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Abstract: This review is focused on the current status of quantitative MRI (qMRI) of skeletal muscle.
The first section covers the techniques of qMRI in muscle with the focus on each quantitative
parameter, the corresponding imaging sequence, discussion of the relation of the measured parameter
to underlying physiology/pathophysiology, the image processing and analysis approaches, and
studies on normal subjects. We cover the more established parametric mapping from T1-weighted
imaging for morphometrics including image segmentation, proton density fat fraction, T2 mapping,
and diffusion tensor imaging to emerging qMRI features such as magnetization transfer including
ultralow TE imaging for macromolecular fraction, and strain mapping. The second section is a
summary of current clinical applications of qMRI of muscle; the intent is to demonstrate the utility of
qMRI in different disease states of the muscle rather than a complete comprehensive survey.
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1. Introduction

Quantitative MRI (qMRI) differs from conventional MRI in its ability to provide ob-
jective quantitative metrics of the underlying tissue [1]. Conventional MRI is a map of
the signal intensities in different tissues where the signal intensities are a complicated
function of the acquisition pulse sequence and the underlying tissue parameters. qMRI can
capture non-visual metrics related to underlying tissue properties including the chemical
structure and biological microstructure. Measurement of each metric, also referred to as
parametric mapping (images of the parameter are computed on a voxel basis), requires a
specially designed imaging pulse sequence coupled to an underlying biophysical model
that provides the link between the observed parameter and underlying tissue properties.
qMRI yields numerical values with a unit (e.g., distance, volume, relaxation times) or as a
percent (e.g., proton density fat fraction). The qMRI approach provides the basis for devel-
oping imaging biomarkers; the latter can have significant clinical impact on diagnostics
including earlier detection of disease, in the assessment of disease severity and therapeu-
tic response, and on accurate prognosis. It has the potential to replace or complement
biopsies enabling non-invasive assessment of the disease, increasing patient comfort while
introducing minimal to no disturbance to the pathology of interest [1]. However, despite
the compelling advantages of qMRI based biomarkers, it has yet to be adopted widely
in the clinical setting [2]. The slow adoption to clinical practice is due to several reasons:
(i) longer duration protocols arising from the need for performing different acquisitions
for multi-parametric mapping and (ii) the lack of standards for qMRI including the large
number of parametric image acquisition protocols as well as post-processing techniques [3].
The National Institute of Standards and Technology (NIST) hosted workshops in 2014 and
2017 with participants from over 16 organizations working towards standards in quantita-
tive MRI [3]. The recommendations of the workshops included a call for efforts directed
at standardizing the imaging and analysis protocols, as well as on developing phantoms
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with material composition and shape/size appropriate to the particular anatomy and
method [3]. The clinical realization of qMRI is anticipated to occur once the standardized
acquisition and analysis protocols along with reference phantoms are transferred to the
clinic [3]. Toward this, the Radiological Society of North America (RSNA) organized the
Quantitative Imaging BioMarkers Alliance (QIBA) [4]. QIBA’s mission is “to improve the
value and practicality of quantitative imaging biomarkers by reducing variability across devices,
sites, patients and time” [4]. Of the 22 imaging biomarker committees that span different
modalities, there are 9 committees on qMRI techniques including a qMRI group devoted to
musculoskeletal (qMRI-MSK) and another group to quantifying proton density-weighted
fat fraction (QIBA-MRI-PDFF) [4].

qMRI has been implemented extensively in the brain characterizing a wide range
of neurological diseases, including conditions with inflammatory, cerebrovascular, and
neurodegenerative pathologies [5]. A number of recent studies have explored qMRI in
oncological applications to characterize malignancies in breast, lung, prostate, and brain
cancer, and to either monitor or for early prediction of response to anti-cancer therapies [6].
In the area of musculoskeletal applications of qMRI, there is a Musculoskeletal Biomark-
ers Committee of the QIBA with a focus on cartilage compositional and morphological
characterization [7]. MRI-based cartilage compositional analysis is clinically significant as
parametric changes can be identified in the early phases of osteoarthritis before morpholog-
ical changes are seen in structural MRI [7]. Spin-spin relaxation time (T2) and spin-lattice
relaxation time in the rotating frame (T1ρ) have emerged as the most viable approaches for
characterizing cartilage composition; T2 reflects changes in water, collagen content, and
orientation of collagen fibers, whereas T1ρ is more sensitive to proteoglycan content [7].

There are also several studies exploring qMRI in skeletal muscle and several metrics
have been extracted and explored for their sensitivity to biochemical and microstructural
changes in tissue in normal and in diseased states [8–11]. It has been applied to charac-
terizing muscle in normal subjects including exploring differences based on age and sex,
trained vs. untrained, and the effect of exercise [8]. The utility of qMRI in characterizing
several disease conditions including dystrophy, late onset POMPE, and sarcopenia has
been reported [12–14].

This review is devoted to the current status of quantitative MRI (qMRI) of skeletal
muscle. The first section covers the techniques of qMRI in muscle with the focus on each
quantitative parameter, the corresponding imaging sequence, discussion of the relation of
the measured parameter to underlying physiology/pathophysiology, the image processing
and analysis approaches, and studies on normal subjects. We cover the more established
parametric mapping from T1-weighted imaging for morphometrics including image seg-
mentation, proton density fat fraction, T2 mapping, and diffusion tensor imaging to more
exploratory/less applied qMRI features such as magnetization transfer including ultralow
TE imaging for macromolecular fraction and MR strain mapping. The second section is
a summary of current clinical applications of qMRI of muscle; the intent is to provide
the user a flavor for qMRI in different disease states of the muscle rather than a complete
comprehensive survey. We have not included spectroscopy in this review. We refer the
interested reader to recent references of experts’ consensus recommendations for proton
and for phosphorous magnetic resonance spectroscopy [15,16].

In this review, we present a comprehensive overview of qMRI-based muscle biomark-
ers including well known (volumetrics, T2, fat quantification, diffusion tensor imaging)
and a few emerging metrics (fiber architecture and diffusion data modeling, dynamic strain
and strain rate imaging, magnetization transfer contrast and ultrashort echo time imaging).
The discussion of the latter emerging techniques as potential imaging-based biomarkers
of normal and pathological muscle is not available in the literature. Furthermore, by pre-
senting the application of these techniques in normal muscle and a few select pathologies
where qMRI has been more extensively applied, we anticipate that the larger community
of researchers and physicians will benefit as they identify potential for qMRI in their areas
of muscle pathology.
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2. Quantitative Magnetic Resonance Imaging
2.1. Muscle Morphology

Muscle volume, anatomical cross-sectional areas (CSA), and physiological cross-
sectional areas (PCSA) are predictors of muscle strength [17]. Furthermore, these morpho-
logical measures are clinically important in characterizing and tracking the progression of
many diseases including muscular dystrophies, myopathies, and sarcopenia [18,19]. While
earlier studies extracted fiber lengths from ultrasound to compute PCSA, fiber lengths can
now be conveniently determined by combining muscle volume from MR morphological
imaging with fiber length from MR diffusion tensor imaging [20]. MR imaging has been
successfully used to accurately quantify skeletal muscle volume and cross-sectional area
(CSA) with <5% intra- and inter-observer reproducibility in several muscles including
thigh and lower leg muscles [21]. However, quantification of muscle volume requires
segmentation of the muscle over a stack of slices which is a tedious and time-consuming
task if performed manually. In order to obtain a metric that is more readily extracted,
Bamman et al. have shown that it is possible to substitute the volume metric by cross-
sectional area measurements [17]. Lanza et al. also compared muscle volume to anatomical
cross-sectional area metrics and established that the different assessments do not affect the
muscle size–strength relationship [22].

The T1-weighted fast spin-echo (FSE) sequence is optimal for morphological imag-
ing in terms of image quality and due to its reduced sensitivity to magnetic field inho-
mogeneities and has thus been used extensively in earlier studies for extracting muscle
volume and/or CSA [8]. However, volume acquisitions with gradient echo fat-water
Dixon sequences provide speed, excellent SNR, and contrast for segmenting muscles [23].
Susceptibility artifacts are minimized in these sequences by acquiring at low TEs. An-
other advantage is that the Dixon methods also provide a fat fraction map which can be
subtracted from the muscle volume (or CSA) to obtain the muscle volume (or CSA) of
contractile tissue corrected for fat [10].

Image Processing (Segmentation)

It should be noted that segmentation still remains largely manual in most clinical
settings [21]. Manual segmentation cannot be performed readily for 3D datasets for many
muscles given that the process is both time intensive and operator dependent [21]. However,
widespread use of qMRI for biomarkers depends critically on the ability to segment muscle
volumes in an automated fashion [21]. An excellent recent review of the segmentation
approaches developed for muscle tissue type and for muscle segmentation is given in
Ref. [24].

An important segmentation task in muscle diseases is the identification of tissue
composition (muscle, adipose, and connective tissue). Fuzzy c-means (FCM) clustering
has been proposed that considers partial volume effects at muscle/fat boundaries as well
as intramuscular fat infiltration; an extension of the FCM used dual-echo images from an
Ultralow TE acquisition to segment adipose and connective tissue from muscle tissue in calf
muscle [25]. Figure 1 shows the results of the non-contractile vs. contractile tissue volumes
in a young (23-year) and a senior (83-year) participant; the higher amount of adipose and
connective (non-contractile) tissue in the senior subject is clearly visualized.

The identification of the different compartments of fat has clinical implications and
includes subcutaneous adipose tissue (SAT) which is separated from the internal adipose
tissue (IAT) by fascia (e.g., fascia lata for the thigh). The fat regions within the fascia are
further classified into intramuscular fat within each muscle region as well as perimuscular
fat between the muscles. To identify the separate deposits of fat, it is important to identify
SAT from IAT; the methods to achieve this are detailed in Reference [24]. Various methods
have been proposed to identify the inner border of the SAT based on active contours and
extensions such as gradient vector flow snakes [26]. Most of these algorithms perform
accurately for healthy subjects but not as well in patients with high fat infiltration [24].
The next step is the identification of individual muscle volumes—this is important as fat
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infiltration occurs differently across muscles and furthermore, there could also be a proximo-
distal pattern of infiltration [24]. Segmentation of individual muscles is challenging as
muscles have similar intensity and the boundaries between different muscles are thin and
often not seen due to partial volume effects. Segmentation strategies based on pre-labeled
atlases (manual labeling) use non-linear registration of the new data to the labeled atlas
to identify individual muscles. Most atlas-based approaches have been developed for
thigh and hip muscles [27] and extending to other muscles would involve developing
new atlases and furthermore, the applicability of atlases to identify muscles with high
fat filtration has not yet been established. Semi-automated segmentation methods show
promise; Ogier et al. used a semi-quantitative method incorporating shape information
and non-linear registration to propagate the contour from prior slices for fat quantification
in the thighs and lower legs of healthy subjects and patients with myotonic dystrophy type
1 and obtained very good agreement with manual segmentations [28].
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Figure 1. Three-dimensional rendering of the hard thresholded (52%) volumes of IMCT/IMAT tissue 
in the triceps surae muscles; young subject (a) and older subject (b). It should be noted that the 
aponeurosis surrounding each muscle was selectively eroded in order to provide a better view of 
the IMCT/IMAT. The top and bottom views are given as 3D volume projections. Reproduced with 
permission from the authors in Ref. [25]. 
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All CNNs performed well with high geometric accuracy for healthy subjects as well as 
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Figure 1. Three-dimensional rendering of the hard thresholded (52%) volumes of IMCT/IMAT tissue
in the triceps surae muscles; young subject (a) and older subject (b). It should be noted that the
aponeurosis surrounding each muscle was selectively eroded in order to provide a better view of
the IMCT/IMAT. The top and bottom views are given as 3D volume projections. Reproduced with
permission from the authors in Ref. [25].

Deep Neural Networks (DNNs) have recently made a huge impact in image segmen-
tation including in medical image segmentation [24]. For image segmentation applications,
DNNs are supervised learning systems trained on manually segmented images. One of
the requirements for robust segmentation is that the DNN be trained with a large number
of images. A recent report compared several deep convolutional neural network (CNN)
architectures (U-Net 2D, U-Net 3D, TransUNet, and HRNet) for segmenting ten thigh
and calf muscles from control and subjects with neuromuscular disease (NMD) [29]. All
CNNs performed well with high geometric accuracy for healthy subjects as well as those
with NMD; however, the HRNet correctly identified all muscles. A recent publication
using DNNs for segmentation focus on lower extremities established that these systems
are not only applicable for control healthy subjects but also subjects with pathology [30].
Agosti et al. used MRI data from controls and subjects with facioscapulohumeral dystrophy
(FSHD) and amyotrophic lateral sclerosis (ALS) to train CNNs with multi-echo spin echo
and a multi-echo gradient echo [31]. The proposed network accurately segmented thigh
and calf muscles even in the presence high fat infiltration. Furthermore, the authors have
released the automatic segmentation tool resulting as an open-source repository, available
at the link in Reference [32].

Deep neural networks hold promise for automated muscle segmentation even in the
presence of a high percentage of fat infiltration. While still in a relatively initial phase
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of development for muscle segmentation, it continues to be an area of intense research
activity. It should be noted that most of the semi-automated and automated segmentations
have been performed and evaluated on healthy populations and there is a critical need
to extend these approaches to large cohorts of subjects with pathological conditions. The
applicability of the systems to images from different protocols, scanners, and institutions
has to be demonstrated before widespread adoption. The availability of the systems as an
open-source repository will clearly be a great start for a larger group of researchers to train
and test the DNN systems.

2.2. Quantification of Fatty Infiltration in Muscle

Myosteatosis refers to fatty infiltration of skeletal muscle which occurs in a variety
of conditions or combination of conditions including aging, disuse, injury, diabetes, and
neuromuscular disease [11]. Myosteatosis is associated with loss of muscle mass and
strength and increased mortality among the elderly [33]. Adipose tissue is considered
an endocrine organ that influences numerous physiological and pathological processes.
During weight gain and with aging, adipocytes can reach their capacity to store fat, which
increases ectopic storage of fat around and within the non-adipose tissue organs, such as
skeletal muscle, liver, and pancreas. In the past decade, myosteatosis has emerged as an
important fat depot associated with insulin resistance and Type 2 Diabetes [34]. There are
two fat depots within skeletal muscle: fat infiltration within myocytes (intramyocellular
fat) and visible fat within the fascia surrounding skeletal muscle (intermuscular fat) [11].
The quantification of both skeletal muscle fat depots can be determined by using invasive
analyses such as skeletal muscle biopsy samples, or, by using noninvasive radiological
techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and
magnetic resonance spectroscopy (MRS).

2.2.1. Fat Quantification Based on Chemical-Shift Encoded (CSE) Imaging

The original two-point Dixon method relies on the differences in resonant frequen-
cies between water and the main fat peak to generate images where fat and water signal
are in-phase or out-of-phase at specific echo times [35]. These in- and out-phase images
are then combined to yield a magnitude-based fat fraction image. However, the simple
two-point Dixon method is prone to errors in fat quantification that arise from various
sources: including main magnetic field inhomogeneities, and other confounding factors
such as T1, T2, noise bias, T2* correction, spectral complexity of fat, eddy currents, and
J-coupling [35]. While the extended Dixon methods address main magnetic field inhomo-
geneities, they do not address the multiple spectral peaks of fat which leads to fat and
water being incompletely separated [35]. The state-of-the-art sequences offer correction
for inhomogeneities and confounders and are based on multi-echo SPGR volume acqui-
sitions that model the multiple resonant frequencies of fat, estimate and correct for T2*
in the presence of fat, and use a special reconstruction called Iterative Decomposition of
Water and Fat with Echo Asymmetry and Least Squares Estimation (IDEAL) to extract the
MR-Proton density-weighted fat fraction (MR-PDFF) [36]. This fat quantification sequence
or a close variant is available on commercial scanners (IDEAL-IQ on GE, qDIXON on
Siemens and mDIXONQuant on Philips scanners) [37]. The QIBA MRI-PDFF committee
reported a large-scale study using a commercial PDFF phantom (12 vials with fat fraction
from 0 to 100%) that confirmed the accuracy of MRI in determining fat fraction obtained
for multiple vendors, at both 1.5 T and 3.0 T, and for multiple pulse sequences [38]. The
results from this study provide a measure of confidence to physicians who are using or
planning to integrate PDFF as a biomarker for skeletal muscle disease. Given the clinical
importance of fat infiltration in skeletal muscle, a number of studies have investigated fat
quantification in skeletal muscle. These studies are detailed later in clinical applications
of quantitative biomarkers for pathological muscle while studies on normal subjects are
summarized here. In this review, we cover pathologies that have been studied fairly exten-
sively by MRI. However, it should be noted that there are several other conditions that can
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be characterized by qMRI. For example, fatty degeneration of the autochthonous spinal
musculature has been found to be associated with fractures of the lower thoracic spine.
MRI quantification of fatty infiltration can be a useful biomarker for prediction of fracture
risk [39]. PDFF of the paraspinal musculature in normal subjects has been shown to be
significantly lower in men compared to women and furthermore, significantly correlated
with age [40]. Significant age-related differences in calf muscle composition (adipose from
PDFF and fibrosis from ultra-low TE imaging) have been reported in a cross-sectional
study of young and senior subjects [41]. In another study, PDFF measurements correlated
significantly with paraspinal isometric strength and were a better predictor of paraspinal
muscle strength beyond CSA [42].

2.2.2. Analysis of Fat Fraction Maps

The output of the IDEAL and its variants are separated fat and separated water signal
images. In-phase images are then calculated by taking the sum of the separated water and
fat images while out-of-phase images are calculated by taking the absolute value of the
difference of the separated water and fat images. Fat fraction images are generated from
the ratio of the separated fat signal over the sum of the separated water and fat signals [11].
There are several different approaches to analyzing the fat fraction maps. A threshold can be
applied to the fat fractions map to identify fat-dominant regions; however, the selection of
the threshold is arbitrary and measured adipose tissue volumes will vary with the threshold.
Karampinos et al. reported PDFF for calf muscles in subjects with diabetes and provided a
comprehensive assessment of PDFF in different compartments including the subcutaneous
adipose tissue (SAT), individual muscle ROIs (defined as intramuscle fat, intraMF), and
intermuscular fat (denoted as interMF) which is the region between individual muscles
(Figure 2) [43]. It should be noted that in the latter work, the segmentations of the individual
muscles were eroded to exclude edge pixels (the latter are included in the interMF). The
sum of intraMF and interMF is the intramuscular adipose tissue (IMAT). This latter study
showed that significant differences between normal and Type 2 Diabetes Mellitus subjects
were seen only in interMF and not in IMAT [43]; this finding emphasizes the importance
of determining fat fraction separately in different compartments. A note of caution is the
decreased ability to obtain accurate fat fraction in the presence of significant fibrosis (e.g.,
in Duchenne Muscular Dystrophy). The low signal in voxels with fibrotic tissue in both
water and fat images can bias the estimation of PDFF.
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tissue (SAT) mask, (c) mask including all the muscle regions and excluding the bone and bone marrow
regions in the tibia and fibula, (d) typical T2-weighted FSE image and superimposed muscular ROIs
used for the evaluation of fat distribution, (e) masks of 6 muscular ROIs, and (f) mask of soft tissue
excluding subcutaneous fat and 6 muscular ROIs. Three muscles (medial gastrocnemius-MG, lateral
gastrocnemius-LG, soleus-SOL) and three muscle compartments (anterior compartment-AC, lateral
compartment-LC, deep posterior compartment-DP) were used to define muscular regions. Fat within
the mask of (c) corresponds to IMAT, fat within the mask of (e) corresponds to intraMF, and the fat
within the mask of (f) corresponds to interMF. Reproduced with permission from the authors in
Ref. [43].

2.3. T2 Mapping

The spin-lattice relaxation time, T2, is sensitive to water mobility in tissue, and since
water mobility is very different in the intracellular and extracellular regions, it is reflective
of the relative amounts of water in the intracellular and extracellular muscle compartments.
In its simplest form, T2 can be measured by the signal decay in two images acquired at two
TEs. It is routinely measured by a multi-spin echo (MSE) sequence with a single excitation
RF pulse followed by multiple refocusing 180◦ pulses to acquire images at different TEs;
the typical number of acquired echoes is ~15–18 echoes with the first echo acquired at TE
time of ~8 ms (min TE) and an echo spacing of ~8 ms [10].

Earlier studies on ex vivo tissue identified multi-exponential T2 decay which modeled
the decay as arising from multiple compartments [10]. However, Saab et al. showed,
using a novel technique with the first echo acquired at TE of 0.6 ms and 2000 echoes that
acquired data in a single large voxel, that multi-exponential decay is also present in in vivo
muscle tissue [44]. They compared this latter technique with a standard imaging sequence
with six echoes and min TE of 18 ms. The former technique revealed multi-exponential
relaxation with the lowest T2 component (<5 ms) arising from the hydration shell of
macromolecules such as proteins while the longest T2 at 283 ms was a very small fraction
and was potentially assigned to either ‘free water’ or vascular blood. Of interest are the
three intermediate peaks, the longest T2 component (~100 ms) of these corresponds to
water in the interstitial (extracellular) compartment (10% fraction) while the T2 components
in the range of 25–45 ms were of intracellular origin (85% fraction). However, the standard
imaging sequence yielded 31 ms when the data were fit to a mono-exponential decay. It
is important to understand that from a clinical perspective, an increase in the interstitial
space and consequently, the extracellular water will result in an increase in the measured
T2. It should be noted that elevated T2 values occur in a variety of tissue conditions:
inflammation, tumor, necrosis, and denervation, and also in response to the acute changes
that occur after exercise of moderate to high intensity. However, though changes in T2
are non-specific, it can still be clinically effective as a tool for monitoring ‘disease activity’,
i.e., as a sensitive indicator of disease severity that shows immediate responsiveness to
underlying pathological processes [10].

The above background provides the basis for understanding the relationship of T2
to pathology. Skeletal muscle edema can be caused by a number of pathologies including
from trauma, early myositis ossificans, and inflammatory myopathies. Edema results in an
increase in the interstitial space which results in the increase in T2. This T2 elevation is seen
with many pathological conditions (e.g., idiopathic inflammatory myopathies [45], and
Duchenne Muscular Dystrophy [12]). It should be noted that the earliest studies employed
T2 mapping in order to localize muscle activation as well as to identify patterns of muscle
activation with exercise [46].

Another aspect of muscle T2 imaging is the infiltration of fat that occurs with age
and in most pathological muscle conditions [10]. Since T2 of fat is longer than that of
muscle, increases in fat infiltration will lead to elevated T2 values [47]. Fat-suppressed
sequences can be used to extract the T2 of muscle [45] but these can suffer from inadequate
fat suppression. A different approach taken in other studies is to use the T2 values as a
metric of fat infiltration [48]. But this precludes the identification of other intrinsic changes
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in muscle like inflammation that can also result in T2 elevation. The T2 of water and the T2
of fat can be extracted from a multiexponential fit to the experimental data enabling one to
disambiguate the effects of inflammation from that of fat infiltration [8].

There has been a long-standing research effort at implementing T2 mapping that
demonstrates spatial patterns and intensity of muscle activation; this approach has also
been called muscle functional imaging [46]. It has been well established that muscle T2
increases with exercise [49]. While earlier studies hypothesized that the exercise-induced T2
increases were primarily from an increase in extracellular fluid volume, it is now accepted
that the increase in T2 arises from an increase in muscle volume as a consequence of an
accumulation of intracellular water driven by osmotically and/or hydrostatically driven
fluid shifts [46].

T2 Analysis

The experimental data can be fit to mono- or multi-exponential fits using nonlinear
curve-fitting methods. In order to avoid making assumptions about the number of expo-
nential decays that are required to model the experimental data, nonnegative least squares
(NNLS) fitting can be used where the algorithm produces a spectrum of T2 values [10].
When the data are fit to a mono-exponential decay, it yields an average T2 from both
the water and fat compartments of muscle and is referred to as the ‘global T2 relaxation
time’ [46]. As discussed above, the global T2 will be influenced significantly by the extent
of fat infiltration and will shift to longer T2s with higher intramuscular fat. The bias to
longer T2s can be understood by comparing the T2 of muscle (33 ms @3T) to that of fat
(150 ms @3T); as fat fractions increase (e.g., in patients with muscular dystrophy), ‘global
T2 values’ will shift to longer T2s. In order to identify the intrinsic T2 changes in water
(muscle) with pathology, one can selectively excite water or suppress fat. Another approach
is to fit the data to bi-exponential or tri-exponential fit where the unknowns of the fit are
the fat fraction, the T2s of water and fat. This approach requires a fairly large number of
echoes for a robust fit as there are many fit parameters. Azzabou et al. reported that a
tri-exponential fit to multi-echo data with a 17 echo multi-echo spin-echo sequence [50].
This latter study extracted muscle water T2 which was independent of fat over a large
range of fat fraction in muscle. Recently, an Open-Source toolkit for water T2 mapping that
implements fast reconstruction enabled by extended phase graphs (EPG) simulations and
dictionary matching implemented on a general-purpose graphic processing unit has been
reported [51], further enabling T2 mapping to be implemented by the clinical community.

2.4. Diffusion Tensor Imaging (DTI)

Diffusion arises from random motion of particles suspended in a liquid or gas and
results in a displacement of particles and the square of the average displacement, <x2>, is
governed by Einstein’s diffusion equation, which in 1D is given by <x2> = 2Dt, where D is
the diffusion coefficient that quantifies the extent of diffusion and is characteristic of a given
tissue and t is the diffusion time [52]. The diffusion coefficient in tissue differs from bulk
diffusion coefficient in water as the former is hindered by a number of factors including
macromolecules and restricted by cells, membrane walls, and permeability. Diffusion in
tissue is described by the apparent diffusion coefficient (ADC) to distinguish it from the
bulk free diffusion coefficient.

The measurement of ADC in a diffusion-weighted MRI sequence is accomplished
by the addition of strong magnetic field gradients that sensitize the signal to the small
displacements arising from diffusion [53]. However, this simultaneously sensitizes the
image to physiological and other gross motions that would cause severe artifacts in conven-
tional diffusion-weighted spin-echo sequence. To circumvent these artifacts, a single-shot
acquisition called echo planar imaging (EPI) is used which acquires all the data with a
single excitation RF pulse [54]. However, this ultrafast technique suffers from low SNR, as
well as eddy current, and susceptibility-related artifacts; these latter two effects result in
geometric mis-mapping and local deformations as well as signal loss/signal bunching [55].
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Post-processing pipelines usually employ different algorithms to denoise as well as to
correct for artifacts prior to extraction of diffusion metrics [55].

Muscle is a highly organized tissue in which connective tissues (endo-, peri-, and
epimysium) create a complex network to enclose fibers, fascicles, and total muscles leading
to human skeletal muscles being anisotropic media. An extension of diffusion-weighted
imaging is diffusion tensor imaging (DTI) in which diffusion gradients are applied in
different directions to extract direction-dependent diffusion [56]. Thus, DTI is ideally suited
to explore the anisotropic tissue microstructure as in muscle. The tensor computation
process yields the largest diffusion value also denoted as the primary eigenvalue and two
smaller diffusion values in two orthogonal directions that are rankedby magnitude as the
secondary and tertiary diffusion eigenvalues [56]. Other diffusion metrics include the mean
diffusivity (MD) which is the average of the diffusion eigenvalues while the anisotropy of
diffusion is captured by the fractional anisotropy (FA) metric (a measure of the difference
in eigenvalues).

DTI also provides the basis of fiber tracking: the direction of the primary eigenvalue
is extracted from the computed tensor so that the ‘fiber’ direction is available at each
voxel [57]. Fiber tracking algorithms use the primary eigenvector direction for 3D muscle
fiber tractography. The tracking starts from either a manually or automatically identified
region of interest and terminated when stopping criteria based on FA range, max angular
change per tracking step, and/or anatomical boundary are met. There are several freeware
programs that were developed originally for brain imaging that can be adapted for muscle
DTI and fiber tractography as well [57]. Recently, a DTI Matlab toolbox was released that
allows users to perform tractography as well as to obtain muscle architectural parameters
including fiber length, pennation angle, and curvature [58]. Figure 3 is an example of fiber
tracking in the medial gastrocnemius using this toolbox customized to the acquisition in
the authors’ lab.
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Figure 3. Fibers tracked from the deep aponeurosis (aponeurosis surface shown in deep purple mesh
seen behind the muscle fibers in green) of the medial gastrocnemius using the MATLAB toolbox in
Ref. [58]. (unpublished work, Master’s research work by Ngara Bird in the authors’ lab).

In order to understand the changes in DTI indices with conditions such as disease,
exercise, or disuse, it is important to know the factors that affect diffusion. While the
resolution of DT-MRI precludes direct observations at the tissue microscopic scale, the DTI
indices may allow for indirect inferences about the microarchitecture of skeletal muscles.
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The measured diffusion indices reflect both intracellular and extracellular water volumes
and a change in either (cell swelling and/or extracellular edema) will result in changes in
the diffusion eigenvalues [56]. Other potential influences on the diffusion properties of
muscle include changes in cell diameter and membrane permeability changes [59]. While
there is general consensus that the direction of the lead eigenvector corresponds to the
muscle fiber direction, there is less certainty about the two eigenvectors corresponding to
the secondary and tertiary eigenvalues, respectively. Galban et al. proposed that the second
eigenvalue, λ2, corresponds to diffusion in the endomysium while the third eigenvalue, λ3,
reflects intracellular diffusion and is thus sensitive muscle fiber diameter [60]. Karampinos
et al. proposed an interesting diffusion tensor model that considers the cross-sectional
asymmetry of muscle fiber geometry [61]. In the latter model, diffusion occurs within the
muscle fiber and the extracellular space and λ2 and λ3 reflect the principal diameters of the
elliptical cross-sectional area of the myofibrils. Recent diffusion modeling studies support
the model by Karampinos et al. where reductions in asymmetry of fiber morphology are
seen in the case of disuse simulated by unilateral limb suspension and in a cross-sectional
study of aging effects [62,63]. It is potentially likely that changes in fiber diameter would
be reflected in changes in one or both of λ2 and λ3 and in FA. In summary, diffusion indices
are related in a complex manner to free water in the different compartments, cell wall
permeability, as well as muscle fiber diameter and cross-sectional asymmetry.

The application of DTI to characterize disease conditions is detailed later while a brief
summary of studies on normal subjects is provided here. DTI-derived indices have been shown
to be sensitive to age [60,64], and environmental factors (disuse, exercise) [61,64,65]. It should be
noted that diffusion is strongly temperature dependent (temperature coefficient: ~2.4%/◦C).
For in vivo imaging, the temperature dependence may be important in diffusion imaging
performed post-exercise [66]. Some of the observed increase in diffusion post-exercise can
be attributed to an increase in temperature [67]. Age-related effects of DTI changes in the
calf plantarflexors have been attributed to muscle atrophy or to the combined effects of
an increase in extracellular volume and a decrease in muscle fiber diameter (from muscle
atrophy) [60,64]. Froeling et al. reported that eigenvalues and FA were increased in thigh
muscles of amateur long-distance runners up to 2 days after running a marathon [65]. The
combined application of DTI and T2 mapping allowed the differentiation of microstructural
changes caused by active exercise or endurance training [68]. Malis et al. found that all
eigenvalues decreased with disuse simulated by unilateral limb suspension and diffusion
modeling yielded smaller diameter and more symmetric fibers post-suspension [62].

In addition to the information provided by the DTI-derived indices, DTI also enables
the study of tissue architecture through the ability to perform fiber tractography [69]. Fiber
tracking in calf, thigh, and forearm muscles, reproducibility, and validation of the archi-
tectural parameters have been reported [70]. Furthermore, a multi-center trial including
six MRI 3T sites and five traveling subjects reported excellent reproducibility of DTI and
architecture measures in calf muscle with semi-automated segmentation of the calf mus-
cles [70]. DTI fiber tractography has also been performed outside of the extremity muscles;
in the masseter muscle fiber tracking confirmed regional differences in the fiber orientation
change between different mandibular positions [71]. Fiber tractography has also enabled
3D visualization of the three major levator ani subdivisions, which can inform in vivo
functional anatomy [72]. Interest in the DTI of pelvic floor muscles was triggered by initial
results that showed fiber tractography might be able to reveal microstructural abnormali-
ties in the pelvic support that are not noticeable using conventional MRI techniques [73].
DTI-based fiber tracking also identified age-related significant differences in fiber length
and pennation angle of the gastrocnemius muscles between young and senior subjects;
these results agreed with ultrasound measurements [64].

While indices derived from DTI are sensitive to tissue microstructure, they are not
direct measures of tissue microstructure. Models of diffusion in muscle have been proposed
that are customized to the geometry and tissue subtypes in skeletal muscle. The Random
Permeable Barrier Model (RPBM) has been applied to normal muscle, to monitor the effect
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of exercise on muscle tissue microstructure in normal and diseased conditions as well
as to tracking induced atrophy and recovery (Reference [74] and references within). The
RPBM model treats muscle as a volume with randomly oriented infinite flat semipermeable
membranes and the time dependence of the transverse diffusion coefficient is fit to the
model to extract parameters of the tissue microstructure. The RPBM study of atrophy found
that the myofiber diameter was a stronger predictor of atrophy than either anatomical
measurements such as cross-sectional area or empirical diffusion parameters [74]. The
RPBM applied to a cross-sectional study of young and senior subjects revealed that fiber
diameter from RPBM fits compared to that from histology had the highest correlation
for the fit to λ2(t); these fits also predicted a decrease in fiber diameter and an increase
in cell permeability with age (Figure 4) [63]. The age-related patterns in λ2(t) and λ3(t)
could tentatively be explained from RPBM fits; these patterns may potentially arise from
a decrease in fiber asymmetry and an increase in permeability with age [63]. DT-MRI
RPBM metrics have recently been shown to agree with histology in Becker’s dystrophy
including muscle fiber size and variability indicating that the modeling approach shows
promise as imaging biomarkers for muscular dystrophies [75]. In addition to modeling
the diffusion data to extract microarchitectural data, a complementary approach is to
perform ex vivo high-resolution imaging at high field strengths to evaluate the diffusion
characteristics in the different compartments of the muscle (e.g., fascicle and perimysium).
For example, high-field imaging at 9.4T of the peripheral nerve has enabled the depiction
of the anisotropic diffusion within the fascicles and perineurium [76] It should be noted
that while there are clearly SNR advantages for high-resolution imaging at high fields,
disadvantages include image artifacts due to inhomogeneity in the main magnetic field
and radiofrequency field, as well as errors in chemical shift localization.
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2.5. Fibrosis Quantification

Most of the MRI quantification methods to document compositional changes with
pathology have focused on quantification of fat fraction. However, it should be recognized
that another major change that occurs in skeletal muscle is fibrosis, i.e., the replacement
of contractile tissue by connective tissue that has a high percentage of collagen [77]. The
replacement of contractile tissue in fibrosis has a greater negative impact than fat infiltration
since the latter only affects the amount of muscle tissue while the former affects both the
contractile tissue volume as well as the ability to transmit force [78]. In aging muscle, the
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loss of muscle mass is disproportionately smaller than the loss of muscle force [79]. Some of
the force loss has been predicted from computational modeling to arise from impairment in
lateral transmission of force caused by an increase in the connective tissue (increase in width
of the extracellular matrix) [80]; this was also indirectly inferred from dynamic studies of
muscle function [81,82]. Fibrosis is also present in muscular dystrophies such as Duchenne
Muscular Dystrophy (DMD) and importantly, an increase in endomysial tissue occurs
before any degeneration in skeletal muscles can be detected [78]. Recognizing the contribu-
tion of fibrosis to DMD, anti-fibrotic therapies have been developed [77]. Fibrosis is also
present in metabolic myopathies [83], scleroderma [84], and in ALS [85], and contributes to
disease progression. Several therapeutic approaches targeting pro-fibrotic pathways are
under development [84]. However, unlike MRI studies quantifying fat infiltration, there are
very few MR imaging studies quantifying fibrosis in these pathologies. A recent MRI study
of extracellular volume (ECV) fraction in peripheral muscle of systemic sclerosis patients
suggests diffuse fibrosis and an association of ECV with suspected myopathies [86]; this
latter study underlines the importance of MR imaging of fibrosis to potentially characterize
muscle involvement and response to treatment.

The above studies show that MRI techniques to characterize fibrosis and monitor
response to therapy will be a very useful tool for evaluation of neuromuscular diseases.
Unfortunately, there are no established MRI approaches to directly image fibrosis as there
are for quantification of fatty infiltration [8,9]. Here, we discuss two techniques (magnetiza-
tion transfer contrast and ultralow TEs) that have not yet been fully established but show
promise as imaging markers of fibrosis. Collagen and other macromolecules of the extracel-
lular matrix as well as their hydration water molecules have very short T2s such that they
are not ‘visible’ on conventional images acquired with a TE of 5–10 ms. However, these very
short T2 species can be imaged indirectly via magnetization transfer contrast or by imaging
at extremely low TEs to capture the signal from even the very fast-decaying protons.

It should be noted that fat and fibrosis quantification will be affected by several factors:
pulse sequence, image analysis to extract indices of fat and fibrosis, as well as manual/semi-
manual segmentation of the muscle or in the placement of regions of interest (ROIs). Fat
quantification is in a more advanced state of development than fibrosis quantification. The
accuracy of fat quantification across multiple vendors, field strengths, and pulse sequences
has been established [38]. Along the same lines, it is also important to develop fibrosis
phantoms for validation. The fat and/or fibrosis percentage is then extracted from the
parametric images either for the whole muscle or in user-selected ROIs. If the whole muscle
segmentation and ROI analysis have manual components, it is important to define specific
criteria for the manual interventions as well as to ensure consistency of these criteria across
the control cohorts and those with pathology. It is also be important to conduct inter- and
intra-user studies to establish the reproducibility of qMRI.

2.5.1. Magnetization Transfer Contrast

Magnetization Transfer (MT) describes the interaction of tissue water protons that
reside in different environments, encompassing the “free” water proton pool responsible
for the conventional MR imaging signal intensity and the “restricted” proton pool where
protons are bound to macromolecules [87]. Protons in the bound pool, such as those
bound to myelin, collagen, and proteoglycan, have a very short T2, making it difficult to
image them directly [87]. However, a selective off-resonance radio frequency (RF) pulse
can be applied such that the free pool remains unperturbed, while protons in the bound
pool are saturated. The exchange between the excited (saturated) bound pool and the
free pool effectively reduces the free pool net magnetization. Skeletal muscle exhibits a
strong magnetization transfer contrast (MTC) though the origin of this contrast is still
not definitively established. The primary contribution is hypothesized to come from the
collagenous proteins of the extracellular matrix [88,89], but there is increasing evidence
that there are contributions from the large abundance of contractile proteins [90].
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The simplest imaging technique to obtain an estimate of the MT effect is the mag-
netization transfer ratio (MTR) calculated from the signal intensity with and without the
off-resonance RF pulse. Since it requires only two measurements, it is fast and clinically
practical [87]. However, MTR values are pulse sequence, T1, and RF field homogeneity
dependent [87]. On the other end of the spectrum, the quantitative magnetization transfer
(qMT) techniques fit appropriately acquired MRI data to a two-pool model of magnetization
exchange between protons bound to macromolecules and free protons, providing estimates
of the relaxation and exchange rates as well as the ratio of the sizes of these two pools [88,89].
A faster, computationally simple, semi-quantitative index of Magnetization Transfer that
does not fit to a two-pool model but derives an index of Magnetization Transfer denoted as
MTsat has also been implemented [91]. This index, unlike MTR, is independent of pulse
sequence, T1 and RF field homogeneity. MTR, qMT, and MTsat mapping have been reported
for skeletal muscle [88,89,92–94].

Age- and gender-based differences in MTR (corrected for B1 inhomogeneities) and
MTsat have been reported [92–94]. MTR and MTsat were both correlated negatively with
age. It should be noted that of three quantitative markers (T2, fat fraction, and MTR), T2 and
fat fraction were significantly positively corelated while MTR (adjusted for fat fraction as a
covariate) was significantly negatively correlated with age [95]. However, in terms of effect
size, MTR was the largest indicating that this metric may be a clinically useful biomarker.
MTsat (with fat suppression), like MTR, was also significantly negatively correlated with
age and was higher in males than females [93,94]. These results are contradictory to the
hypothesis that the MT effect in muscle is a measure of the collagen macromolecule. If
that hypothesis is correct, then a positive correlation of MT indices with age is anticipated
since fibrosis (and thus, collagen) increases with age. Morrow et al. concluded that
age-related decrease in MTR may arise from myofiber quality and density changes with
age [92]. Support for the contribution of contractile proteins to MTR also comes from a
rat model study of MTR to track muscle fiber formation after injection of human muscle
progenitor cells for development of muscle tissue [90]. In the latter study, MTR increased
with myogenesis and correlated well with muscle contractility measurements. These
studies suggest that biopsy studies are critical to show the correlations of MT indices to
macromolecules in muscle.

2.5.2. Ultralow TE (UTE) Imaging

Ultralow TE imaging, as the name implies, acquires the signal at TE values as low
as 8 µs; typically sequences with TEs in the range of 8 µs to 200 µs are classified as UTE
imaging. Imaging at 8 µs–200 µs will render many short T2 species visible. Figure 5 shows
fibrotic and adipose voxels (after thresholding) extracted from the calf plantarflexors using
a combination of UTE (for low T2 tissues) and IDEAL (for fat) imaging in a cross-sectional
study of young and elderly subjects [41]. The latter study showed significant increase in fat
and connective tissue fraction in the older cohort.

One of the big challenges in extracting the short T2 species is that signal from the
long T2 species is overwhelming. One of the methods suggested is to subtract a longer
TE image from a UTE image (there is no contribution from short T2 species in the longer
TE image); however, the image subtraction is very sensitive to magnetic susceptibility
effects resulting from the long T2* weighting of the images and the initial fast dephasing of
the multiple fat resonances mimics short T2 tissue and thus their signal is not subtracted.
To overcome this, Araujo et al. [95] suggested an extension of the dual-echo method that
considers the T2* decay of long T2 components and also corrects for the oscillating behavior
of the signal from the different lipid resonances in fat. This idea was also implemented in
another study that integrated the fat fraction and T2 information from an IDEAL sequence
with a dual-echo UTEs sequence to extract macromolecular fractions (MMF) [96]. The latter
study extracted MMF from UTE images acquired at 30 µs and at 200 µs, illustrating the
potential to identify different macromolecules in muscle (e.g., collagen, contractile proteins)
by selection of the appropriate TE for the UTE echo.
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Figure 5. Typical examples of MR images and resulting tissue segmentation in young and older
women. Left: Water-saturated FGRE (showing IMAT), Middle: UTE (showing IMCT), Right: Standard
morphological images with superimposed outer contours of muscles and the result of the automated
tissue segmentation. Images in top and bottom row represent one young and one old subject,
respectively. (SOL—soleus muscle, GM—medial gastrocnemius muscle, GL—lateral gastrocnemius
muscle, IMAT—intramuscular adipose tissue, IMCT—intramuscular connective tissue.) Reproduced
with permission from the authors in Ref. [41].

2.6. Strain and Strain Rate Imaging

Strain and strain rate are kinematic properties that can be derived from the displace-
ment (strain)- and velocity (strain and strain rate)-encoded magnetic resonance (MR)
images and have been used to characterize deformation in skeletal muscle [78,81,82]. Strain
describes how the tissue is deformed with respect to a reference state and requires tissue
tracking. Strain rate describes the rate of regional deformation and does not require track-
ing or a reference state since it is an instantaneous measure. A positive strain or strain
rate indicates a local expansion whereas a negative strain or strain rate indicates a local
contraction. A number of dynamic studies have used velocity-encoded phase-contrast
(VE-PC) sequences to extract muscle tissue velocities during a contraction paradigm. Other
sequences like DENSE encode displacement while MR tagging is an alternate sequence
where the tagged lines/grid are tracked to quantify strain [97,98].

Strain and strain rate tensor imaging of the lower leg was used to study age-related
differences between younger and older subjects [82,99]. Maximum shear strain was shown
to correlate with force in this cohort of young and old subjects [99]. Figure 6 shows images
of different indices extracted from the strain and strain rate tensor data of the lower leg
during isometric contraction at different %MVCs of a young subject from Reference [99].
Strain rate tensor imaging of disuse atrophy also identified maximum shear strain as a
significant predictor of force loss with disuse [78]. The authors of the latter paper speculated
that the dependence of force on shear strain may be related to the mechanical properties of
the extracellular matrix that may become stiffer with age [81,99]. Recent developments in
accelerated VE-PC imaging using compressed sensing have enabled multi-slice imaging
and extraction of the 3D strain tensors [99].
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Figure 6. Temporal variation in forces exerted by a young subject averaged during the MR data
acquisition for different force levels (center panel) along with corresponding strain (right panel) and
strain rate (left panel) colormaps at the peak values of strain or strain rate along the fiber during
the contraction phase of the dynamic cycle for 60% (left column), 40% (middle column), and 30%
MVC (right column). The colormap bars are shown in each panel. The temporal frames at which the
peaks during contraction occurred for strain and strain rate are marked on the force curves. While the
peak in strains occurs at the maximum force reached, peak in strain rates occurs earlier and roughly
corresponds to the maximum slope of the force–time curve in the contraction cycle. Reproduced with
permission from the authors in Ref. [99].

3. In Vivo Clinical Applications
3.1. Duchenne Muscular Dystrophy (DMD)

DMD is an X-linked recessive genetic disease caused by mutation of the dystrophin
gene and is characterized by severe, progressive muscle wasting. The dystrophin protein
connects the muscle cytoskeleton with the extracellular matrix and prevents the muscle
membrane from being damaged during muscle contraction [100]. Therefore, loss of the dys-
trophin protein leads to degeneration of muscle fibers, chronic inflammation, progressive
fibrosis, and muscle replacement by fat. While currently there is no cure for DMD, there
are many new treatments that show promise; some of these treatments are now in clinical
trials [101]. Furthermore, there are rehabilitation training programs to improve muscle
function [102]; this training has been shown to be most effective in affected muscles in the
early stages of the disease [102]. Baseline and longitudinal assessment of subjects with
DMD can be realized by sensitive non-invasive biomarkers. These biomarkers should be
able to objectively characterize disease severity and progression in muscles as well as the
response to pharmacological and/or rehabilitation treatment. MRI enables non-invasive,
repeatable, and objective assessment of individual muscles. It is also evident from Section 2
on the techniques that the consequences of the loss of dystrophin protein listed above
can be tracked using MRI. A recent meta-analysis of publications of MRI in DMD till
2019 concluded that additional larger clinical trials, more validation studies to histology
standards, and multiparametric MRI mapping are needed to establish MRI as a biomarker
in DMD [103].

There are many clinical studies that have established qMRI as being able to success-
fully characterize and to monitor DMD. Confirming earlier work, Yin et al. showed the
T2 of thigh muscles of DMD subjects was significantly longer than control subjects and
that functional outcomes were significantly correlated with the overall mean T2 relaxation
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time [48]. The earlier papers focused on quantifying fat infiltration and used T2 as a surro-
gate marker of fat and confirmed that fat fraction was highly positively correlated with fat
fraction from MR spectroscopy [104]. Kim et al. explored fat-suppressed T2 mapping for
edema quantification and concluded that fat fraction rather than edema was more highly
correlated with clinical evaluations [105]. The calf muscles have also been studied as there
is slower progression in the distal muscles allowing extended longitudinal monitoring [106].
This latter study found significant correlations between the change in all soleus T2 (nonfat
suppressed T2) and change in functional measures over two years. Mankodi et al. im-
plemented IDEAL-CPMG to extract fat fraction and T2,w in the thigh muscles of subjects
with DMD and healthy controls and concluded that fat fraction and T2,w may be useful as
independent biomarkers of fat infiltration and inflammation, respectively [107]. Figure 7
shows that IDEAL-CPMG can disambiguate fat infiltration from inflammation in the fat
fraction and water T2 maps. A longitudinal study of DMD subjects over a one-year time
period used quantitative MRI (three-point Dixon for F/W, T2, and T1 mapping) to identify
the most responsive muscle and predict subclinical disease progression in functionally
stable patients. The latter study concluded that qMRI biomarkers are responsive to disease
progression, can also detect subclinical disease progression, and that the gluteus maximus
is the most responsive to disease progression [108].
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Figure 7. Representative T1-weighted and IDEAL-CPMG images of the thigh muscles in three subjects
with DMD. A T1-weighted image (A), T2-corrected fat fraction map (B), and water T2 map (C) are
shown representing subject anatomy, changes in muscle apparent fat fraction (AFFIDEAL-CPMG),
and muscle water T2 (T2w IDEAL-CPMG), respectively, in the thigh muscles of subjects with DMD.
Different severity of fatty degeneration is present in the thigh muscles of each subject, whereas
inflammatory activity is sparse and seen in only few muscles (arrow). Reproduced with permission
from the authors in Ref. [107].

The majority of quantitative MRI studies on subjects with DMD have focused on
fat fraction and T2 mapping. However, DTI has also been used to identify differences
in fiber organization in diseased and healthy muscle tissue. Hoojimans et al. combined
DTI with quantitative in vivo measures of mean water T2, %fat, and SNR to evaluate their
effects on DTI parameter estimation in DMD subjects and healthy controls [109]. Analyzing
voxels with a baseline SNR above a certain threshold (to exclude voxels with high fat
fraction), the latter study reported significantly greater values for MD in the tibialis anterior
((1.78 ± 0.04 (DMD), 1.61 ± 0.04 (control), p < 0.009) and for the third eigenvalue in the
anterior tibialis (1.33 ± 0.03 (DMD), 1.17 ± 0.03 (control), p < 0.007), and in the lateral
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gastrocnemius muscles (1.31 ± 0.023 (DMD), 1.15 ± 0.02 (control), p < 0.001), and no
significant change is fractional anisotropy in DMD subjects compared to controls. This
study underlines the need to account for the effect of confounders on diffusion indices to
detect true between-group differences between controls and subjects with DMD [109]. The
authors concluded that the increased MD and the third eigenvalue in the TA muscle most
likely reflect the pathophysiology in subjects with DMD [110]. Another study of DTI of
thigh muscles of DMD subjects and healthy controls showed that, for all the thigh muscles,
the MD was higher and FA values lower compared to healthy controls and correlated
with grade of fatty infiltration; these findings indicate that DTI can be used to characterize
DMD-induced muscle damage and extent of disease severity [110]. More DTI studies with
particular attention to effective fat suppression and the baseline SNR of analyzed voxels
are required to obtain consistent and reliable measurements independent of the degree of
fat infiltration.

3.2. Idiopathic Inflammatory Myopathies (IIM)

The idiopathic inflammatory myopathies (IIMs) are a group of autoimmune conditions
characterized by inflammation of muscle (myositis) that presents with weakness, elevated
muscle enzymes, inflammatory infiltrates on biopsy, and can be accompanied by other
systemic manifestations [111]. It results in inflammation in other organ systems, resulting
in widespread organ dysfunction, increased morbidity, and early mortality. The IIMs
include dermatomyositis (DM), necrotizing autoimmune myopathy (NAM), sporadic
inclusion body myositis (sIBM), overlap myositis and antisynthetase syndrome (ASyS),
and polymyositis (PM) [111]. Qualitative and quantitative MRI play an important role
in IIM not only as a diagnostic tool but also in monitoring progression and response to
therapy [112].

Myositis is accompanied by both fatty infiltration and inflammatory changes [111].
Qualitatively, fatty infiltration is seen as hyperintensity on T1-weighted images while the
fat fraction can be quantified by a three-point Dixon or more accurately by sequences
such as IDEAL or its equivalents [35,36]. Qualitative detection of inflammatory changes is
performed on T2-weighted sequences where they appear as hyperintensities. It is important
to note that fat should be suppressed on T2-weighted sequences since it also presents as
a hyperintense signal [112]. T2 mapping is used for quantification of inflammation, and
as in T2-weighted imaging, it is important to suppress fat to exclude the contributions
from fat infiltration that accompany chronic muscle damage. Yao et al. showed the
feasibility of generating fat-corrected T2 maps by incorporating information from fat
fraction maps; they show that T2 was as responsive as fat-corrected T2 when either is used
for qualitative scoring [45]. It should also be noted that T2 values can be as high as 50 ms
(15 ms above normal condition) in untreated IIM, values that are rarely seen in other muscle
conditions [111]. Another important aspect is that in the IBM type of IIM, T2,w showed early
changes before significant intramuscular fat accumulation, providing potential measures of
early disease before irreversible changes occur [106]. The anatomy covered in IIM is the
lower extremity and sometimes restricted to only the thighs but whole-body imaging can
be useful to detect patterns of muscle involvement and fatty infiltration specific to each
IIM [111,112].

Diffusion tensor imaging has been applied to study thigh muscles of subjects with
myositis (specifically PM and DM) [113,114]. Wang et al. found that ADC of edematous
muscle was significantly increased compared to normal control subjects as well as to non-
edematous muscle in the vastus medialis (2.01 ± 0.03 (PM/DM), 1.72 ± 0.08 (control),
p < 0.017); vastus intermedius (2.07 ± 0.21 (PM/DM), 1.70 ± 0.11 (control), p < 0.017);
adductor magnus (2.03 ± 0.16(PM/DM), 1.71 ± 0.13 (control), p < 0.017); and semimembra-
nous (1.98 ± 0.23(PM/DM), 1.64 ± 0.14 (control), p < 0.017) (ADC values in µm2/ms) [114].
This latter study also found that significant decrease in FA in edematous muscle of sub-
jects was found compared to normal control subjects in the vastus medialis (0.22 ± 0.03
(PM/DM), 0.30 ± 0.06 (control), p < 0.017); vastus intermedius (0.22 ± 0.03 (PM/DM),
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0.30 ± 0.06 (control), p < 0.017); adductor magnus (0.19 ± 0.04 (PM/DM), 0.25 ± 0.03
(control), p < 0.017); and semimembranous (0.23 ± 0.04 (PM/DM), 0.29 ± 0.04 (control),
p < 0.017). This is not surprising since inflammation increases free water (seen as an increase
in T2,w) and DTI indices may be tracking the changes in free water. The role of diffusion
tensor imaging in myositis awaits further studies.

3.3. Pompe Disease

Pompe disease is characterized by a deficiency of acid alpha-glucosidase (AAG) that
results in muscle weakness and a variable degree of disability [115]. AAG deficiency leads
to accumulation of glycogen within the lysosomes of the cells in multiple tissues, including
skeletal, cardiac, and smooth muscle. There is an approved therapy based on enzymatic
replacement (ERT) alglucosidase alfa that has modified disease progression [116]. qMRI can
potentially detect subtle changes with treatment in Pompe disease in muscle structure, fat,
and glycogen content even before the effects are seen clinically in muscle function tests [115].
An excellent review of MRI in Pompe disease is available in Reference [115]. Figure 8 shows
whole-body T1-weighted MRI revealing typical patterns of muscle involvement in late-
onset Pompe disease (LOPD).
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the efficacy of the treatment. qMRI will be clearly very important as newer treatments are 
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Figure 8. Whole-body T1w imaging of patients with late-onset Pompe disease. (A) Involvement of
tongue is observed. In the scapular girdle, the subscapularis (arrow in B,C) and latissimus dorsi
(arrow in D) are affected, yet the deltoid, biceps, and triceps are not typically involved. Paraspinal
and abdominal muscles are typically affected (E,F). The gluteus minimus and medius (arrow in H) are
affected earlier than the gluteus maximus (arrow in I). Patients in the early stages of disease may have
no glutei involvement (G). In the thigh, the adductor magnus and long head of biceps are involved
earlier (J,M), whereas posterior muscles and the vasti are affected later in the progression (K,N). Even-
tually, all muscles of the thigh are affected (L,O). A proximal-to-distal gradient in the vasti is usually
identified (J–M,K–N), although it is lost in advanced stages (L–O). Lower legs are usually spared (P),
although mild replacement of the soleus (arrow in Q) and media gastrocnemius (arrow in R) can
be observed. The images shown are from seven patients. T1w, T1-weighted. Reproduced with
permission from the authors in Ref. [115].
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Rehmann et al. used qMRI including quantitative Dixon for fat fraction and diffusion
tensor imaging to image the thigh muscles of subjects with LOPD and compared to healthy
controls. The DTI metrics included mean diffusivity (MD), eigenvalues (λ1–3), radial
diffusivity (RD), and fractional anisotropy (FA) [117]. They found that even thigh muscles
with <10% fat fraction showed significant differences in all the diffusion parameters except
for FA; all the diffusion values were significantly lower and this has been hypothesized
to arise from the accumulation of glycogen in muscle fibers that restricts water mobility
and therefore, DTI could potentially reveal important structural changes early in the
progression of the disease even prior to fatty degeneration [117]. The EMBASSY study
followed 16 LOPD subjects on ERT and assessed the changes from baseline to 6 months
using histology-based (% tissue area of glycogen), MR imaging (T1w, T2, fat fraction), and
muscle function biomarkers. The glycogen area decreased and function improved but there
were no changes in the MR assessment over the 6-month period [118].

Long-term follow-up of LOPD subjects treated by ERT for fat infiltration in psoas
and paraspinal muscles based on conventional MRI revealed significant increase between
baseline and at 39 months which also correlated with a decrease in performance [119].
However, both fat fraction and performance did not change in the long-term follow-up
(63 months), showing promise for ERT [118]. A follow-up of LOPD subjects with qMRI
showed that fat fraction increased significantly in every thigh muscle by an average of 1.9%
per year in ERT-treated patients, compared with 0.8% in pre-symptomatic patients [120].
The authors of the latter study also observed a significant correlation between changes in
fat fraction and changes in muscle function tests; this potentially indicates that fat fraction
and muscle function tests can be considered good outcome measures for clinical trials in
LOPD patients [120]. These studies show that future research with larger cohort size and
long-term follow-up of LOPD subjects with ERT are required to determine the efficacy of
the treatment. qMRI will be clearly very important as newer treatments are introduced and
long-term follow-up is needed to assess disease status.

3.4. Sarcopenia

Sarcopenia is the progressive loss of muscle mass and strength that occurs with
advancing age as well as with a number of long-term conditions [121]. It was originally
defined by a loss of muscle mass but has been extended to skeletal muscle function with
the latest definition from the European Group on Sarcopenia in Older People (EWGSOP):
“a muscle disease rooted in adverse muscle changes that accrue across a lifetime” [121].

A recent review performs a comprehensive survey of all studies that reported MRI-
derived biomarkers related to sarcopenia [122]. This review reveals that the primary
anatomical regions imaged were the thigh followed by the trunk. Currently, MRI allows the
assessment of muscle quantity and quality (MQQ) using T1w, T2w for cross-sectional area
measurements, inflammation/edema from T2w mapping, proton density fat fraction, and
fat free muscle mass from Dixon or variant sequences, extramyocellular and intramyocellu-
lar lipid fractions from Magnetic Resonance Spectroscopy, ADC, FA, and fiber architecture
(length and pennation angle) from DTI [41,64,123–126]. Yang et al. have shown using a
modified Dixon sequence that muscle CSA and intermuscular fat area at the 50% femur
length highly correlated with muscle and intermuscular fat volumes estimated from the
middle third of the thigh in a cohort of older subjects classified as normal, obese, sarcopenia,
and sarcopenia-obese [124].

An MR compositional study established that aging causes significant changes in
skeletal muscle composition, with marked increases in non-contractile tissues (adipose
and fibrosis infiltration) [41]. Such quantification of the remodeling process is likely to
be of functional and clinical importance in elucidating the causes of the disproportionate
age-associated decrease in force compared to that of muscle volume. Melville et al. imaged
the quadriceps musculature of young healthy females and compared them to non-frail
and pre-frail/frail older females [125]. MR imaging assessment included diffusion tensor
imaging, T2 mapping, and quantitative fat fraction using MRS. The latter study found
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that pre-frail/frail adults demonstrated increased FA compared to young controls and
non-frail adults with increasing T2 and intramuscular fat among the control, non-frail,
and pre-frail/frail categories [125]. Another cross-sectional DTI study of young and senior
(non-frail) subjects showed significantly higher eigenvalues and trended to a higher FA
and significantly shorter fiber lengths and smaller pennation angles in the gastrocnemius
muscles of the senior cohort compared to the young cohort [64]. Cameron et. al. extracted
DTI indices (fractional anisotropy and mean diffusivity) and architecture (fiber length,
pennation angle, PCSA) in thigh muscles in a cohort of 94 subjects with an age range
22–89 years [126]. The latter study showed skeletal muscle architectural changes with aging
and intermuscular differences in the microstructure.

Though MRI has a number of quantitative assessments of muscle quality and quantity,
these remain in the realm of research in sarcopenia due to the lack of imaging and analysis
standardization, complex post-processing, and long scan times. More studies focused
on validation as well as on the identification of simpler MR metrics (acquisition and/or
processing) will serve to expedite establishment of MRI as an imaging biomarker of sar-
copenia. Large-scale multi-parametric MR imaging studies on cohorts comparing heathy
young, active older, pre-frail, and frail older subjects will be required to determine thresh-
olds for each MR metric for the three sub-groups of older subjects to establish MRI-based
biomarkers of sarcopenia.

3.5. Muscle Injury

MRI is routinely used to assess the severity in sports-related muscle injuries, and
combined with clinical evaluation, used to predict ‘return to play (RTP)’ [127,128]. It
is considered the reference standard for the evaluation of muscle injuries MRI aids in
evaluating and in the management of sports-related muscle injuries. Furthermore, MRI can
also evaluate the long-term changes following injury such as scarring and focus or diffuse
fatty muscle atrophy [128].

The integration of quantitative multiparametric MRI will increase the diagnostic
efficiency and predictive power of MRI [128]. Most of the quantitative MRI studies thus
far have focused on DTI and T2 metrics while some have evaluated the loss of muscle
volume after injuries and in the rehabilitation period. Muhlenfeld et al. reported significant
muscle volume loss (between 2% and 7%) in the upper thigh occurs in recreational soccer
players assessed at three and at six weeks following a hamstring injury [129]. Diffusion
tensor imaging (DTI) and T2 mapping have recently been applied to monitor recovery after
an acute hamstring injury [130]. All DTI indices except FA were elevated compared to
control muscles immediately after the injury and normalized during the recovery period.
Mean T2 relaxation times in injured muscles were not significantly elevated compared with
control muscles at any time point [130]. Figure 9 shows the baseline, mean diffusion, and
T2 maps in three subjects at three time points after an acute hamstring injury. Future work
should explore the potential of DTI indices to predict ‘return to play (RTP)’ and recovery
times in athletes after an acute strain injury [127,128]. Biglands et al. also assessed the
ability of T2 mapping, diffusion tensor imaging (DTI), and radiologists’ scores to detect
muscle changes following acute muscle tear in athletes and to predict RTP [131]. While T2
and DTI measurements in muscle could detect changes due to healing following muscle
tear, they were inferior predictors of RTP compared with the radiologists’ visual scoring.
Bye et al. investigated mechanisms by which short-term resistance training (6 weeks)
increases strength of partially paralyzed muscles in people with spinal cord injury (SCI)
using DTI including fiber architecture and physiological cross-sectional area (PCSA) [132].
The lack of any change in muscle architecture post-training in this study suggests that
short-term strength gains are due to increased neural drive or an increase in specific muscle
tension [132].
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Figure 9. Representative images of three athletes showing coronal fat-suppressed T2-weighted images
of the hamstring injury depicted by the red oval (first column) together with axial spin-echo EPI
images (b-value = 0 s/mm2) (second column), reconstructed mean diffusivity (MD) maps (third
column), and reconstructed qT2 maps (fourth column) at the three time points (time point 1: within
1 week postinjury; time point 2: 2 weeks after visit 1; and time point 3: at clinical return to play). DTI,
diffusion tensor imaging; qT2, quantitative T2. Reproduced with permission from the authors in
Ref. [130].
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While muscle biomarkers have been entirely devoted to markers of structure, composi-
tion, and fiber architecture, a few dynamic imaging studies have also been reported [97–99].
Silder et al. used velocity-encoded phase contrast imaging to map thigh muscle strains
under active lengthening paradigms in subjects with prior hamstring injuries [133]. They
found relatively larger localized tissue strains during active lengthening contractions near
the proximal musculotendon junction from which they concluded that these large strains
may predispose the proximal biceps femoris to injury. With faster and 3D imaging capabil-
ities of the 4D-compressed sensing flow sequences, it is possible now to cover the entire
thigh in the dynamic scan in 4–5 min [134]. This opens up exciting possibilities to establish
imaging biomarkers of muscle function.

4. Conclusions

Quantitative MRI and imaging biomarkers are an active area of research and the
multiparametric nature of MRI allows one to probe the muscle with different metrics.
Some of these metrics have reached a stage of maturity to be granted the status of imaging
biomarkers [10]. These mature biomarkers are morphological (volumes, cross-sectional
areas), compositional (fat infiltration), and T2 mapping (inflammatory process, disease
activity marker). The advent of deep learning methods is poised to make automated
muscle segmentation a reality and with it, brings the ability to extract biomarker values in
a consistent and accurate manner. These imaging biomarkers now need to be evaluated in
large-scale clinical trials to determine their utility as outcome measures. Besides the mature
muscle imaging biomarkers, there are other techniques that hold great promise and are
in different stages of development: diffusion tensor imaging has already been shown to
provide characterization of muscle that is distinct from the established biomarkers in normal
and diseased states and fibrosis quantification which is still in its infancy. In addition,
muscle proton and phosphorous MR spectroscopy also show considerable promise; these
latter two topics are not covered here. Phosphorous spectroscopy of muscle was the
subject of some of the earliest studies in biological samples and is a well-researched area
that provides insight into energy metabolism, a metric not available through other MRI
approaches. Proton spectroscopy is unique in its ability to quantify intramyocellular fat and
also serves as a reference standard for quantifying adipose content. Other biomarkers of
interest but not discussed here are MR elastography for muscle mechanical properties and
MR perfusion for assessing blood supply to the skeletal muscle. As mentioned in the prior
section, dynamic imaging of muscle opens up an unprecedented opportunity to identify
a novel set of imaging biomarkers of muscle function. Along with technical advances in
imaging sequences, image processing, and standardization, large-scale multi-institutional
studies with well-defined outcomes measures in different disease states are required to
advance and firmly establish qMRI in the arsenal of tools for the management of MSK
disease conditions.
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