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Abstract: Magnetic resonance imaging (MRI) is known for its accurate soft tissue delineation of
tumors and normal tissues. This development has significantly impacted the imaging and treatment
of cancers. Radiomics is the process of extracting high-dimensional features from medical images.
Several studies have shown that these extracted features may be used to build machine-learning mod-
els for the prediction of treatment outcomes of cancer patients. Various feature selection techniques
and machine models interrogate the relevant radiomics features for predicting cancer treatment
outcomes. This study aims to provide an overview of MRI radiomics features used in predicting
clinical treatment outcomes with machine learning techniques. The review includes examples from
different disease sites. It will also discuss the impact of magnetic field strength, sample size, and
other characteristics on outcome prediction performance.
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1. Introduction

Personalized cancer medicine is an emerging practice that focuses on using patient-
specific physiological and molecular characteristics to assist decision-making concerning
the prevention, diagnosis, and prognosis of cancer [1]. These patient-specific features can be
acquired from medical images, which not only visualize tumor sites and organs at risk but
also provide biological information and functional genomics [2]. This information promises
improvement in early cancer detection and can help develop personalized therapies and
prognostic classifications in the future.

There are different imaging modalities used for medical image acquisition: positron
emission tomography (PET), magnetic resonance imaging (MRI), computed tomography (CT),
ultrasound imaging, etc. These modalities have different modes of operation and applications
in diagnosis and therapy. Magnetic resonance (MR) images are known for their soft tissue
delineation between tumors and normal tissues and better contrast resolution when compared
to other modalities [3]. In chemotherapy, MRI is a valuable tool for monitoring some breast
cancer patient’s response to treatment by comparing the pre-and post-treatment images. It is
also used in assessing residual tumors after mastectomy and guiding biopsies [4–7]. With the
development of the combination of MRI and linear accelerators, MRI-Linacs, there has been
an increased use of MRI in radiotherapy planning for accurate delineation of the gross tumor
volume, GTV, and nearby critical organs at risk [8]. Furthermore, in MR-guided adaptive
radiotherapy (MRgRT), MRI is used in real-time image guidance to monitor tumor motion and
anatomical changes during treatment [9,10]. This enables the adaptation of treatment plans to
the anatomy of the day, which in turn improves clinical outcomes [11]. The extensive biological
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information obtained during MRI acquisition leads to an excellent source of data/information
for building computational models for response predictions [12].

Patient-specific image features can be extracted from MR images for potential cancer
diagnosis, prognosis, and prediction of treatment outcomes through a method called
radiomics [13]. Radiomics involves the extraction of quantitative image features that
describe the heterogeneity and statistical distribution of a particular region of interest,
providing information about its shape, size, phenotype, and texture [13,14]. These features
may help differentiate this region from the rest of the image, have a potential relationship
with cancer treatment outcomes, and present an opportunity to be used as a predictive
biomarker for these outcomes [15].

This review’s first section focuses on the principles of radiomics and its workflow. The
second section will focus on the overview of MRI radiomics, followed by a section on mag-
netic resonance-guided radiotherapy and the similarities and differences between higher
and lower magnetic field strength MRI-Linacs. Lastly, the Discussion section explores
the impact of magnetic fields, feature selection techniques, and other factors on outcome
models for response prediction.

2. Radiomics Workflow

The difference in the physiology between tumor cells and surrounding healthy tissues
is the basis for the need for medical imaging in cancer therapy. Radiomics involves the
extraction of high-dimensional quantitative features, which may provide pathological
information about the disease sites and potentially correlate with the clinical outcomes,
aiding its application in diagnosis and prognosis [16].

The radiomics workflow (Figure 1) starts with image acquisition, which can be any
of the imaging modalities—MRI, PET, CT, etc.—followed by the segmentation of the
region of interest and the application of preprocessing techniques such as voxel resampling
and intensity normalization. Next, features are extracted from the region of interest,
which are used for statistical and machine learning analysis for clinical outcome model
prediction [17,18].
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such as MRI. This is followed by segmentation of the region of interest and the application of some
preprocessing techniques like voxel resampling and intensity normalization. After this, features are
extracted from the region of interest, which are used for statistical and machine learning analysis for
clinical outcome model prediction.



Tomography 2024, 10 1441

Radiomics features reflect information about the tumor with respect to its size, shape,
phenotype, texture, etc. [13,19]. Some features strongly correlate with the clinical outcomes,
which aids in its application in diagnosis and prognosis. They are classified into first-order,
second-order, and wavelet features. First-order features are statistical features that give
information about the distribution of the voxel intensities without considering the spatial
distribution. At the same time, second-order features analyze the spatial distribution of the
image intensities and also the relationship between neighboring voxels. Features that are
extracted when the images have undergone wavelet transformations are called wavelet
features [19–22].

2.1. Feature Selection Techniques

The number of highly correlated features affects the quality of the radiomics model,
which can lead to overfitting and poor generalization of the model. Improving the quality
of the features involves distinguishing between the relevant features for a specific outcome
prediction and the redundant/irrelevant ones. Care must be taken as some features have
been identified as having intrinsic dependencies. In contrast, others may be affected by
intensity discretization, spatial resolution, scanner variability, and even by the kernel
used during image reconstruction [23–25]. This makes the feature selection stage of the
radiomics workflow an essential process. Different techniques are reported in the literature,
and authors have reported using one or a combination of various techniques to select
the relevant features from these high-dimensional extracted features (see Supplementary
Tables S1–S5). These techniques are categorized into three major groups—filter, wrapper,
and embedded methods. In the filter method, features are selected based on a predefined
threshold on the correlation coefficients or other statistical tests with respect to the target
variable without considering any specific machine learning algorithm. In contrast, in the
wrapper method, feature subsets are evaluated by training the machine learning algorithm
on a different combination of features and selecting the subset that best optimizes the
model’s performance, whereas, in the embedded method, features are selected during the
machine learning model’s training. The model’s predictive performance and the relevance
of selected features are optimized simultaneously [21].

2.2. Machine Learning Models for Response Prediction

After extraction and selection of relevant features, a machine learning (ML) model is
used to classify patients into different groups according to the treatment outcome that is
to be predicted. Here are some of the common ML models: logistic regression (LR), naïve
Bayes (NB), decision trees (DT), random forest (RF), adaptive boosting (AdaBoost), extreme
gradient boosting (XGBoost), and deep learning (DL).

3. MRI Radiomics Models for Response Prediction
3.1. Literature Review

A literature search was conducted in December 2023 by searching for the keywords
“MRI Radiomics AND Machine Learning” on the Scopus database. The search was limited
to studies between 2012 and 2023 and only full-text articles in English. Also, an additional
search for “Delta Radiomics MRgRT” on PubMed gave nine articles that fit this review’s
purpose. The search result was narrowed to 82 articles on Scopus and five from PubMed.
These 87 articles were further screened, and a few were excluded for various reasons, such
as articles that were unrelated to treatment outcome prediction, not related to cancer, or
were review articles. This reduced our articles to 34 for the literature review. Figure 2
shows the PRISMA diagram of the literature search workflow.
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The goal of this review is to provide a lookup table that contains an overview of MRI
(Supplementary Tables S1–S5) and MRgRT radiomics response prediction machine learn-
ing models—the image preprocessing techniques, feature selection techniques, machine
learning algorithms, relevant features selected, and model evaluation results.

3.2. Overview of MRI Radiomics Models for Response Prediction

Patients’ responses to treatment can be determined by estimating different outcomes
like progression, local/distant control, and overall survival. As mentioned earlier, ra-
diomics features may describe the histology of tumor cells, their physiology, and microenvi-
ronment characteristics and are thought to be correlated to clinical outcomes as they relate
to the tumor under observation (though they may also potentially impact distant metastases
through a local process) [26]. Thus, radiomics may be leveraged to build prediction models
for treatment response [27]. Radiomics models are computational models that use quantita-
tive features from medical images to characterize and predict cancer treatment outcomes.
After treatment, machine learning models have been used to predict the outcome/response
to these treatments. Here are a few examples in the literature of how radiomics models
have been used to predict treatment outcomes in various cancers such as glioblastoma,
nasopharyngeal, cervical, hepatocellular carcinoma, and breast.
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3.2.1. Brain Cancer

Patel et al. [28] employed a machine-learning classification model for glioblastoma
patients to predict true progression and pseudoprogression after chemotherapy. A to-
tal of 307 radiomics feature was extracted from contrast-enhanced T1-weighted images
(CE-T1WI), T2-weighted images (T2WI), and Apparent Diffusion Coefficient (ADC) maps
scanned on a 1.5 T MRI scanner. After feature selection, six feature models were investi-
gated, consisting of different combinations of clinical, molecular, and radiomics features.
The optimal model for the classification of the patients in the test set with an AUC of 0.80
(0.74–0.86) is composed of a clinical feature (Age), a molecular feature (MGMT methylation),
and seven radiomics features (see Supplementary Table S1).

Ammari et al. [29] developed a machine learning-based radiomics MRI model to predict
overall survival (OS) and progression-free survival (PFS) in glioblastoma patients treated with
bevacizumab. A cohort of 194 patients was divided into training and testing sets for survival
regression, 9-month survival, 12-month survival, 15-month survival, 6-month progression,
and 12-month progression models. Seven classification models were trained—random forest,
gradient boosting, AdaBoost, logistic regression (LR), k-nearest neighbor (KNN), naïve Bayes
(NB), and support vector machine (SVM). For 9-month OS, LR has an AUC of 0.78; for
12-month OS, SVM has an AUC of 0.85; for 15-month OS, RF has an AUC of 0.76; and PFS of
6 months has an AUC of 0.71 on the test set (see Supplementary Table S1).

3.2.2. Nasopharyngeal Carcinoma

Du et al. [30] presented a two-center study to predict the 3-year disease progression
of non-metastatic nasopharyngeal carcinoma after intensity-modulated radiation therapy.
There were 277 patients from two institutions with CE-T1WI and T2WI with a 3.0 T MRI
scanner. Five hundred and twenty-five features were extracted per patient. Pearson correlation
coefficient, intraclass coefficient, and hierarchical clustering were used to select four radiomic
features in combination with clinical features like the T stage and overall stage. The support
vector machine has an AUC of 0.80 on the test set (see Supplementary Table S2).

3.2.3. Liver Cancer

Chen et al. [31] predicted the response to transarterial chemoembolization in hepato-
cellular carcinoma patients. One hundred and forty-four patients were randomly assigned
to training and test sets. Four hundred and forty features were extracted from axial T2-
weighted and mDIXON-T1WI images from a 1.5 T or 3.0 T scanner. Minimum redundancy
maximum relevance selection was used for dimensionality reduction in KNN and SVM,
while LASSO and deep neural networks do not require feature selection. The deep neural
network outperformed other models in the test set, and the clinical model and DNN model
achieved an AUC of 0.831 on the test set and an AUC of 0.735 on external validation (see
Supplementary Table S3).

3.2.4. Breast Cancer

Chen et al. [32] built a machine learning-based radiomics nomogram to predict neoad-
juvant chemotherapy efficacy in breast cancer patients. Maximum relevance minimum
redundancy and LASSO selection were used to reduce features from 256 to 6 optimal features.
The radiomics signature gave an AUC of 0.834 on the test set (see Supplementary Table S4).
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3.2.5. Other Cancer Sites

In cervical cancer, Jajodia et al. [33] used a cohort of 52 patients with various FIGO
stages are used in this study. Eight hundred and fifty-one features were extracted from
DWI, ADC maps, and T2WI images from a 3 T scanner. The Pearson correlation coefficient
feature selection technique was used. Multiple models were used to predict recurrence
distant metastasis, lymph node metastasis, and Figo stage (see Supplementary Table S5).

In endometrial cancer, Lin et al. [34] developed a fusion model based on the clinico-
pathological factors and MRI radiomics features to predict recurrence risk in patients with
endometrial cancer. One thousand seven hundred and two radiomics were extracted from
a 1.5 T or 3.0 T scanner. A total of 337 patients from a center (235 training, 102 validation)
were used for the internal training of the model. In comparison, a combination of 84 patients
from three other institutes was used for external validation. One thousand and seventy-two
features were extracted from T2WI and CE-T1WI images. One-way ANOVA and LASSO were
used for feature selection, and the XGBoost classifier was used for the classification model.
The best model was the fusion model based on the intertumoral area, which had the optimal
performance in predicting recurrence risk (see Supplementary Table S5).

4. Magnetic Resonance for Image-Guided Radiotherapy

Image guidance during radiotherapy has helped improve the appropriate delivery of
radiotherapy to tumor cells. The visualization of the GTV and, in some cases, accounting
for its motion helps control dose delivery to healthy tissues [11]. There has been a growth
in the use of MR-guided Radiotherapy (MRgRT), in which linear accelerator systems are
combined with MRI scans. With this technology, an MRI may be obtained each day for
radiotherapy delivery, and it has been reported to provide superior visibility of the organs
(particularly in gastrointestinal traction) and allow for the opportunity to decrease margins
and adaptive therapy [35]. This has helped the implementation of modifying on-table RT
treatment plans to consider daily anatomic changes while administering ablative doses to
the target and managing respiratory movements with cine images [36].

Rudra et al. [37] reported a retrospective observational study on adaptive MRgRT
across five institutions for treating patients with inoperable pancreatic cancer with a
ViewRay 0.35 T MRI-Linac. They reported an improved overall survival for patients
treated with dose-escalated MRgRT. Parikh et al. [38] conducted a phase 2 evaluation
study on the safety of 5-fraction Stereotactic MR-guided on-table Adaptive Radiation Ther-
apy (SMART) for locally advanced and borderline resectable pancreatic cancer. Among
136 patients treated, no acute grade ≥ 3 gastrointestinal (GI) toxicity was definitively at-
tributed to SMART, meeting the primary endpoint. However, 8.8% experienced potential
SMART-related acute grade ≥ 3 GI toxicity, including two postoperative deaths. The
one-year overall survival rate was 65.0%. Therefore, for patients with localized tumors in
the stomach region who are not surgical candidates, stereotactic MRgRT may be a feasible
and safe non-invasive treatment option that results in minimal impact on the sensitive
organs [35,39].

Two major MRI-Linacs are commercially available for treatment in the United States
—high-field (1.5 Tesla) MRI-Linac [40] and low-field (0.35 T) [41]. Engineering solutions
have been implemented to accommodate an MRI in a linac environment and vice versa.
Liney et al. [36] reviewed the challenges encountered in developing this type of technology.
Table 1 shows the differences and similarities between the two designs with respect to the
measures taken to accommodate an MRI scanner in a linac environment and a linac in an
MRI environment [8,36,40–45].
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Table 1. The differences and similarities between the two designs with respect to the measures taken
to accommodate an MRI scanner in a linac environment and vice versa. This difference is deducted
from the ICRU REPORT 97 [45].

High-Field Design Low-Field Design

Radiation source 7 MV Flattening Filter Free. 6 MV Flattening Filter Free

Magnetic field strength 1.5 T 0.35 T

Magnet orientation
Closed superconducting.
The radiation beam is perpendicular to the
magnetic field, Bo.

Split superconducting.
The radiation beam is perpendicular to the
magnetic field, Bo.

Linac in the MRI Environment

RF power source (Magnetron) in B-field Magnetron rotates with the linac and is positioned to sit in the low-magnetic-field region.

Waveguide design Short waveguide design with no bending magnet.

The angle of radiation delivery without
significant beam perturbation

Accelerate through cryostat. The exclusion
zone depends on the target location to
guarantee that no portion of the beam
penetrates via the cryostat pipe.

There is no full gantry motion. It cannot rotate
between 30◦ and 33◦.

Motors—collimator, MLC, gantry, Couch in
B-field

The superconducting coil’s arrangement is
adjusted to create a low-intensity toroidal
magnetic field, ensuring the optimal
positioning of the most sensitive linac
component.

The linac-sensitive components are isolated on
a gantry ring and housed within shielded
cylindrical baskets.

MRI Scanner in the Linac Environment

Effect of RF power source and motors on
image noise

Use of a Faraday cage to separate the
electrically noisy components from the MRI
environment.

A radiofrequency cage around the linac and
MRI components individually.

Effect of gantry rotation, moving jaws, and
MLC on Bo homogeneity

Passive shimming.
Active shimming. Gantry angle-specific active shimming.

Delta Radiomics and MRgRT Radiomics Models for Response Predictions

The study of the effects of radiomics feature variations at different acquisition times in
the patients’ treatment workflow, either prior, during, or after treatment, is called Delta
Radiomics. These variations can be calculated as the difference between features from
images before and after treatment or the ratio of features from a particular fraction to the
first or simulation fraction.

In chemotherapy, delta radiomics features can be defined as the difference between
the features extracted from the pre-treatment and post-treatment images [46]. Chang
et al. [47] and Peng et al. [48] defined their delta features as the ratio of post-treatment to
pre-treatment features. These features were reported to improve the predicting power of
the model. In the case of Peng et al., the combination of the delta features and pre-treatment
features improved the AUC of the KNN model to 0.90 (95% CI: 0.848–0.956).

Tomaszewski et al. [49] presented a delta radiomics analysis in MRgRT to predict
progression-free survival in pancreatic adenocarcinoma by using the ratio of the last frac-
tion, F5, to that of the first fraction, F1. It was reported that there is a significant associa-
tion between histogram skewness change during treatment and progression-free survival.
Cusumano et al. [50] also reported that a delta radiomics analysis that changes in cluster
shade at a biologically equivalent dose (BED) of 40 Gy can predict one-year local control for
patients with locally advanced pancreatic cancer treated with magnetic resonance-guided
radiotherapy. Boldrini et al. [51] reported two significant (p = 0.001) delta radiomics features
as predictors of clinical complete response (CR) after neoadjuvant radio-chemotherapy in
locally advanced rectal cancer patients. The delta features are the variations in the smallest
axis length, ∆Lleast, and grayscale nonuniformity, ∆glnu, at BED = 26.8 Gy to the value
calculated on the simulation MR. On external validation, Cusumano et al. [52] reported that
∆Lleast accurately identified patients with cCR and pCR 35 and 33 patients, respectively.
Table 2 shows an overview of the MRgRT delta radiomics literature review.
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Table 2. MRgRT delta radiomics response prediction model literature review.

First Author Cancer Site No of Centers Sample Size Treatment
Modality Outcomes MRI-Linac

(Magnetic Field)
Radiomics/Delta
Features Extracted Features Used in Modeling Prediction Model

Assessment
Model Evaluation
Results

Boldrini et al., 2021
[51,52] Rectal Cancer 3

59

Training = 16
Testing = 43

Neoadjuvant ra-
diochemotherapy

Clinical complete
response, nCR

Partial response,
pCR

0.35 T MRI-Linac

TRUFI sequence

318 features

Delta features =
ratio of features at
BED = 26.8 Gy to
the simulation
fraction.

∆Gray level non-uniformity,
∆glnu
∆Least axis length, ∆Lleast

ROC curve
analysis
Youden Index

Training Data

∆LLeast AUC = 0.82 for
cCR and 0.93 for pCR
∆glnu AUC = 0.72 for
cCR and 0.54 for pCR

External Validation
∆LLeast = 0.81 for cCR and
0.71 for pCR
∆glnu = 0.63 for cCR and
0.40 for pCR

Cusumano et al.,
2021 [50]

Pancreatic
Cancer 2 35 MRgRT One-year local

control

0.35 T MRI-Linac

TRUFI Sequence
644 features

Most significant feature

GLCM variation of cluster
shade (p-value = 0.005)

ROC curve
analysis

Cross-validation AUC =
0.79 (95% CI = 0.62–0.97)

Tomaszewski et al.,
2021 [49]

Pancreatic
Cancer 1 26 MRgRT PFS

0.35 T MRI-Linac

TRUFI Sequence

73 features

Delta features =
F5/F1

Histogram Skewness
(Hazard Ratio 2.75
(1.36–5.56) p = 0.038

Wu et al., 2023 [53] Rectal Cancer 1 28 MRgRT

Pathological
Complete
Response, pCR

Clinical Complete
Response, cCR

1.5 T MRI-Linac

2324 features

Delta features
∆Fi = Fi/F1

Fi = features from
MRI of ith fraction

Clinical: N-stage
Radiomics: F1_GLZM Zone
Entropy
Delta Radiomics:
∆F2_GLSZM_Gray-
level_variance,
∆F2_GLSZM_High_gray_level_zone_emphasis,
∆F2_GLSZM_Small_area_high_gray_level_emphasis,
∆F2_First_order_Range,
∆F2_GLSZM_gray_level_nonuniformity.

Rad Score
LASSO Regression

These features
significantly discriminate
between pCR and
non-pCR patients
(p < 0.05)

Abbreviations: AUC = area under the curve; GLCM = gray-level cooccurrence matrix; GLZM = gray-level zone matrix; GLSZM = gray level size zone matrix; LASSO = least shrinkage
selection operator; MRgRT = magnetic resonance-guided radiotherapy.
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5. Quality of Radiomics Model

When developing radiomics models, the initial selection of the most relevant features
is crucial to producing a model that will correctly generalize unseen data. Radiomics
inherently presents a challenge for feature selection since many features are correlated.
Additionally, the initial quality of the image is affected by the MRI acquisition parameters.

Feature robustness is defined by its repeatability under similar imaging conditions and
its reproducibility under diverse imaging conditions. For CT radiomics, our group, Shafiq-
ul-Hassan et al. [24] reported the variation in CT phantom radiomic features on voxel size
and number of gray levels. The study examined the impact of slice thickness, pixel spacing,
and gray-level discretization on radiomics features extracted from CT phantom images.
It focuses on the reproducibility of these features across different scanners and varying
acquisition and reconstruction parameters. A texture phantom with 10 different cartridges
was scanned on eight CT scanners, and 213 radiomics features were extracted. The study
included voxel-size resampling of image sets and feature extraction from both original and
resampled datasets. The results showed that 150 of the 213 features were reproducible
across voxel sizes, 42 improved significantly after resampling, and 21 had large variations
before and after resampling. Ten features significantly improved after modifying definitions
to remove voxel-size dependency, with interscanner variability nearly vanishing for eight
of these features. Redefining texture features to include gray levels significantly reduced
dependency. The study concludes that voxel-size resampling is effective for achieving more
reproducible CT features across datasets with variable voxel sizes.

Another study by Shafiq-ul-Hassan et al. [23] investigated the impact of pitch, dose,
and reconstruction kernel on CT radiomic features, finding that most texture features
were dose-independent but strongly kernel-dependent. The ACR phantom for 3D noise
power spectrum (NPS) measurements and applied NPS peak frequency and ROI maximum
intensity were used as correction factors to reduce variability. They reported that these cor-
rections significantly improved the robustness of 19 features by 30% to 78%, demonstrating
that NPS peak frequency and ROI maximum intensity effectively mitigate the variability in
CT texture feature values due to reconstruction kernels.

Few studies have been reported on the robustness of MRI radiomic features. The
section below discusses the effect of magnetic fields on radiomic features.

Effect of Magnetic Field on Radiomics Features

The quality of a radiomics model is dependent on the reproducibility of the relevant
features as biomarkers for a disease site or clinical outcome [54]. Unfortunately, these features
are sensitive to image quality, which is dependent on MRI acquisition parameters like mag-
netic field strength, image acquisition parameters, sequences, pixel size, and signal-to-noise
ratio [55,56]. At higher magnetic fields, image quality increases, leading to high SNR, thus
increasing spatial and temporal resolution. The cons remain that achieving static uniform
magnetic fields becomes difficult, and inhomogeneities in the field introduce artifacts in the
images, which are more prominent in higher fields than in lower fields [57–60].

Our group, Ericsson-Szecsenyi et al. [25] studied the variability and identified highly
repeatable and reproducible radiomics features from images acquired with a 0.35 T MRI-
Linac scanner. We analyzed eleven scans of each of the Magphan® RT and ViewRay Daily
QA phantoms and 50 images from ten anonymized SBRT pancreatic cancer patients, using
a TRUFI pulse sequence with specific voxel resolutions. They extracted 1087 shape-based,
first-, second-, and higher-order features, followed by a robustness analysis using the
coefficient of variation (CoV < 5%). The study identified 130 robust features across the
datasets, though none from the GLSZM and NGTDM second-order sub-groups. Several
of these robust features were consistent with findings from other stability assessments
and predictive performance in the literature. We concluded that the 0.35 T scanner is
stable for longitudinal radiomics phantom studies and that phantom measurements can
effectively identify robust radiomics features. We emphasized the need for further stability
assessment research.
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Ammari et al. [61] reported the influence of magnetic field strength on the texture
features in neuroradiology clinical practice. They evaluated the impact of the field (1.5 T,
3.0 T) on radiomics features from the same manufacturer. Statistical differences between
1.5 and 3.0 T features were determined by Student’s t-test using paired data. Thirty-eight
features were extracted in the following categories: intensity histogram and texture features.
Most texture feature values were significantly different on homogenous phantoms, e.g.,
the entropy mean value differed by a factor of 4. In heterogeneous phantoms, histogram
features like kurtosis, entropy, and energy and matrix features like Low Zone High Gray
Energy showed no significant difference. On healthy volunteers, 15 out of 38 features
showed significant differences.

Also, Cusumano et al. [62] reported that selecting appropriate image features can help
overcome the effect of the variability of the magnetic field in the radiomics model. This
study used two datasets from two machines of different magnetic field strengths (1.5 T
vs. 3.0 T). Three of the 486 extracted features were selected for building a multivariate
logistic regression model to predict pathological complete response in locally advanced
rectal cancer. This model was trained on the whole dataset and tested on the individual
data, and the AUC of the model on the combined data was 0.72, while the values of 0.70
and 0.83 on the 1.5 T and 3.0 T, respectively. The higher AUC of the 3.0 T model results
from high SNR in the images and higher spatial resolution.

The variation in radiomics features with respect to changes in the magnetic field
strength of the scanner should be considered for future analysis. For cases with datasets
from multiple scanners with different magnetic field strengths, caution must be taken to
ensure that the selected features for model building are independent of the field strength.

6. Discussion

MRI is commonly used to image diverse regions of the body. Its precise soft-tissue
contrast offers a database for the use of radiomics models to predict treatment outcomes
for these sites of the body. Machine learning-based radiomics models learn the underly-
ing relationships between the extracted features and the treatment outcomes. This helps
to improve personalized outcome prediction based on the patient-specific features ex-
tracted from patients’ MRIs. The radiomics model aims to provide decision support for
personalized treatment.

This review has presented examples of models from different disease sites with vary-
ing clinical outcomes. These models are built using different radiomic features and in
combination with clinicopathological features. The quality of these models is affected by
factors like sample size, model-building algorithm, and level of correlation within selected
features. In contrast, the quality of the selected features is affected by the feature selection
techniques and the image quality with respect to the MRI scanner acquisition parameters
like magnetic field and sequences.

Effect of Training Sample Size: This significantly impacts how well radiomics models
perform. Models trained on a larger dataset are more stable and reliable. When applied
to an unseen or external dataset, variations and outliers in the training data can affect a
small-sample-size model’s performance. The likelihood of overfitting and poor model
generalization is increased. From the literature in the Supplementary Tables, the sample
sizes in Shahveranova et al. [63] and Cepeda et al. [64] are 42 and 45, respectively. Very
few studies in this review have sample sizes above 200. Overcoming the effect of small
sample sizes can be achieved through multicenter datasets, as reported by Du et al. and
others [30,34,64–66]. Also, using a publicly available dataset is another approach reported
by Ammari et al. [29] and Suter et al. [66] They used a public dataset called the BraTS
challenge data for training and validation. After training with institutional data, Suter et al.
reported a poor validation of the model on the public data with an AUC of 0.56. Ammari
et al. reported a better performance when the model was trained on the BraTS dataset
and validated the model with the institutional data. Using multi-center datasets is highly
recommended to improve the robustness of the model.
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Effect of ML algorithms: The accuracy, interpretability, generalization, and computa-
tional efficiency of the radiomics model are all influenced by the machine learning model
selection. Different models excel in different scenarios depending on the nature of the
data, correlations between selected features, level of interpretability, and proposed clinical
application. It is widely acknowledged that several machine learning models’ level of per-
formance should be compared, and the model that makes the best predictions and/or the
most interpretable model is recommended. Almost all the studies in this review compared
results from multiple ML models, and the model with the best performance was selected.
We recommend that the explainability of the models should be explored for their easy
clinical implementation in the future. The most commonly used ML models are logistic
regression (LR), support vector machine (SVM), k-nearest neighbor (KNN), random forest
(RF), extreme gradient boosting, and deep learning models.

Effect of Magnetic Fields: Higher magnetic field strengths may enhance image quality,
but they may additionally introduce artifacts in the images. Improved image quality
implies a high signal-to-noise ratio and high tissue contrast, which affect the values of
texture- and intensity-based features. Unfortunately, the reliability of these features is
affected by the prominent artifacts that are associated with images from higher fields.
The variability in the magnetic field strength across different MRI scanners or imaging
protocols can lead to inconsistencies in radiomics features extracted from different datasets,
affecting their reproducibility and generalizability. As explained earlier in the research
conducted by Ammari et al. and Cusumano et al., some texture features are magnetic field
strength-dependent, which could affect the generalizability of such a radiomics model,
except if it comprises robust features that are independent of the magnetic field of the
scanner [61,62]. This would promote multi-institutional radiomics projects.

Effect of Feature Selection Techniques: Removing irrelevant or redundant features
can improve the performance of radiomics models. Feature selection helps to mitigate
overfitting by selecting a subset of features that capture the underlying patterns in the data
while reducing the risk of fitting highly correlated features into the model. Reducing the
dimensionality of the feature space is much needed when the sample size (N) is far less
than the number of features (k) to identify features that better represent the relationship
between the features and the clinical outcome to build models that are more robust and
generalizable across different datasets and image acquisition parameters.

7. Conclusions

The application of radiomics offers a powerful approach for extracting quantitative
information from MRI images, which can provide insight into tumor biology, tumor re-
sponse to treatment, and patient outcomes, ultimately contributing to improved diagnosis
and prognosis in oncology. The quality of the model can be improved by selecting features
that are more robust and reproducible across different datasets and image acquisition
parameters. The future direction of multi-institutional MRI radiomics research is to study
the effect of magnetic field strengths on the quality of radiomic features extracted from
cancer sites. This will help to establish conditions of robustness and harmonization of
patient-specific features across multi-institutional MRI acquisition parameters.
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AUC Area Under receiver operating Curve
ADC Apparent Diffusion Coefficient
iAUC incremental Area Under the Curve
CE-T1WI Contrast Enhanced T1-weighted image
DCE Dynamic Contrast Enhanced
DWI Diffusion Weighted Image
DT Decision Trees
GLCM Gray Level Co-occurrence Matrix
GLDM Gray Level Difference Matrix
GLSZM Gray Level Zone Matrix
GLSZM Gray Level Size Zone Matrix
GLZLM Gray Level Zone Length Matrix
GLRLM Gray Level Run Length Matrix
HR Hazard Ratio
NTZ Nitazoxanide
ICC Intraclass Correlation Coefficient
IMRT Intensity Modulated Radiation Therapy
KNN K Nearest Neighbor
LASSO Least Absolute Shrinkage and Selection Operator
LC Local Control
LF Local Failure
LR Logistic Regression
MRI Magnetic Resonance Imaging
mRMR maximum Relevance Minimum Redundancy
MI Mutual Information
NB Naïve Bayes
NGTDM Neighborhood Gray Tone Difference Matrix
OS Overall Survival
PCC Pearson Correlation Coefficient
PFS Progression-Free Survival
RF Random Forest
ROC Receivers Operating Curve
SVM Support Vector Machine
T1WI T1-Weighted Image
T2WI T2-Weighted Image
wavelet-H High pass filter
wavelet-L Low pass filter

References
1. Goetz, L.H.; Schork, N.J. Personalized Medicine: Motivation, Challenges, and Progress. Fertil. Steril. 2018, 109, 952–963. [CrossRef]
2. European Society of Radiology. Medical Imaging in Personalized Medicine: A White Paper of the Research Committee of the

European Society of Radiology (ESR). Insights Imaging 2011, 2, 621–630. [CrossRef]
3. Bushberg, J.T.; Boone, J.M. The Essential Physics of Medical Imaging; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011;

ISBN 0781780578.
4. Pope, W.B.; Lai, A.; Nghiemphu, P.; Mischel, P.; Cloughesy, T.F. MRI in Patients with High-Grade Gliomas Treated with

Bevacizumab and Chemotherapy. Neurology 2006, 66, 1258–1260. [CrossRef]

https://doi.org/10.1016/j.fertnstert.2018.05.006
https://doi.org/10.1007/s13244-011-0125-0
https://doi.org/10.1212/01.wnl.0000208958.29600.87


Tomography 2024, 10 1451

5. Hylton, N.; Blume, J.; Gatsonis, C.; Gomez, R.; Bernreuter, W.; Pisano, E.; Rosen, M.; Marques, H.; Esserman, L.; Schnall, M.
MRI Tumor Volume for Predicting Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer: Findings from
ACRIN 6657/CALGB 150007. J. Clin. Oncol. 2009, 27, 529. [CrossRef]

6. Loo, C.E.; Straver, M.E.; Rodenhuis, S.; Muller, S.H.; Wesseling, J.; Vrancken Peeters, M.-J.T.F.D.; Gilhuijs, K.G.A. Magnetic
Resonance Imaging Response Monitoring of Breast Cancer During Neoadjuvant Chemotherapy: Relevance of Breast Cancer
Subtype. J. Clin. Oncol. 2011, 29, 660–666. [CrossRef]

7. Ahdoot, M.; Wilbur, A.R.; Reese, S.E.; Lebastchi, A.H.; Mehralivand, S.; Gomella, P.T.; Bloom, J.; Gurram, S.; Siddiqui, M.; Pinsky,
P.; et al. MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. N. Engl. J. Med. 2020, 382, 917–928.
[CrossRef] [PubMed]

8. Ng, J.; Gregucci, F.; Pennell, R.T.; Nagar, H.; Golden, E.B.; Knisely, J.P.S.; Sanfilippo, N.J.; Formenti, S.C. MRI-LINAC: A
Transformative Technology in Radiation Oncology. Front. Oncol. 2023, 13, 1117874. [CrossRef] [PubMed]

9. Sim, A.J.; Hoffe, S.E.; Latifi, K.; Palm, R.F.; Feygelman, V.; Leuthold, S.; Dookhoo, M.; Dennett, M.; Rosenberg, S.A.; Frakes, J.M. A
Practical Workflow for Magnetic Resonance-Guided Stereotactic Radiation Therapy to the Pancreas. Pract. Radiat. Oncol. 2023, 13,
e45–e53. [CrossRef]

10. Sandoval, M.L.; Youssef, I.; Latifi, K.; Grass, G.D.; Torres-Roca, J.; Rosenberg Stephen and Yamoah, K.; Johnstone, P.A. Non-
Adaptive MR-Guided Radiotherapy for Prostate SBRT: Less, Equal Results. J. Clin. Med. 2021, 10, 3396. [CrossRef]

11. Kerkmeijer, L.G.W.; Valentini, V.; Fuller, C.D.; Slotman, B.J. Editorial: Online Adaptive MR-Guided Radiotherapy. Front. Oncol.
2021, 11, 748685. [CrossRef]

12. McGee, K.P.; Hwang, K.P.; Sullivan, D.C.; Kurhanewicz, J.; Hu, Y.; Wang, J.; Li, W.; Debbins, J.; Paulson, E.; Olsen, J.R.; et al.
Magnetic Resonance Biomarkers in Radiation Oncology: The Report of AAPM Task Group 294. Med. Phys. 2021, 48, e697–e732.
[CrossRef] [PubMed]

13. Tomaszewski, M.R.; Gillies, R.J. The Biological Meaning of Radiomic Features. Radiology 2021, 298, 505–516. [CrossRef]
14. Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Cavalho, S.; Bussink, J.; Monshouwer, R.; Haibe-

Kains, B.; Rietveld, D.; et al. Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach.
Nat. Commun. 2014, 5, 4006. [CrossRef] [PubMed]

15. Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting Cancer Outcomes with Radiomics and Artificial
Intelligence in Radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [CrossRef] [PubMed]

16. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577.
[CrossRef]

17. Zwanenburg, A.; Leger, S.; Vallières, M.; Löck, S. Image Biomarker Standardisation Initiative. arXiv 2016, arXiv:1612.07003.
[CrossRef]

18. van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in Medical Imaging—“How-to” Guide and
Critical Reflection. Insights Imaging 2020, 11, 91. [CrossRef]

19. Bivona, T.; Grossmann, P.; Stringfield, O.; El-Hachem, N.; Bui, M.M.; Rios Velazquez, E.; Parmar, C.; Leijenaar, R.T.; Haibe-Kains,
B.; Lambin, P.; et al. Defining the Biological Basis of Radiomic Phenotypes in Lung Cancer. eLife 2017, 6, e23421. [CrossRef]

20. Wang, J.H.; Wahid, K.A.; van Dijk, L.V.; Farahani, K.; Thompson, R.F.; Fuller, C.D. Radiomic Biomarkers of Tumor Immune
Biology and Immunotherapy Response. Clin. Transl. Radiat. Oncol. 2021, 28, 97–115. [CrossRef]

21. Bodalal, Z.; Trebeschi, S.; Nguyen-Kim, T.D.L.; Schats, W.; Beets-Tan, R. Radiogenomics: Bridging Imaging and Genomics. Abdom.
Radiol. 2019, 44, 1960–1984. [CrossRef]

22. Tseng, H.H.; Luo, Y.; Ten Haken, R.K.; El Naqa, I. The Role of Machine Learning in Knowledge-Based Response-Adapted
Radiotherapy. Front. Oncol. 2018, 8, 266. [CrossRef] [PubMed]

23. Shafiq-ul-Hassan, M.; Zhang, G.G.; Hunt, D.C.; Latifi, K.; Ullah, G.; Gillies, R.J.; Moros, E.G. Accounting for Reconstruction
Kernel-Induced Variability in CT Radiomic Features Using Noise Power Spectra. J. Med. Imaging 2017, 5, 011013. [CrossRef]
[PubMed]

24. Shafiq-Ul-hassan, M.; Zhang, G.G.; Latifi, K.; Ullah, G.; Hunt, D.C.; Balagurunathan, Y.; Abdalah, M.A.; Schabath, M.B.; Goldgof,
D.G.; Mackin, D.; et al. Intrinsic Dependencies of CT Radiomic Features on Voxel Size and Number of Gray Levels. Med. Phys.
2017, 44, 1050–1062. [CrossRef]

25. Ericsson-Szecsenyi, R.; Zhang, G.; Redler, G.; Feygelman, V.; Rosenberg, S.; Latifi, K.; Ceberg, C.; Moros, E.G. Robustness
Assessment of Images From a 0.35T Scanner of an Integrated MRI-Linac: Characterization of Radiomics Features in Phantom and
Patient Data. Technol. Cancer Res. Treat. 2022, 21. [CrossRef] [PubMed]

26. Panth, K.M.; Leijenaar, R.T.H.; Carvalho, S.; Lieuwes, N.G.; Yaromina, A.; Dubois, L.; Lambin, P. Is There a Causal Relationship
between Genetic Changes and Radiomics-Based Image Features? An in Vivo Preclinical Experiment with Doxycycline Inducible
GADD34 Tumor Cells. Radiother. Oncol. 2015, 116, 462–466. [CrossRef]

27. Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.; Fenstermacher, D.;
et al. Radiomics: The Process and the Challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [CrossRef]

28. Patel, M.; Zhan, J.; Natarajan, K.; Flintham, R.; Davies, N.; Sanghera, P.; Grist, J.; Duddalwar, V.; Peet, A.; Sawlani, V. Machine
Learning-Based Radiomic Evaluation of Treatment Response Prediction in Glioblastoma. Clin. Radiol. 2021, 76, 628.e17–628.e27.
[CrossRef]

https://doi.org/10.1200/jco.2009.27.15_suppl.529
https://doi.org/10.1200/JCO.2010.31.1258
https://doi.org/10.1056/NEJMoa1910038
https://www.ncbi.nlm.nih.gov/pubmed/32130814
https://doi.org/10.3389/fonc.2023.1117874
https://www.ncbi.nlm.nih.gov/pubmed/36776309
https://doi.org/10.1016/j.prro.2022.07.001
https://doi.org/10.3390/jcm10153396
https://doi.org/10.3389/fonc.2021.748685
https://doi.org/10.1002/mp.14884
https://www.ncbi.nlm.nih.gov/pubmed/33864283
https://doi.org/10.1148/radiol.2021202553
https://doi.org/10.1038/ncomms5006
https://www.ncbi.nlm.nih.gov/pubmed/24892406
https://doi.org/10.1038/s41571-021-00560-7
https://www.ncbi.nlm.nih.gov/pubmed/34663898
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.48550/arXiv.1612.07003
https://doi.org/10.1186/s13244-020-00887-2
https://doi.org/10.7554/eLife.23421.001
https://doi.org/10.1016/j.ctro.2021.03.006
https://doi.org/10.1007/s00261-019-02028-w
https://doi.org/10.3389/fonc.2018.00266
https://www.ncbi.nlm.nih.gov/pubmed/30101124
https://doi.org/10.1117/1.JMI.5.1.011013
https://www.ncbi.nlm.nih.gov/pubmed/29285518
https://doi.org/10.1002/mp.12123
https://doi.org/10.1177/15330338221099113
https://www.ncbi.nlm.nih.gov/pubmed/35521966
https://doi.org/10.1016/j.radonc.2015.06.013
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1016/j.crad.2021.03.019


Tomography 2024, 10 1452

29. Ammari, S.; de Chou, R.S.; Assi, T.; Touat, M.; Chouzenoux, E.; Quillent, A.; Limkin, E.; Dercle, L.; Hadchiti, J.; Elhaik, M.; et al.
Machine-Learning-Based Radiomics MRI Model for Survival Prediction of Recurrent Glioblastomas Treated with Bevacizumab.
Diagnostics 2021, 11, 1263. [CrossRef]

30. Du, R.; Lee, V.H.; Yuan, H.; Lam, K.-O.; Pang, H.H.; Chen, Y.; Lam, E.Y.; Khong, P.-L.; Lee, A.W.; Kwong, D.L.; et al. Radiomics
Model to Predict Early Progression of Nonmetastatic Nasopharyngeal Carcinoma after Intensity Modulation Radiation Therapy:
A Multicenter Study. Radiol. Artif. Intell. 2019, 1, e180075. [CrossRef]

31. Chen, M.; Kong, C.; Qiao, E.; Chen, Y.; Chen, W.; Jiang, X.; Fang, S.; Zhang, D.; Chen, M.; Chen, W.; et al. Multi-Algorithms Analysis
for Pre-Treatment Prediction of Response to Transarterial Chemoembolization in Hepatocellular Carcinoma on Multiphase MRI.
Insights Imaging 2023, 14, 38. [CrossRef]

32. Chen, S.; Shu, Z.; Li, Y.; Chen, B.; Tang, L.; Mo, W.; Shao, G.; Shao, F. Machine Learning-Based Radiomics Nomogram Using
Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients. Front. Oncol. 2020,
10, 1410. [CrossRef] [PubMed]

33. Jajodia, A.; Gupta, A.; Prosch, H.; Mayerhoefer, M.; Mitra, S.; Pasricha, S.; Mehta, A.; Puri, S.; Chaturvedi, A. Combination of
Radiomics and Machine Learning with Diffusion-Weighted MR Imaging for Clinical Outcome Prognostication in Cervical Cancer.
Tomography 2021, 7, 344–357. [CrossRef] [PubMed]

34. Lin, Z.; Wang, T.; Li, Q.; Bi, Q.; Wang, Y.; Luo, Y.; Feng, F.; Xiao, M.; Gu, Y.; Qiang, J.; et al. Development and Validation of
MRI-Based Radiomics Model to Predict Recurrence Risk in Patients with Endometrial Cancer: A Multicenter Study. Eur. Radiol.
2023, 33, 5814–5824. [CrossRef] [PubMed]

35. Bryant, J.M.; Weygand, J.; Keit, E.; Cruz-Chamorro, R.; Sandoval, M.L.; Oraiqat, I.M.; Andreozzi, J.; Redler, G.; Latifi, K.;
Feygelman, V.; et al. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination
MR-Linear Accelerators: Current Practice and Future Directions. Cancers 2023, 15, 2081. [CrossRef] [PubMed]

36. Liney, G.P.; Whelan, B.; Oborn, B.; Barton, M.; Keall, P. MRI-Linear Accelerator Radiotherapy Systems. Clin. Oncol. 2018, 30,
686–691. [CrossRef]

37. Rudra, S.; Malik, R.; Ranck, M.C.; Farrey, K.; Golden, D.W.; Hasselle, M.D.; Weichselbaum, R.R.; Salama, J.K. Stereotactic Body
Radiation Therapy for Curative Treatment of Adrenal Metastases. Technol. Cancer Res. Treat. 2013, 12, 217–224. [CrossRef]

38. Parikh, P.J.; Lee, P.; Low, D.A.; Kim, J.; Mittauer, K.E.; Bassetti, M.F.; Glide-Hurst, C.K.; Raldow, A.C.; Yang, Y.; Portelance, L.; et al.
A Multi-Institutional Phase 2 Trial of Ablative 5-Fraction Magnetic Resonance-Guided on-Table Adaptive Therapy for Borderline
Resectable and Locally Advanced Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 799–808. [CrossRef]

39. Sandoval, M.L.; Sim, A.J.; Bryant, J.M.; Bhandari, M.; Wuthrick, E.J.; Perez, B.A.; Dilling, T.J.; Redler, G.; Andreozzi, J.; Nardella,
L.; et al. MR-Guided SBRT/Hypofractionated RT for Metastatic and Primary Central and Ultracentral Lung Lesions. JTO Clin.
Res. Rep. 2023, 4, 100488. [CrossRef]

40. Raaymakers, B.W.; Lagendijk, J.J.W.; Overweg, J.; Kok, J.G.M.; Raaijmakers, A.J.E.; Kerkhof, E.M.; Van Der Put, R.W.; Meijsing, I.;
Crijns, S.P.M.; Benedosso, F.; et al. Integrating a 1.5 T MRI Scanner with a 6 MV Accelerator: Proof of Concept. Phys. Med. Biol.
2009, 54, N229. [CrossRef]

41. Mutic, S.; Dempsey, J.F. The ViewRay System: Magnetic Resonance-Guided and Controlled Radiotherapy. Semin. Radiat. Oncol.
2014, 24, 196–199. [CrossRef]

42. Thorwarth, D.; Low, D.A. Technical Challenges of Real-Time Adaptive MR-Guided Radiotherapy. Front. Oncol. 2021, 11, 634507.
[CrossRef] [PubMed]

43. Klüter, S. Technical Design and Concept of a 0.35 T MR-Linac. Clin. Transl. Radiat. Oncol. 2019, 18, 98–101. [CrossRef] [PubMed]
44. Kurz, C.; Buizza, G.; Landry, G.; Kamp, F.; Rabe, M.; Paganelli, C.; Baroni, G.; Reiner, M.; Keall, P.J.; Van Den Berg, C.A.T.; et al.

Medical Physics Challenges in Clinical MR-Guided Radiotherapy. Radiat. Oncol. 2020, 15, 93. [CrossRef] [PubMed]
45. Lagendijk, J.J.W.; Raaymakers, B.W.; van Vulpen, M. The Magnetic Resonance Imaging-Linac System. Semin. Radiat. Oncol. 2014,

24, 207–209. [CrossRef]
46. Crombé, A.; Lafon, M.; Nougaret, S.; Kind, M.; Cousin, S. Ranking the Most Influential Predictors of CT-Based Radiomics Feature

Values in Metastatic Lung Adenocarcinoma. Eur. J. Radiol. 2022, 155, 110472. [CrossRef]
47. Chang, Y.; Lafata, K.; Sun, W.; Wang, C.; Chang, Z.; Kirkpatrick, J.P.; Yin, F.-F. An Investigation of Machine Learning Methods in

Delta-Radiomics Feature Analysis. PLoS ONE 2019, 14, e0226348. [CrossRef] [PubMed]
48. Peng, J.; Wang, W.; Jin, H.; Qin, X.; Hou, J.; Yang, Z.; Shu, Z. Develop and Validate a Radiomics Space-Time Model to Predict the

Pathological Complete Response in Patients Undergoing Neoadjuvant Treatment of Rectal Cancer: An Artificial Intelligence
Model Study Based on Machine Learning. BMC Cancer 2023, 23, 365. [CrossRef]

49. Tomaszewski, M.R.; Latifi, K.; Boyer, E.; Palm, R.F.; El Naqa, I.; Moros, E.G.; Hoffe, S.E.; Rosenberg, S.A.; Frakes, J.M.; Gillies, R.J.
Delta Radiomics Analysis of Magnetic Resonance Guided Radiotherapy Imaging Data Can Enable Treatment Response Prediction
in Pancreatic Cancer. Radiat. Oncol. 2021, 16, 237. [CrossRef]

50. Cusumano, D.; Boldrini, L.; Yadav, P.; Casà, C.; Lee, S.L.; Romano, A.; Piras, A.; Chiloiro, G.; Placidi, L.; Catucci, F.; et al. Delta
Radiomics Analysis for Local Control Prediction in Pancreatic Cancer Patients Treated Using Magnetic Resonance Guided
Radiotherapy. Diagnostics 2021, 11, 72. [CrossRef]

https://doi.org/10.3390/diagnostics11071263
https://doi.org/10.1148/ryai.2019180075
https://doi.org/10.1186/s13244-023-01380-2
https://doi.org/10.3389/fonc.2020.01410
https://www.ncbi.nlm.nih.gov/pubmed/32923392
https://doi.org/10.3390/tomography7030031
https://www.ncbi.nlm.nih.gov/pubmed/34449713
https://doi.org/10.1007/s00330-023-09685-y
https://www.ncbi.nlm.nih.gov/pubmed/37171486
https://doi.org/10.3390/cancers15072081
https://www.ncbi.nlm.nih.gov/pubmed/37046741
https://doi.org/10.1016/j.clon.2018.08.003
https://doi.org/10.7785/tcrt.2012.500320
https://doi.org/10.1016/j.ijrobp.2023.05.023
https://doi.org/10.1016/j.jtocrr.2023.100488
https://doi.org/10.1088/0031-9155/54/12/N01
https://doi.org/10.1016/j.semradonc.2014.02.008
https://doi.org/10.3389/fonc.2021.634507
https://www.ncbi.nlm.nih.gov/pubmed/33763369
https://doi.org/10.1016/j.ctro.2019.04.007
https://www.ncbi.nlm.nih.gov/pubmed/31341983
https://doi.org/10.1186/s13014-020-01524-4
https://www.ncbi.nlm.nih.gov/pubmed/32370788
https://doi.org/10.1016/j.semradonc.2014.02.009
https://doi.org/10.1016/j.ejrad.2022.110472
https://doi.org/10.1371/journal.pone.0226348
https://www.ncbi.nlm.nih.gov/pubmed/31834910
https://doi.org/10.1186/s12885-023-10855-w
https://doi.org/10.1186/s13014-021-01957-5
https://doi.org/10.3390/diagnostics11010072


Tomography 2024, 10 1453

51. Boldrini, L.; Cusumano, D.; Chiloiro, G.; Casà, C.; Masciocchi, C.; Lenkowicz, J.; Cellini, F.; Dinapoli, N.; Azario, L.; Teodoli, S.;
et al. Delta Radiomics for Rectal Cancer Response Prediction with Hybrid 0.35 T Magnetic Resonance-Guided Radiotherapy
(MRgRT): A Hypothesis-Generating Study for an Innovative Personalized Medicine Approach. Radiol. Medica 2019, 124, 145–153.
[CrossRef]

52. Cusumano, D.; Boldrini, L.; Yadav, P.; Yu, G.; Musurunu, B.; Chiloiro, G.; Piras, A.; Lenkowicz, J.; Placidi, L.; Romano, A.; et al.
Delta Radiomics for Rectal Cancer Response Prediction Using Low Field Magnetic Resonance Guided Radiotherapy: An External
Validation. Phys. Medica 2021, 84, 186–191. [CrossRef] [PubMed]

53. Wu, J.; Xiao, J.; Li, Y.; Wu, F.; Peng, Q.; Li, C.; Tang, B.; Orlandini, L.C. Feasibility of Delta Radiomics–Based PCR Prediction
for Rectal Cancer Patients Treated with Magnetic Resonance–Guided Adaptive Radiotherapy. Front. Oncol. 2023, 13, 1230519.
[CrossRef]

54. Yang, Y.; Zou, X.; Wang, Y.; Ma, X. Application of Deep Learning as a Noninvasive Tool to Differentiate Muscle-Invasive Bladder
Cancer and Non–Muscle-Invasive Bladder Cancer with CT. Eur. J. Radiol. 2021, 139, 109666. [CrossRef] [PubMed]

55. Larroza, A.; Bodí, V.; Moratal, D. Texture Analysis in Magnetic Resonance Imaging: Review and Considerations for Future
Applications. In Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies; InTech:
Rijeka, Croatia, 2016.

56. Cui, Y.; Yin, F.F. Impact of Image Quality on Radiomics Applications. Phys. Med. Biol. 2022, 67, 15TR03. [CrossRef] [PubMed]
57. Bernstein, M.A.; Huston, J.; Ward, H.A. Imaging Artifacts at 3.0T. J. Magn. Reson. Imaging 2006, 24, 735–746. [CrossRef] [PubMed]
58. Hori, M.; Hagiwara, A.; Goto, M.; Wada, A.; Aoki, S. Low-Field Magnetic Resonance Imaging Its History and Renaissance.

Investig. Radiol. 2021, 56, 669–679. [CrossRef]
59. Soher, B.J.; Dale, B.M.; Merkle, E.M. A Review of MR Physics: 3T versus 1.5T. Magn. Reson. Imaging Clin. N. Am. 2007, 15, 277–290.

[CrossRef] [PubMed]
60. Marques, J.P.; Simonis, F.F.J.; Webb, A.G. Low-Field MRI: An MR Physics Perspective. J. Magn. Reson. Imaging 2019, 49, 1528–1542.

[CrossRef]
61. Ammari, S.; Pitre-Champagnat, S.; Dercle, L.; Chouzenoux, E.; Moalla, S.; Reuze, S.; Talbot, H.; Mokoyoko, T.; Hadchiti, J.;

Diffetocq, S.; et al. Influence of Magnetic Field Strength on Magnetic Resonance Imaging Radiomics Features in Brain Imaging, an
In Vitro and In Vivo Study. Front. Oncol. 2021, 10, 541663. [CrossRef]

62. Cusumano, D.; Meijer, G.; Lenkowicz, J.; Chiloiro, G.; Boldrini, L.; Masciocchi, C.; Dinapoli, N.; Gatta, R.; Casà, C.; Damiani, A.;
et al. A Field Strength Independent MR Radiomics Model to Predict Pathological Complete Response in Locally Advanced Rectal
Cancer. Radiol. Medica 2021, 126, 421–429. [CrossRef]

63. Shahveranova, A.; Balli, H.T.; Aikimbaev, K.; Piskin, F.C.; Sozutok, S.; Yucel, S.P. Prediction of Local Tumor Progression After
Microwave Ablation in Colorectal Carcinoma Liver Metastases Patients by MRI Radiomics and Clinical Characteristics-Based
Combined Model: Preliminary Results. Cardiovasc. Intervent. Radiol. 2023, 46, 713–725. [CrossRef] [PubMed]

64. Cepeda, S.; Luppino, L.T.; Pérez-Núñez, A.; Solheim, O.; García-García, S.; Velasco-Casares, M.; Karlberg, A.; Eikenes, L.;
Sarabia, R.; Arrese, I.; et al. Predicting Regions of Local Recurrence in Glioblastomas Using Voxel-Based Radiomic Features of
Multiparametric Postoperative MRI. Cancers 2023, 15, 1894. [CrossRef]

65. Du, P.; Liu, X.; Shen, L.; Wu, X.; Chen, J.; Chen, L.; Cao, A.; Geng, D. Prediction of Treatment Response in Patients with Brain
Metastasis Receiving Stereotactic Radiosurgery Based on Pre-Treatment Multimodal MRI Radiomics and Clinical Risk Factors: A
Machine Learning Model. Front. Oncol. 2023, 13, 1114194. [CrossRef]

66. Suter, Y.; Knecht, U.; Alão, M.; Valenzuela, W.; Hewer, E.; Schucht, P.; Wiest, R.; Reyes, M. Radiomics for Glioblastoma Survival
Analysis in Pre-Operative MRI: Exploring Feature Robustness, Class Boundaries, and Machine Learning Techniques. Cancer
Imaging 2020, 20, 55. [CrossRef] [PubMed]

67. Ammari, S.; Sallé de Chou, R.; Balleyguier, C.; Chouzenoux, E.; Touat, M.; Quillent, A.; Dumont, S.; Bockel, S.; Garcia, G.C.T.E.;
Elhaik, M.; et al. A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI. Diagnostics
2021, 11, 2043. [CrossRef]

68. Jaberipour, M.; Soliman, H.; Sahgal, A.; Sadeghi-Naini, A. A Priori Prediction of Local Failure in Brain Metastasis after Hypo-
Fractionated Stereotactic Radiotherapy Using Quantitative MRI and Machine Learning. Sci. Rep. 2021, 11, 21620. [CrossRef]
[PubMed]

69. Karami, E.; Soliman, H.; Ruschin, M.; Sahgal, A.; Myrehaug, S.; Tseng, C.-L.; Czarnota, G.J.; Jabehdar-Maralani, P.; Chugh, B.;
Lau, A.; et al. Quantitative MRI Biomarkers of Stereotactic Radiotherapy Outcome in Brain Metastasis. Sci. Rep. 2019, 9, 19830.
[CrossRef]

70. Sun, Y.-Z.; Yan, L.-F.; Han, Y.; Nan, H.-Y.; Xiao, G.; Tian, Q.; Pu, W.-H.; Li, Z.-Y.; Wei, X.-C.; Wang, W.; et al. Differentiation of
Pseudoprogression from True Progression in Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy
Combined with Radiomics Features from T1-Weighted Contrast-Enhanced Imaging. BMC Med. Imaging 2021, 21, 17. [CrossRef]

71. Park, Y.W.; Choi, D.; Park, J.E.; Ahn, S.S.; Kim, H.; Chang, J.H.; Kim, S.H.; Kim, H.S.; Lee, S.-K. Differentiation of Recurrent
Glioblastoma from Radiation Necrosis Using Diffusion Radiomics with Machine Learning Model Development and External
Validation. Sci. Rep. 2021, 11, 2913. [CrossRef]

72. Li, Z.; Chen, L.; Song, Y.; Dai, G.; Duan, L.; Luo, Y.; Wang, G.; Xiao, Q.; Li, G.; Bai, S. Predictive Value of Magnetic Resonance
Imaging Radiomics-Based Machine Learning for Disease Progression in Patients with High-Grade Glioma. Quant. Imaging Med.
Surg. 2023, 13, 224–236. [CrossRef]

https://doi.org/10.1007/s11547-018-0951-y
https://doi.org/10.1016/j.ejmp.2021.03.038
https://www.ncbi.nlm.nih.gov/pubmed/33901863
https://doi.org/10.3389/fonc.2023.1230519
https://doi.org/10.1016/j.ejrad.2021.109666
https://www.ncbi.nlm.nih.gov/pubmed/33798819
https://doi.org/10.1088/1361-6560/ac7fd7
https://www.ncbi.nlm.nih.gov/pubmed/35803254
https://doi.org/10.1002/jmri.20698
https://www.ncbi.nlm.nih.gov/pubmed/16958057
https://doi.org/10.1097/RLI.0000000000000810
https://doi.org/10.1016/j.mric.2007.06.002
https://www.ncbi.nlm.nih.gov/pubmed/17893049
https://doi.org/10.1002/jmri.26637
https://doi.org/10.3389/fonc.2020.541663
https://doi.org/10.1007/s11547-020-01266-z
https://doi.org/10.1007/s00270-023-03454-6
https://www.ncbi.nlm.nih.gov/pubmed/37156944
https://doi.org/10.3390/cancers15061894
https://doi.org/10.3389/fonc.2023.1114194
https://doi.org/10.1186/s40644-020-00329-8
https://www.ncbi.nlm.nih.gov/pubmed/32758279
https://doi.org/10.3390/diagnostics11112043
https://doi.org/10.1038/s41598-021-01024-9
https://www.ncbi.nlm.nih.gov/pubmed/34732781
https://doi.org/10.1038/s41598-019-56185-5
https://doi.org/10.1186/s12880-020-00545-5
https://doi.org/10.1038/s41598-021-82467-y
https://doi.org/10.21037/qims-22-459


Tomography 2024, 10 1454

73. Hettal, L.; Stefani, A.; Salleron, J.; Courrech, F.; Behm-Ansmant, I.; Constans, J.M.; Gauchotte, G.; Vogin, G. Radiomics Method
for the Differential Diagnosis of Radionecrosis Versus Progression after Fractionated Stereotactic Body Radiotherapy for Brain
Oligometastasis. Radiat. Res. 2020, 193, 471–480. [CrossRef]

74. Li, W.-Z.; Wu, G.; Li, T.-S.; Dai, G.-M.; Liao, Y.-T.; Yang, Q.-Y.; Chen, F.; Huang, W.-Y. Dynamic Contrast-Enhanced Magnetic
Resonance Imaging-Based Radiomics for the Prediction of Progression-Free Survival in Advanced Nasopharyngeal Carcinoma.
Front. Oncol. 2022, 12, 955866. [CrossRef] [PubMed]

75. Zhao, L.; Gong, J.; Xi, Y.; Xu, M.; Li, C.; Kang, X.; Yin, Y.; Qin, W.; Yin, H.; Shi, M. MRI-Based Radiomics Nomogram May Predict
the Response to Induction Chemotherapy and Survival in Locally Advanced Nasopharyngeal Carcinoma. Eur. Radiol. 2020, 30,
537–546. [CrossRef] [PubMed]

76. Liu, Q.-P.; Yang, K.-L.; Xu, X.; Liu, X.-S.; Qu, J.-R.; Zhang, Y.-D. Radiomics Analysis of Pretreatment MRI in Predicting Tumor
Response and Outcome in Hepatocellular Carcinoma with Transarterial Chemoembolization: A Two-Center Collaborative Study.
Abdom. Radiol. 2022, 47, 651–663. [CrossRef] [PubMed]

77. Bodalal, Z.; Bogveradze, N.; ter Beek, L.C.; van den Berg, J.G.; Sanders, J.; Hofland, I.; Trebeschi, S.; Groot Lipman, K.B.W.; Storck,
K.; Hong, E.K.; et al. Radiomic Signatures from T2W and DWI MRI Are Predictive of Tumour Hypoxia in Colorectal Liver
Metastases. Insights Imaging 2023, 14, 133. [CrossRef]

78. McAnena, P.; Moloney, B.M.; Browne, R.; O’Halloran, N.; Walsh, L.; Walsh, S.; Sheppard, D.; Sweeney, K.J.; Kerin, M.J.; Lowery,
A.J. A Radiomic Model to Classify Response to Neoadjuvant Chemotherapy in Breast Cancer. BMC Med. Imaging 2022, 22, 225.
[CrossRef]

79. Wang, J.; Liu, X.; Hu, B.; Gao, Y.; Chen, J.; Li, J. Development and Validation of an MRI-Based Radiomic Nomogram to
Distinguish between Good and Poor Responders in Patients with Locally Advanced Rectal Cancer Undergoing Neoadjuvant
Chemoradiotherapy. Abdom. Radiol. 2021, 46, 1805–1815. [CrossRef]

80. Fang, M.; Kan, Y.; Dong, D.; Yu, T.; Zhao, N.; Jiang, W.; Zhong, L.; Hu, C.; Luo, Y.; Tian, J. Multi-Habitat Based Radiomics for the
Prediction of Treatment Response to Concurrent Chemotherapy and Radiation Therapy in Locally Advanced Cervical Cancer.
Front. Oncol. 2020, 10, 563. [CrossRef]

81. Speckter, H.; Radulovic, M.; Trivodaliev, K.; Vranes, V.; Joaquin, J.; Hernandez, W.; Mota, A.; Bido, J.; Hernandez, G.; Rivera,
D.; et al. MRI Radiomics in the Prediction of the Volumetric Response in Meningiomas after Gamma Knife Radiosurgery. J.
Neuro-Oncol. 2022, 159, 281–291. [CrossRef]

82. Yang, H.-C.; Wu, C.-C.; Lee, C.-C.; Huang, H.-E.; Lee, W.-K.; Chung, W.-Y.; Wu, H.-M.; Guo, W.-Y.; Wu, Y.-T.; Lu, C.-F.
Prediction of Pseudoprogression and Long-Term Outcome of Vestibular Schwannoma after Gamma Knife Radiosurgery Based on
Preradiosurgical MR Radiomics. Radiother. Oncol. 2021, 155, 123–130. [CrossRef]

83. Siow, T.Y.; Yeh, C.-H.; Lin, G.; Lin, C.-Y.; Wang, H.-M.; Liao, C.-T.; Toh, C.-H.; Chan, S.-C.; Lin, C.-P.; Ng, S.-H. MRI Radiomics for
Predicting Survival in Patients with Locally Advanced Hypopharyngeal Cancer Treated with Concurrent Chemoradiotherapy.
Cancers 2022, 14, 6119. [CrossRef] [PubMed]

84. Liu, Z.-M.; Zhang, H.; Ge, M.; Hao, X.-L.; An, X.; Tian, Y.-J. Radiomics Signature for the Prediction of Progression-Free Survival
and Radiotherapeutic Benefits in Pediatric Medulloblastoma. Child’s Nerv. Syst. 2022, 38, 1085–1094. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1667/RR15517.1
https://doi.org/10.3389/fonc.2022.955866
https://www.ncbi.nlm.nih.gov/pubmed/36338711
https://doi.org/10.1007/s00330-019-06211-x
https://www.ncbi.nlm.nih.gov/pubmed/31372781
https://doi.org/10.1007/s00261-021-03375-3
https://www.ncbi.nlm.nih.gov/pubmed/34918174
https://doi.org/10.1186/s13244-023-01474-x
https://doi.org/10.1186/s12880-022-00956-6
https://doi.org/10.1007/s00261-020-02846-3
https://doi.org/10.3389/fonc.2020.00563
https://doi.org/10.1007/s11060-022-04063-y
https://doi.org/10.1016/j.radonc.2020.10.041
https://doi.org/10.3390/cancers14246119
https://www.ncbi.nlm.nih.gov/pubmed/36551604
https://doi.org/10.1007/s00381-022-05507-6
https://www.ncbi.nlm.nih.gov/pubmed/35394210

	Introduction 
	Radiomics Workflow 
	Feature Selection Techniques 
	Machine Learning Models for Response Prediction 

	MRI Radiomics Models for Response Prediction 
	Literature Review 
	Overview of MRI Radiomics Models for Response Prediction 
	Brain Cancer 
	Nasopharyngeal Carcinoma 
	Liver Cancer 
	Breast Cancer 
	Other Cancer Sites 


	Magnetic Resonance for Image-Guided Radiotherapy 
	Quality of Radiomics Model 
	Discussion 
	Conclusions 
	References

