matching to control the confounding factors.

The 20% definition actually originates from an old study, but it is still the widely
accepted standard, despite some controversy; therefore, this criterion need to be updated
and optimised, such as replacing it with the z score or the one standard deviation (1SD) def-
inition. Additionally, the study only collected ASL-MRI data and clinical-scale information
from the participants, lacking auxiliary diagnostics such as cerebrospinal fluid and other
biomarkers. Fourth, this study is a single-centre study that used three different brands of
MRI scanners for scanning. Although the scanning parameters were standardised, there
may be subtle differences in parameters between different brands of machines, which could
affect the accuracy of the research results to some extent. Also, the study did not fully
correct for potential confounding factors, such as a history of diabetes, smoking habits and
caffeine intake, and in order to further correct for potential confounding factors, demo-
graphic data with significant statistical differences were added as covariates for correction
when performing the voxel-wise two-sided t-test. Lastly, in order to control the influence
of various intraoperative confounding factors, future studies study should try to ensure
that the amount and the duration of anaesthesia are roughly the same. However, some
intraoperative factors may still affect the results of postoperative cognitive assessment,
such as blood loss, intraoperative blood pressure and blood oxygen fluctuations. These
data should be collected at the same time and corrected as covariates in future studies.

Based on the results of this study, it is possible to diagnose the high risk of POCD with
MRI before surgery. Preoperative MRI examination should include functional and structural
images. Before the examination, care should be taken to ensure that the patient is quiet and
comfortable, and family members should accompany them if necessary. For these elderly
patients, the anaesthesiologists should pay attention to the preoperative cognitive function
screening and assessment and the surgeons need to perform a comprehensive preoperative
health assessment and preoperatively communicate. As much as possible, anaesthetic
drugs and methods with minimal effect on cognitive function should be selected. Then, a
quiet, safe and familiar recovery environment should be provided to reduce postoperative
confusion and anxiety. Postoperative cognitive function should be closely monitored, and
regular follow-up and evaluation should be carried out to find and deal with changes in
cognitive function over time. If it is necessary, medication can be given, such as attenuating
the inflammatory response with dexamethasone.

5. Conclusions

The results of current study showed a difference in CBF at the left inferior frontal
gyrus and grey matter at the right anterior cingulate gyrus between the two groups, and
combined MRI cortical grey matter volumetry and ASL CBF was superior to either single
measure in predicting early POCD. That means that we can find the high risk of POCD
with preoperative MRI results for early prediction and prevention.

Future research recommendations include the following: (1) validation of the results
in a multicentre, large-sample study; (2) exploration of multimodal prediction models for
POCD by combining blood or CSF biomarkers; (3) conduction of a long-term follow-up
study to observe the changes in brain structure and function in POCD patients.
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