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Abstract: Background: Cardiovascular disease affects the carotid arteries, coronary arteries, aorta
and the peripheral arteries. Radiomics involves the extraction of quantitative data from imaging
features that are imperceptible to the eye. Radiomics analysis in cardiovascular disease has largely
focused on CT and MRI modalities. This scoping review aims to summarise the existing literature on
radiomic analysis techniques in cardiovascular disease. Methods: MEDLINE and Embase databases
were searched for eligible studies evaluating radiomic techniques in living human subjects derived
from CT, MRI or PET imaging investigating atherosclerotic disease. Data on study population,
imaging characteristics and radiomics methodology were extracted. Results: Twenty-nine studies
consisting of 5753 patients (3752 males) were identified, and 78.7% of patients were from coronary
artery studies. Twenty-seven studies employed CT imaging (19 CT carotid angiography and 6 CT
coronary angiography (CTCA)), and two studies studied PET/CT. Manual segmentation was most
frequently undertaken. Processing techniques included voxel discretisation, voxel resampling and
filtration. Various shape, first-order, second-order and higher-order radiomic features were extracted.
Logistic regression was most commonly used for machine learning. Conclusion: Most published
evidence was feasibility/proof of concept work. There was significant heterogeneity in image
acquisition, segmentation techniques, processing and analysis between studies. There is a need for
the implementation of standardised imaging acquisition protocols, adherence to published reporting
guidelines and economic evaluation.

Keywords: radiomics; artificial intelligence; machine learning; cardiovascular disease; carotid;
coronary; CT angiography; CT coronary angiography; PET; molecular imaging

1. Introduction

Cardiovascular disease (CVD) encompasses the pathology of the blood vessels, which
most commonly affects the carotid arteries, coronary arteries, aorta and the peripheral
arteries. The clinical sequalae of CVD include ischaemic heart disease, cerebrovascular
disease, aortic aneurysms and peripheral arterial disease [1]. The prevalence of CVD has
risen globally, from 271 million in 1990 to 523 million in 2019 [1]. The pathophysiology
of CVD is multi-factorial and varies depending on the anatomical location of the vessel.
However, in general, it is driven by maladaptive remodelling of the vessel wall as a
consequence of hypertension, diabetes mellitus, hypercholesterolaemia, obesity and tobacco
consumption [1,2].

The type of imaging employed in CVD varies depending on the disease process but
includes duplex ultrasonography, fluoroscopic angiography, computed tomography an-
giography (CTA) or magnetic resonance angiography (MRA). These focus on the anatomy
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of vessels. In addition, molecular imaging can be employed using radiopharmaceuticals,
which accumulate in vascular tissues to demonstrate active pathophysiological processes
such as inflammation, angiogenesis or apoptosis [3]. Molecular imaging techniques include
single-photon emission computed tomography (SPECT) and positron emission tomog-
raphy (PET), which can be combined with CT or magnetic resonance imaging (MRI) for
anatomical localisation and functional assessment. Molecular imaging is well established
in oncology, with 18Fluorine-fluorodeoxyglucose (18F-FDG) PET imaging widely utilised to
investigate primary and metastatic malignancy. Moreover, within CVD, SPECT imaging
using 99mTechnetium-sestamibi or 99mTc-tetrofosmin radiotracers is clinically indicated for
the investigation of myocardial perfusion in coronary artery disease [4]. Routine clinical use
of radiopharmaceutical tracers within CVD is limited. Various radiolabelled tracers linked
to an antibody, peptide or nanoparticle have been employed to investigate intracellular
and extracellular targets in in vivo animal and human studies [3].

Radiomics involves the extraction of quantitative data from imaging features that are
imperceptible to the eye [5]. These include, but are not limited to, texture, intensity and
shape features. Due to the large quantities of data being handled, artificial intelligence
techniques are necessary to extract and analyse the derived information. In particular,
machine learning can be employed where programmed algorithms iteratively analyse the
data to identify patterns in the information [6]. The utility of machine learning within
radiomics can occur at the segmentation, image feature extraction and analysis stages, as
outlined in Figure 1.
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Figure 1. Methodological steps involved in radiomics. (1) Image acquisition. (2) Image segmentation.
(3) Extraction of image features. (4) Analysis of quantitative data.

The potential utility of radiomics has been reported primarily within the field of
oncology. Radiomics enables the evaluation of heterogeneity in malignancy between
patients, hence facilitating the assessment of tumour aggressiveness and prognosis [7].
In doing so, the treatment of different patients can be tailored accordingly, highlighting
radiomics as a technique to support precision medicine. As imaging investigations play an
integral role in the diagnosis and management of patients, it is anticipated that imaging
databases can be formed to foster the creation of big data, which can facilitate large-scale
radiomic analysis and enable more comprehensive evaluation of disease processes [7].

Radiomics has been evaluated in the CVD setting, largely focusing on CTA and MRA,
with a relative paucity of publications exploring the utility of molecular imaging-derived
radiomic analysis. Additionally, there is a lack of evidence summarising the literature in
this field. Consequently, this scoping review aims to summarise the existing literature on
radiomic analysis techniques using CT, MRI and PET imaging to investigate CVD.

2. Methodology

This scoping review was compiled in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses for Scoping Reviews checklist [8]. A checklist
has been included as Supplementary Table S1. This review acts as an antecedent to primary
research into the utility of radiomic techniques to predict clinical outcomes in patients
with peripheral arterial disease following angioplasty. Consequently, the included litera-
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ture is aimed to facilitate an exploration into the methodology for such analysis through
comparisons from work in carotid and coronary atherosclerotic disease using a range of
imaging modalities.

2.1. Eligibility Criteria

Studies were eligible if the methodology involved the evaluation of radiomic tech-
niques in living human subjects derived from CT, MRI or PET imaging being performed
to investigate atherosclerotic disease [9]. The included studies focused on the detection
or prediction of atherosclerotic CVD in the native carotid, coronary or lower limb pe-
ripheral arteries. Both prospective and retrospective studies were included and focused
on original in vivo research. Only English language peer-reviewed articles were consid-
ered to facilitate data extraction and comprehension of the findings. Studies that only
involved feasibility testing of radiomic techniques without assessing clinical outcomes such
as adverse outcomes were excluded. Additionally, studies were ineligible if they involved
cadaveric samples, non-native vessels such as stented vessels or other imaging modalities
such as single-photon emission computed tomography (SPECT). Finally, studies were only
included if the analysis involved machine learning techniques.

2.2. Sources and Search Strategy

The Ovid platform was accessed to search MEDLINE and Embase databases [10].
The search strategy constituted three core areas with associated synonyms: (1) radiomics,
(2) CT/MRI/PET and (3) atherosclerosis. Electronic search terms are summarised in the
Supplementary Materials. Searches were conducted from the inception of the database
until 11 April 2024 to maximise the number of records. Conference abstracts were excluded;
however, targeted searches were performed to locate corresponding full-text studies. Addi-
tionally, the reference lists in systematic reviews and literature reviews were examined to
identify additional eligible reports. Finally, searches were extended to Google Scholar to
explore the grey literature for further salient research. Study titles and their corresponding
abstracts were initially reviewed. Thereafter, the full text of pertinent studies was reviewed
to assess their eligibility for inclusion.

2.3. Data Extraction and Reporting

Data on the study population (number of patients, age and gender); imaging character-
istics (modality and imaging protocol) and radiomics methodology (software, segmentation
technique, processing and performance evaluation) were extracted onto a data collection
proforma by A. S. B. With respect to the segmentation methodology, automated segmen-
tation was defined as the delineation of the region of interest using software algorithms
without manual input, whereas semi-automated segmentation combined the automated
process with manual input, such as adjusting the boundaries of the region of interest [11].
The METhodological RadiomICs Score [12] (METRICS) tool was used to develop the
proforma and ensure that pertinent information on radiomics methodology was retrieved.

Significant heterogeneity in study populations, imaging investigations and radiomics
methodology precluded statistical analysis of the extracted data. Consequently, all findings
were presented narratively in tables or the text. Where reported, p-values less than 0.05
were considered statistically significant, unless otherwise stated.

2.4. Quality Assessment

The Newcastle–Ottawa Scale [13] was used to assess the quality of the included
studies. This tool was chosen as it enabled the evaluation of case–control studies and
observational studies. The tool reviews the selection of study participants and outcomes,
the comparability of cases and controls and the rigour of outcome assessment. Certain items
were omitted from within the various parameters if they were irrelevant. Consequently,
the relative scores differed between the studies.
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3. Results
3.1. Literature Search

The literature search revealed 342 studies once duplicates were removed (Figure 2).
Following the initial screening of titles and abstracts, 44 publications were selected for full
review. Thereafter, 29 studies [14–42] fulfilled the eligibility criteria and were included
in the scoping review (Table 1). Of these, seven studies [17,28–32,34] achieved maximum
scores when assessed using the Newcastle–Ottawa Scale (Supplementary Table S2). Ten stud-
ies [14,15,26,36–42] focused on carotid imaging, whilst the remainder [16–25,27–35] explored
radiomic analysis of the coronary arteries. No studies involving the peripheral arteries
were found. The majority of research was conducted in a single centre; however, there were
seven multi-centre studies [17,24,25,28,31,34,37]. Eleven studies [14,16–18,20,23,24,37,40–42]
were published in 2023, eight studies [15,19,26,30,32–35] were published in 2022 and four
studies [22,25,28,38] were published in 2024. The remaining studies were published prior
to 2022 [21,27,29,31,36,39].
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Table 1. Study characteristics. Continuous variables displayed using mean ± standard deviation or median (interquartile range).

Study Patient Demographics Age (Years) Eligibility Criteria Comorbidities (Number
of Patients)

Carotid studies

Chen et al. [14]
Single-centre study

Overall: 144
Male: 110 70.9 ± 9.1

Inclusion criteria: diagnosis of extracranial
carotid stenosis between 30–99% on CTA
images, sufficient information to ascertain
cerebral ischemia symptoms in the medical
records, and adequate information regarding
vascular risk factors in the medical records
Exclusion criteria: cardiogenic stroke,
simultaneous bilateral anterior circulation
events, complications of radiation therapy
and vasculitis, stroke involving the posterior
circulation only, inadequate image quality

Hypertension: 111
Hyperlipidaemia: 69
Smoker: 65
Diabetes mellitus: 52
CAD: 40

Cilla et al. [15]
Single-centre study

Overall: 30
Male: 19 72.96 (50–86)

Inclusion criteria: patients aged 18–75 years
requiring carotid endarterectomy for
>70% stenosis
Exclusion criteria: patients requiring
combined aorto-coronary bypass surgery and
carotid endarterectomy

Hypertension: 28
Hyperlipidaemia: 17
CAD: 12
Diabetes mellitus: 9
Chronic kidney disease: 3
Peripheral arterial disease: 2
Abdominal aorta aneurysm: 1

Ebrahimian et al. [26]
Single-centre study

Overall: 85
Male: 56 73 ± 10

Inclusion criteria: patients undergoing
dual-energy CTA of the neck to investigate
common or internal carotid artery stenosis
Exclusion criteria: patients scanned using
other scanners, previous revascularisation
surgery, metallic implants or stents, dental
implants, motion artefact on imaging

DNM

Kafouris et al. [36]
Single-centre study

Overall: 21
Male: 18 70.4 ± 7.0

Inclusion criteria: patients undergoing
carotid endarterectomy for stenosis > 70%
Exclusion criteria: cardiological ischaemic
events < 6 months ago; active infection,
inflammatory or neoplastic disease,
uncontrolled diabetes mellitus, multiple
significant stenoses across the carotid arteries

Hypertension: 18
Hyperlipidaemia: 15
Smoker: 11
Diabetes mellitus: 9
CAD: 4
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Table 1. Cont.

Study Patient Demographics Age (Years) Eligibility Criteria Comorbidities (Number
of Patients)

Liu et al. [37]
Multi-centre study

Overall: 280
Male: 201

Symptomatic patients
Training group: 63.8 ± 7.2
Validation group: 63.0 ± 7.1
External test group: 62.8 ± 7.5

Asymptomatic patients
Training group: 65.3 ± 8.8
Validation group: 61.0 ± 8.0
External test group: 63.4 ± 8.6

Inclusion criteria: extracranial carotid artery
stenosis secondary to atherosclerosis disease
Exclusion criteria: history of carotid stenting
and endarterectomy, cardiac thrombus,
carotid occlusion, poor image quality,
symptomatic bilateral carotid stenosis

Hypertension: 209
Smoker: 202
CAD: 159
Hyperlipidaemia: 132
Diabetes mellitus: 99

Nie et al. [38]
Single-centre study

Overall: 203
Male: 115 71.9 ± 9.6

Inclusion criteria: extracranial carotid
atherosclerosis
Exclusion criteria: ischemic stroke or TIA
caused by intracranial carotid stenosis >50%,
ischemic stroke or TIA occurred >2 weeks
before CTA, posterior circulation symptoms,
history of intervention to the cervicocerebral
artery, cerebral haemorrhage, meningioma,
craniotomy, arteriovenous fistula, temporal
lobectomy, moyamoya disease, reversible
cerebral vasoconstriction syndrome, arteritis,
carotid artery dissection, carotid artery
aneurysm, carotid artery web, poor image
quality, incomplete clinical information

Hypertension: 155
Diabetes mellitus: 72
Smoker: 55
Hyperlipidaemia: 50

Le et al. [39]
Single-centre study

Overall: 41
Male: 32 74.1 ± 8.4

Inclusion criteria: bilateral carotid
atherosclerosis (Evans et al. [44]), nil
inclusion criteria (Tarkin et al. [45]), DNM
(Joshi et al. [46])
Exclusion criteria: atrial fibrillation (Evans
et al. [44]), nil exclusion criteria
(Tarkin et al. [45]), DNM (Joshi et al. [46])

Stroke: 30
Smoker: 29 (includes current and
ex-smokers)
Hypertension 27
TIA: 11
Diabetes mellitus: 8

Shan et al. [40]
Single-centre study

Overall: 74
Male: 63 66.9 ± 8.8

Inclusion criteria: patients aged >18 years
with carotid atherosclerotic plaque diagnosed
on CTA and contrast-enhanced ultrasound
Exclusion criteria: incomplete clinical
information, poor image quality

Hypertension: 52
Smoker: 41
Diabetes mellitus: 29
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Table 1. Cont.

Study Patient Demographics Age (Years) Eligibility Criteria Comorbidities (Number
of Patients)

Shi et al. [41]
Single-centre study

Overall: 167
Male: 131 66.2 ± 7.7

Inclusion criteria: patients with suspected
stroke who underwent head and neck CTA
and brain MRI
Exclusion criteria: incomplete clinical
information, negative carotid CTA, cerebral
haemorrhage, intra-cranial tumour,
intra-cranial trauma, previous brain surgery,
posterior circulation stroke, suspected
cardioembolic

Hypertension: 115
Smoker: 91
Hyperlipidaemia: 73
Diabetes mellitus: 48
CAD: 23

Xia et al. [42]
Single-centre study

Overall: 179
Male: 125 65.4 ± DNM

Inclusion criteria: patients undergoing
carotid CTA with carotid artery stenosis of
30–50%
Exclusion criteria: carotid artery dissection
or aneurysm, intracranial vascular disease
(e.g., intracranial atherosclerosis with stenosis
< 50%, vasculitis, aneurysm), posterior
circulation stroke, intracerebral haemorrhage;
other causes of haemorrhagic stroke (e.g.,
cardioembolic source and chest embolism);
patients with other neurological diseases such
as brain tumours or demyelinating disease

DNM

Coronary studies

Chen et al. [16]
Single-centre study

Overall: 155
Male: 81 62 ± 10

Inclusion criteria: patients with suspected
CAD who underwent plain CT and CTCA
Exclusion criteria: patients without diabetes,
previous history of coronary artery disease,
history of cardiac or coronary surgery,
anomalous origin of coronary artery,
coronary malformation, coronary artery
aneurysm, coronary artery calcium score
>600, poor image quality

Hypertension: 113
Hyperlipidaemia: 54
Smoker: 31
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Table 1. Cont.

Study Patient Demographics Age (Years) Eligibility Criteria Comorbidities (Number
of Patients)

Chen et al. [17]
Multi-centre study

Overall: 214
Male: 163

Development group: 63 ± 11
Validation group: 65 ± 10

Inclusion criteria: minimum of 2 CTCA
studies 6 months apart, baseline coronary
artery stenosis was 25% to 70%
Exclusion criteria: patients undergoing
coronary artery bypass grafting or
percutaneous coronary intervention before or
during the study, missing or insufficient
imaging data, poor image quality, different
tube voltage settings used between the
CTCA examinations

Hypertension: 147
Diabetes mellitus: 68
Hyperlipidaemia: 33
Smoker: 30

Feng et al. [18]
Single-centre study

Overall: 280
Male: 184

Progression group: 70.1 ± 10.5
Non-progression group: 70.2
± 10.0

Inclusion criteria: ≥2 CTCA examination
≥2 years apart with >2 mm atherosclerotic
lesion on the baseline imaging, consistent
imaging technique during both scans
Exclusion criteria: incomplete clinical
information, poor imaging quality, coronary
revascularisation before or during the study

Hypertension: 223
Diabetes mellitus: 87
Smoker: 76

Homayounieh et al. [19]
Single-centre study

Overall: 106
Male: 68 64 ± 7

Inclusion criteria: patients undergoing
low-dose CT for lung cancer screening
received CTCA within 12 months
Exclusion criteria: coronary stents, prior
cardiac surgery, metal artefacts in the
cardiac region

Hyperlipidaemia: 91
Hypertension: 84
Smoker: 45
Diabetes mellitus: 28

Hou et al. [20]
Single-centre study

Overall: 96
Male: 68 62.6 ± 13.4

Inclusion criteria: patients with suspected or
known CAD who underwent CTCA and
SPECT-myocardial perfusion imaging
Exclusion criteria: poor image quality, no
lesion on CTCA, previous ACS or
revascularisation, MPI was conducted over
30 days after CTCA, failed automatic
image segmentation

Hypertension: 61
Diabetes mellitus: 32
Smoker: 30
Hyperlipidaemia: 24
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Table 1. Cont.

Study Patient Demographics Age (Years) Eligibility Criteria Comorbidities (Number
of Patients)

Hu et al. [21]
Single-centre study

Overall: 109
Male: 81

Training group
FFR ≤ 0.8 patients: 62.5 ± 8.3
FFR > 0.8 patients: 61.2 ± 8.2

Validation group
FFR ≤ 0.8 patients: 71.3 ± 7.8
FFR > 0.8 patients: 66.6 ± 6.4

Inclusion criteria: patients who experienced
non-emergency invasive coronary
angiography and FFR within 30 days after
CTCA examination, and target lesions were
located in the epicardial coronary artery with
a diameter > 2 mm
Exclusion criteria: prior stent implantation,
inadequate image quality, unsuccessful image
segmentation, stenosis <30% or >90% in the
target lesion, tandem lesions that precluded
identification of the culprit lesion, previous
cardiac resynchronisation or catheter ablation
therapy, complex congenital heart disease,
severe cardiac insufficiency or liver and
kidney dysfunction, contraindication to
iodine contrast and coronary
microangiopathy

Hypertension: 81
Diabetes mellitus: 40
Hyperlipidaemia: 78
Smoker: 33

Jing et al. [22]
Single-centre study

Overall: 620
Male: 336

Training group
CAD patients: 53 (47–58)
CCS patients: 63 (55–69)
ACS patients: 59.7 ± 11.9

Testing group
No CAD patients: 54 (49–58.3)
CCS patients: 58 (53–69.8)
ACS patients: 60.7 ± 10.9

Inclusion criteria: no history of ACS or
coronary bypass surgery or stenting, absence
of atrial fibrillation, no severe renal
impairment (eGFR > 30ml/m/1.73 m2, no
contraindication to iodine contrast; CTCA
within 3 days followed by invasive
coronary angiography
Exclusion criteria: incomplete imaging and
clinical data, coronary artery malformations,
artificial valve, cardiac pacemaker,
myocarditis, vasculitis, inadequate
image quality

Hyperlipidaemia: 379
Hypertension: 362
Smoker: 286
Diabetes mellitus: 182



Tomography 2024, 10 1464

Table 1. Cont.

Study Patient Demographics Age (Years) Eligibility Criteria Comorbidities (Number
of Patients)

Kim et al. [23]
Single-centre study

Overall: 25
Male: 19 63 ± 11

Inclusion criteria: patients that underwent
both CTCA and IVOCT for the investigation
of coronary plaques
Exclusion criteria: history of myocardial
infarction, previous coronary stent
implantation, inadequate CTCA or
IVOCT images

Hyperlipidaemia: 24
Diabetes mellitus: 20
Hypertension: 11
Chronic kidney disease: 11

Kwiecinski et al. [24]
Multi-centre study

Overall: 260
Male: 216 65 ± 9

Inclusion criteria: patients with
established CAD
Exclusion criteria: coronary artery stenting

Hyperlipidaemia: 235
Smoker: 172
Hypertension: 153
Diabetes mellitus: 54
Peripheral arterial disease: 14

Lee et al. [25]
Multi-centre study

Overall: 1162
Male: 647 60.3 ± 9.2

Inclusion criteria: patients that underwent
clinically indicated CTCA
Exclusion criteria: inadequate imaging
quality, coronary revascularisation before or
during the study, failure to extract radiomic
features, coronary plaque at baseline

Hypertension: 600
Smoker: 431
Hyperlipidaemia: 420
Diabetes mellitus: 231

Li et al. [27]
Single-centre study

Overall: 44
Male: 40

Training group: 53.0 ± 9.0
Validation group: 48.5 ± 11.6

Inclusion criteria: patients with CAD and
end-stage heart failure who underwent
CTCA prior to surgery
Exclusion criteria: contraindications to
CTCA, inadequate image quality

Hyperlipidaemia: 29
Smoker: 21
Hypertension: 17
Diabetes mellitus: 12

Li et al. [28]
Multi-centre study

Overall: 132
Male: 91

Subtotal occlusion patients: 65
(55–71)
Chronic total occlusion
patients: 63 (58–73)

Inclusion criteria: patients with subtotal or
chronic total coronary artery occlusion who
underwent both CTCA and invasive
coronary angiography
Exclusion criteria: patients who underwent
bypass surgery or percutaneous coronary
intervention for occluded arteries, >2 week
interval between CTCA and invasive
coronary angiography, multiple occlusive
lesions, excessive calcification precluding
lumen analysis, inadequate image quality

Hypertension: 80
Diabetes mellitus: 48
Smoker: 48
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Table 1. Cont.

Study Patient Demographics Age (Years) Eligibility Criteria Comorbidities (Number
of Patients)

Lin et al. [29]
Single-centre study

Overall: 180
Male: 156

Acute MI patients: 58.4
(51.6–73.7)
Stable CAD patients: 60.0
(52.0–68.5)
No CAD patients: 59.5
(52.0–69.0)

Inclusion criteria: patients with
post-thrombolysis STEMI or non-STEMI and
had a culprit lesion identified on invasive
coronary angiography
Exclusion criteria: previous MI or
revascularisation, clinical instability, severe
renal impairment (eGFR < 30 ml/m/1.73 m2),
allergy to iodinated contrast

Hypertension: 127
Diabetes mellitus: 40
Hyperlipidaemia: 98
Smoker: 63

Lin et al. [30]
Single-centre study

Overall: 120
Male: 104

Acute MI patients: 59.9 ± 11.6
Stable CAD patients: 60.2 ±
11.3

Inclusion criteria: patients with acute MI
undergoing CTCA and invasive
coronary angiography
Exclusion criteria: previous MI or
revascularisation, clinical instability, severe
renal impairment (eGFR < 30 ml/m/1.73 m2),
allergy to iodinated contrast

Hypertension: 85
Hyperlipidaemia: 67
Smoker: 44
Diabetes mellitus: 28

Oikonomou et al. [31]
Multi-centre study

Study 2
Overall: 202
Male: 134

MACE group: 64 (55–72)
Non-MACE group: 62 (53–70)

Hypertension: 129
Hyperlipidaemia: 80
Smoker: 56
Diabetes mellitus: 34

Study 3
Overall: 88
Male: 65

Stable CAD group: 62 (51–70)
Acute MI group: 62 (53–72)

Inclusion criteria: study 2—patients
undergoing clinically indicated CTCA, study
3—patients undergoing CTCA after acute MI
or stable CAD
Exclusion criteria: DNM

Smoker: 55
Hypertension: 42
Hyperlipidaemia: 41
Diabetes mellitus: 13

Si et al. [32]
Single-centre study

Overall: 210
Male: 148 62.5 ± 10.4 Inclusion criteria: patients with acute MI

Exclusion criteria: DNM

Hyperlipidaemia: 145
Hypertension: 111
Diabetes mellitus: 69
Smoker: 74

Wen et al. [33]
Single-centre study

Overall: 92
Male: 66 58.3 ± 10.3

Inclusion criteria: patients suspected with
CAD undergoing CTCA and invasive
coronary angiography and FFR examination,
<30-day interval between CTCA and FFR
measurement
Exclusion criteria: previous
revascularisation, inadequate CTCA image
quality, incomplete CTCA acquisition

Hypertension: 43
Hyperlipidaemia: 39
Smoker: 37
Diabetes mellitus: 8
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Table 1. Cont.

Study Patient Demographics Age (Years) Eligibility Criteria Comorbidities (Number
of Patients)

You et al. [34]
Multi-centre study

Overall: 288
Male: 175

Training group
MACE patients: 59.1 ± 10.4
Non-MACE patients:
59.6 ± 9.6

Validation group
MACE patients: 60.4 ± 10.0
Non-MACE patients:
61.4 ± 8.4

Inclusion criteria: patients who underwent
CTCA—half of the cohort had a major
adverse cardiovascular event within 3 years
Exclusion criteria: previous PCI or CABG,
revascularisation surgery within 6 weeks
after CTCA, incomplete clinical information,
inadequate imaging quality, previous MI,
cardiomyopathy, valvular heart disease,
congenital heart disease, chest malignancy

Hypertension: 193
Diabetes mellitus: 107
Smoker: 94
Hyperlipidaemia: 26

Yu et al. [35]
Single-centre study

Overall: 146
Male: 102 65.5 ± 8.3

Inclusion criteria: patients with known CAD
who had CTCA, invasive coronary
angiography, and FFR within 1 month
Exclusion criteria: previous
revascularisation, tandem coronary lesions,
previous MI, inadequate CTCA quality

Hypertension: 105
Hyperlipidaemia: 59
Diabetes mellitus: 56
Smoker: 50

Abbreviations: CTA = computed tomography angiogram, CAD = coronary artery disease, TIA = transient ischaemic attack, DNM = does not mention, MRI = magnetic resonance
imaging, CT = computed tomography, CTCA = computed tomography coronary angiogram, SPECT = single-photon emission computed tomography, ACS = acute coronary syndrome,
MPI = myocardial perfusion imaging, FFR = fractional flow reserve, CCS = chronic coronary syndrome, IVOCT = intra-vascular optical coherence tomography, MI = myocardial
infarction, STEMI = ST elevation myocardial infarction, eGFR = estimated glomerular filtration rate, MACE = major adverse cardiovascular event, PCI = percutaneous coronary
intervention and CABG = coronary artery bypass graft.
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3.2. Study Characteristics

In total, 5753 patients were included, consisting of 3752 males (65.2%). There were
more individuals enrolled into coronary studies (4529 patients, 78.7%) compared to carotid
studies (1224 patients), although patients in the latter group were older, with a mean
age ranging from 61 ± 8.0 years (±standard deviation) to 74.1 ± 8.4 years compared to
48.5 ± 11.6 years to 71.3 ± 7.8 years in the coronary studies. Hypertension (3482 patients,
60.5%), hyperlipidaemia (2278 patients, 39.6%) and tobacco smoking (2170 patients, 37.7%)
were the three most observed comorbidities.

Nine of the ten carotid studies included patients receiving clinically indicated investi-
gations for carotid atherosclerotic disease, of which four specified the minimum degree of
stenosis: 30% [14,42] or 70% [15,36], in accordance with the European Society of Vascular
Surgery (ESVS) guidelines [47]. Seventeen [16–18,20–24,27–35] of the nineteen coronary
studies included patients being clinically investigated for atherosclerotic disease. The
exclusion criteria for the studies are outlined in Table 1.

3.3. Image Acquisition

In the carotid literature, CTA was reported as the technique of choice in eight stud-
ies [14,15,37–42] (Table 2 and Supplementary Table S3). Ebrahimian et al. [26] performed
dual-energy CTA, whilst Kafouris et al. [36] undertook PET/CT imaging using 18F-FDG.
No studies using MRI that fulfilled the inclusion criteria were identified.

A variety of iodine-based contrast agents were used, including iomeprol [15], io-
hexol [26,37], ioversol [38], iopamidol [39] and iopromide [42]. In the contrast studies, the
tube voltage ranged from 80 kV [40] to 120 kV [39,41,42], whilst the tube current ranged
from 100 mA [40] to 320 mA [26]. A variety of slice thicknesses were employed ranging
from 0.5 mm [37,40] to 1 mm [26], whilst the slice interval ranged from 0.4 mm [39] to
0.625 mm [42].

All of the coronary studies evaluated CTA, with the exception of Kwiecinski et al., who
reported outcomes in PET/CT imaging using 18fluorine-sodium fluoride (18F-NaF) [24].
When mentioned, iopromide was the most commonly utilised contrast agent mentioned
in seven studies [16–18,22,27,34,35]; other contrast agents used were iopamidol [23,31]
and iohexol [30]. Where available, the studies reported using tube voltages between 80
kV to 120 kV. The tube current ranged from 30 mA [19] to 800 mA [23]. Most studies
reported using a slice thickness within the range of 0.5 mm to 0.75 mm [16–18,20,29–32],
although You et al. opted for 0.9 mm [34]. Similarly, with the exception of You et al. [34],
the slice interval was set at 0.25 mm [20–30], 0.5 mm [17,18,32] or 0.625 mm [16,31] in the
remaining studies.
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Table 2. Imaging and radiomics methodology.

Study Modality Radiomics Architecture Segmentation and Processing Performance Evaluation
Carotid studies

Chen et al. [14] CT angiography

Adherence to radiomics guidelines: nil
Feature extraction software: 3D Slicer
(https://www.slicer.org/, accessed on 27
August 2024)

Segmentation: manual
segmentation of the coronary
plaque and semiautomated
segmentation of the PVAT using 3D
Slicer (https://www.slicer.org/,
accessed on 27 August 2024)
Features extracted: shape, first
order, GLCM, GLDM, GLSZM,
GLRLM and NGTDM
Machine learning techniques: SVM

Performance assessment: AUC
from the ROC, accuracy, sensitivity,
specificity, PPV, and NPV
Internal validation: dataset split
into training set (n = 100) and
validation set (n = 44). Tenfold
cross validation
No external validation

Cilla et al. [15] CT angiography

Adherence to radiomics guidelines:
radiomic feature extraction performed in
accordance with IBSI
Feature extraction software: Moddicom
(radiomics software package for R,
https://github.com/kbolab/moddicom,
accessed on 27 August 2024)

Segmentation: manual
segmentation
Features extracted: first order,
shape, GLCM, GLRLM, GLSZM,
NGTDM and GLDM
Machine learning techniques:
logistic regression, SVM, CART

Performance assessment: AUC
from the ROC, AUC, class-specific
accuracy (proportion of both true
positive and true negatives amongst
all cases), PPV, sensitivity and
F-measure
Internal validation: fivefold cross
validation applied to each machine
learning model
No external validation

Ebrahimian et al. [26] Dual-energy CT angiography

Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics integrated into Dual-Energy
Tumour Analysis prototype software
(eXamine, Siemens Healthineers,
Forcheim, Germany)

Segmentation: automated
segmentation using Dual-Energy
Tumour Analysis prototype
software (eXamine, Siemens
Healthineers, Forcheim, Germany)
Features extracted: shape,
first-order, GLCM, NGTDM,
GLSZM, GLRLM, GLDM, and
higher-order features
Machine learning techniques:
multinomial logistic regression

Performance assessment: AUC
from the ROC
Internal validation: DNM
No external validation

https://www.slicer.org/
https://www.slicer.org/
https://github.com/kbolab/moddicom
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Table 2. Cont.

Study Modality Radiomics Architecture Segmentation and Processing Performance Evaluation

Kafouris et al. [36] PET/CT using 0.14 mCi/kg
18F-FDG

Adherence to radiomics guidelines:
features extracted according to
IBSI guidelines
Feature extraction software: in-house
software based on Matlab platform
(Version 9.3, Matlab R2017b, Natick,
MA, USA)

Segmentation: manual
segmentation around the carotid
artery wall
Features extracted: first order,
GLCM, GLRLM, GLSZM and
NGTDM
Machine learning techniques:
univariate logistic regression

Performance assessment: AUC
from the ROC
Internal validation: bootstrapping
generating 200 bootstrap samples
No external validation

Liu et al. [37] CT angiography

Adherence to radiomics guidelines: nil
Feature extraction software: Radcloud
platform (Huiying Medical Technology,
Beijing, China)

Segmentation: manual
segmentation of the coronary plaque
using ITK-SNAP software (version
3.7, http://www.itksnap.org/,
accessed on 27 August 2024)
Features extracted: shape, first
order, GLDM, GLRLM, GLCM,
GLSZM and NGTDM
Machine learning techniques:
LASSO used to construct a
‘radiomics score’

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set (n = 135) and
validation set (n = 58)
External validation using
87 patients

Nie et al. [38] CT angiography

Adherence to radiomics guidelines: nil
Feature extraction software: Shukun AI
Scientific Research Platform (Shukun
Technology, Beijing, China)

Segmentation: automated
segmentation of the PVAT using
Perivascular Fat Analysis Software
(Shukun Technology, Beijing, China)
Features extracted: first order,
shape, GLCM, GLDM, GLRLM,
GLSZM and NGTDM
Machine learning techniques:
Bagging DecisionTree, XGBoost,
random forest, SVM and quadratic
discriminant analysis

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set (n = 163) and test
set (n = 40)
No external validation

http://www.itksnap.org/
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Table 2. Cont.

Study Modality Radiomics Architecture Segmentation and Processing Performance Evaluation

Le et al. [39] CT angiography

Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics (version 3.0,
https://pyradiomics.readthedocs.io/,
accessed on 27 August 2024)

Segmentation: manual
segmentation using TexRad
(Feedback Medical Ltd.,
London, UK)
Features extracted: first order,
GLCM, GLRLM, GLSZM, GLDM,
and NGTDM
Machine learning techniques:
decision tree, random forest, LASSO,
Elastic Net regression (weight for L1
and L2 penalties = 0.5), neural
network, and XGBoost

Performance assessment: AUC
from the ROC
Internal validation: fivefold
cross validation
No external validation

Shan et al. [40] CT angiography
Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics integrated into Python

Segmentation: semi-automated
segmentation using 3D Slicer
Features extracted: shape, first
order, GLDM, GLRLM, GLCM,
GLSZM and NGTDM
Machine learning techniques:
logistic regression, SVM, random
forest, light gradient boosting
machine, AdaBoost, XGBoost, and
multi-layer perception

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set and validation set
in a ratio of 7:3
No external validation

Shi et al. [41] CT angiography

Adherence to radiomics guidelines: nil
Feature extraction software: The
Deepwise Multimodal Research Platform
(version 2.0, Beijing Deepwise & League
of PHD Technology Co. Ltd, Beijing,
China)

Segmentation: manual
segmentation of the coronary plaque
using The Deepwise Multimodal
Research Platform (version 2.0,
Beijing Deepwise & League of PHD
Technology Co. Ltd, Beijing, China)
Features extracted: shape, first
order, GLDM, GLRLM, GLCM,
GLSZM and NGTDM
Machine learning techniques:
analysis of variance F-value, mutual
information and linear models
penalised with the L1 norm

Performance assessment: AUC
from the ROC, calibration, and
decision curve analyses
Internal validation: fivefold cross
validation applied to each machine
learning model
No external validation

https://pyradiomics.readthedocs.io/
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Table 2. Cont.

Study Modality Radiomics Architecture Segmentation and Processing Performance Evaluation

Xia et al. [42] CT angiography

Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics (version 2.4) integrated into
Python

Segmentation: manual
segmentation of the coronary
plaque using 3D Slicer (version 4.11)
Features extracted: shape, first
order, GLCM, GLSZM, GLRLM,
NGTDM and GLDM
Machine learning techniques:
random forest, XGBoost, logistic
regression, SVM and
k-nearest neighbour

Performance assessment: predictive
value of the model assessed using
AUC from the ROC
Internal validation: dataset split
into training set (n = 165) and
validation set (n = 66). Fivefold
cross validation used on the
training set
No external validation

Coronary studies

Chen et al. [16] CT coronary angiography
Adherence to radiomics guidelines: nil
Feature extraction software: Perivascular
Fat Analysis Tool

Segmentation: semi-automated
segmentation of the PCAT using
Perivascular Fat Analysis Tool
Features extracted: shape, first
order, GLDM, GLCM, GLRLM,
GLSZM and NGTDM
Machine learning techniques:
multivariate logistic regression used
to construct a ‘radiomics score’

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set (n = 108) and
validation set (n = 47). Fivefold
cross validation performed
No external validation

Chen et al. [17] CT coronary angiography

Adherence to radiomics guidelines:
features extracted according to IBSI
guidelines
Feature extraction software: Radiomics,
Syngo.Via FRONTIER (version 1.2.1,
Siemens Healthineers,
Forcheim, Germany)

Segmentation: manual
segmentation using Radiomics,
Syngo.Via FRONTIER (version 1.2.1,
Siemens Healthineers, Forcheim,
Germany)
Features extracted: shape, first
order, GLCM, GLSZM, GLRLM,
GLDM and NGTDM
Machine learning techniques:
multivariable logistic regression and
XGBoost used to construct
the algorithm

Performance assessment: predictive
value of the model assessed using
AUC from the ROC
Internal validation: dataset split
into training set and validation set
in a ratio of 7:3. Fivefold cross
validation used on the training set
(n = 137)
External validation using
159 patients
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Table 2. Cont.

Study Modality Radiomics Architecture Segmentation and Processing Performance Evaluation

Feng et al. [18] CT coronary angiography
Adherence to radiomics guidelines: nil
Feature extraction software: Radiomics,
Syngo.Via FRONTIER (version 1.3.0)

Segmentation: semi-automated
segmentation of the plaque using
Coronary Plaque Analysis
Syngo.Via Frontier (version 5.0.2,
Siemens Healthineers, Forcheim,
Germany)
Features extracted: shape, first
order and texture
Machine learning techniques:
random forest model and logistic
regression used to construct the
radiomics model

Performance assessment: AUC
from the ROC, sensitivity, specificity,
and accuracy
Internal validation: dataset split
into training set (n = 280) and
validation set (n =120)
No external validation

Homayounieh et al. [19] CT coronary angiography
Adherence to radiomics guidelines: nil
Feature extraction software: Radiomics,
Syngo.Via FRONTIER

Segmentation: automated
segmentation using Radiomics,
Syngo.Via FRONTIER
Features extracted: shape, first
order, GLCM, GLRLM, GLSZM,
NGTDM and GLDM
Machine learning techniques:
multiple logistic regression and
kernel Fisher discriminant analysis

Performance assessment: AUC
from the ROC
Internal validation: nil
No external validation

Hou et al. [20] CT coronary angiography Adherence to radiomics guidelines: nil
Feature extraction software: DNM

Segmentation: semi-automated
segmentation of the PCAT
Features extracted: first order,
GLCM, GLRLM, GLSZM, GLDM
and NGTDM
Machine learning techniques:
SVM, k-nearest neighbour, Light
GBM, and random forest

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set (n = 123) and
validation set (n = 54). Tenfold cross
validation used on the training set
No external validation

Hu et al. [21] CT coronary angiography

Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics library integrated into an
unknown software

Segmentation: manual
segmentation using ITK-SNAP
software (version 3.6.0)
Features extracted: first order,
shape, texture, higher order
Machine learning techniques:
logistic regression

Performance assessment: AUC
from the ROC, sensitivity, specificity,
PPV, NPV, positive likelihood ratio,
negative likelihood ratio
Internal validation: dataset split
into training set (n = 88) and
validation set (n = 31)
No external validation
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Table 2. Cont.

Study Modality Radiomics Architecture Segmentation and Processing Performance Evaluation

Jing et al. [22] CT coronary angiography

Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics library integrated into
Pericoronary Adipose Tissue Analysis
Software (Shukun Technology, Beijing,
China)

Segmentation: automated
segmentation using CoronaryDoc
software (Shukun Technology,
Beijing, China)
Features extracted: first order and
texture features
Machine learning techniques:
SVM, ridge regression classifier and
logistic regression

Performance assessment: AUC
from the ROC, accuracy, specificity,
sensitivity, PPV, and NPVs
Internal validation: dataset split
into training set and validation set
at a ratio of 2:1. Fivefold cross
validation performed
No external validation

Kim et al. [23] CT coronary angiography

Adherence to radiomics guidelines:
features extracted according to IBSI
guidelines
Feature extraction software:
PyRadiomics integrated into Python

Segmentation: semi-automated
segmentation of the PCAT using
in-house Python software
Features extracted: shape, first
order, GLCM, GLDM, GLRLM,
GLSZM and NGTDM
Machine learning techniques:
multivariate logistic regression

Performance assessment: predictive
value of the model assessed using
AUC from the ROC
Internal validation: stratified
threefold cross validation
performed
No external validation

Kwiecinski et al. [24] PET/CT performed using 250
MBq 18F-NaF

Adherence to radiomics guidelines: nil
Feature extraction software: Radiomics
Image Analysis (version 1.4.2, https:
//github.com/neuroconductor/RIA,
accessed on 27 August 2024) on R

Segmentation: automated
segmentation of the PET/CT using
coronary microcalcification activity.
Semi-automated segmentation of
the plaques from the CTCA using
Autoplaque (version 2.5,
Cedars-Sinai Medical Center, Los
Angeles, CA, USA)
Features extracted: DNM type of
features extracted
Machine learning techniques:
univariable and multivariable
logistic regression, linear regression
and random forest

Performance assessment: nil
Internal validation: DNM
No external validation

https://github.com/neuroconductor/RIA
https://github.com/neuroconductor/RIA
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Table 2. Cont.

Study Modality Radiomics Architecture Segmentation and Processing Performance Evaluation

Lee et al. [25] CT coronary angiography
Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics integrated into Python

Segmentation: semi-automated
segmentation of the coronary plaque
using QAngioCT Research Edition
(version 2.1.9.1, Medis Medical
Imaging, Leiden, Netherlands)
Features extracted: first order,
GLCM, GLRLM, GLSZM, GLDM
and NGTDM
Machine learning techniques:
multivariable Cox regression model

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set and validation set
in a ratio of 8:2
No external validation

Li et al. [27] CT coronary angiography
Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics integrated into Python

Segmentation: manual
segmentation of the coronary plaque
Features extracted: shape, first
order, GLCM, GLDM, GLRLM,
GLSZM and NGTDM
Machine learning techniques:
Naïve Bayes, decision tree, random
forest, gradient boosting decision
tree, SVM, multilayer perceptron,
logistic regression, and
k-nearest neighbours

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set (n = 36) and
validation set (n = 8). Fivefold cross
validation performed on the
training set
No external validation

Li et al. [28] CT coronary angiography

Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics integrated into Research
Portal (version 1.1, United Imaging
Intelligence Co. Ltd., Shanghai, China)

Segmentation: automated
segmentation of the coronary plaque
using Research Portal (version 1.1)
Features extracted: shape, first
order, GLCM, GLRLM, GLSZM,
NGTDM and GLDM
Machine learning techniques:
DNM

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set and validation set
in a ratio of 8:2. Fivefold cross
validation performed
External validation using
50 patients

Lin et al. [29] CT coronary angiography

Adherence to radiomics guidelines: nil
Feature extraction software: Radiomics
Image Analysis software package
(version 1.4.1) on R

Segmentation: automated
segmentation of the PCAT using
Autoplaque software (version 2.5)
Features extracted: shape, first
order features, GLCM and GLRLM
Machine learning techniques:
XGBoost

Performance assessment: AUC
from the ROC
Internal validation: tenfold cross
validation
No external validation



Tomography 2024, 10 1475

Table 2. Cont.

Study Modality Radiomics Architecture Segmentation and Processing Performance Evaluation

Lin et al. [30] CT coronary angiography

Adherence to radiomics guidelines: nil
Feature extraction software: Radiomics
Image Analysis software package
(version 1.4.2) on R

Segmentation: semi-automated
segmentation of the coronary plaque
using Autoplaque (version 2.5)
Features extracted: shape, first
order, GLCM and GLRLM
Machine learning techniques:
XGBoost

Performance assessment: AUC
from the ROC
Internal validation: tenfold cross
validation
External validation on 19 patients

Oikonomou et al. [31] (study 2
and 3) CT coronary angiography

Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics integrated into 3D Slicer

Segmentation: manual
segmentation of the PVAT
Features extracted: shape, first
order, GLCM, GLDM, GLRLM,
GLSZM, NGTDM and higher order
Machine learning techniques:
random forest

Performance assessment: predictive
value of the model assessed using
AUC from ROC
Internal validation: dataset split
into training set and validation set
in a ratio of 4:1. Fivefold cross
validation performed
External validation performed on
the validation dataset

Si et al. [32] CT coronary angiography
Adherence to radiomics guidelines: nil
Feature extraction software: Research
Portal (version 1.1)

Segmentation: automated
segmentation using the VB-net
model
Features extracted: shape, first
order, GLCM, GLRLM, GLSZM,
GLDM and NGTDM
Machine learning techniques:
logistic regression

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set and validation set
in a ratio of 7:3. Fivefold cross
validation performed
No external validation

Wen et al. [33] CT coronary angiography

Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics integrated into 3D Slicer
(version 4.10.2)

Segmentation: manual
segmentation of the PCAT using 3D
slicer
Features extracted: first order,
GLCM, GLRLM, GLSZM, GLDM
and higher order
Machine learning techniques:
logistic regression, decision tree
and SVM

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set and validation set
in a ratio of 4:1
No external validation



Tomography 2024, 10 1476

Table 2. Cont.

Study Modality Radiomics Architecture Segmentation and Processing Performance Evaluation

You et al. [34] CT coronary angiography

Adherence to radiomics guidelines: nil
Feature extraction software: Artificial
Intelligence Kit (GE Healthcare, Chicago,
IL, USA)

Segmentation: semi-automated
segmentation
of the epicardial adipose tissue
using EATseg software
(https://github.com/
MountainAndMorning/EATSeg,
accessed on 27 August 2024) and 3D
slicer (version 4.11)
Processing: nil
Features extracted: first order,
GLCM, GLSZM, GLRLM, NGTDM
and GLDM
Machine learning techniques:
logistic regression

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set and validation set
in a ratio of 7:3
No external validation

Yu et al. [35] CT coronary angiography

Adherence to radiomics guidelines: nil
Feature extraction software:
PyRadiomics integrated into an
in-house software

Segmentation: automated
segmentation using CoronaryDoc,
FAI Analysis Tool (version 5.1.2,
Shukun Technology, Beijing, China)
Features extracted: first order,
GLCM, GLSZM, GLRLM, NGTDM
and GLDM
Machine learning techniques: SVM

Performance assessment: AUC
from the ROC
Internal validation: dataset split
into training set and validation set
in a ratio of 2:1. Fivefold cross
validation performed applied to
training set
No external validation

Abbreviations: CT = computed tomography, PVAT = peri-vascular adipose tissue, GLCM = grey-level co-occurrence matrix, GLDM = grey-level dependence matrix, GLSZM = grey-level
size zone matrix, GLRLM = grey-level run length matrix, NGTDM = neighbouring grey tone difference matrix, SVM = support vector machine, AUC = area under curve, ROC = receiver
operating characteristic, PPV = positive predictive value, NPV = negative predictive value, IBSI = Image Biomarker Standardisation Initiative, CART = classification and regression tree,
DNM = does not mention, PET = positron emission tomography, mCi = millicurie, kg = kilogram, 18F-FDG = [¹8F]Fluorodeoxyglucose, LASSO = least absolute shrinkage and selection
operator, PCAT = peri-coronary adipose tissue,. CTCA = computed tomography coronary angiography, MBq = megabecquerel,18F-NaF = [¹8F]sodium fluoride.

https://github.com/MountainAndMorning/EATSeg
https://github.com/MountainAndMorning/EATSeg
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3.4. Segmentation

The region of interest (ROI) varied amongst the carotid artery studies (Supplementary
Table S4). Eight reports [15,26,36,37,39–42] focused on segmentation of the carotid plaque,
one study [38] contoured the peri-vascular adipose tissue, and a further study [14] extracted
data from both the plaque and the peri-vascular adipose tissue. In the coronary artery
studies, the plaque was the ROI in nine studies [17–19,21,24,25,27,28,30], whilst nine other
evaluations [16,20,22,23,29,31–33] focused on peri-coronary adipose tissue, and a single
group [35] extracted data from both the peri-coronary and the epicardial adipose tissue.

A variety of approaches to ROI definition were adopted, including
manual [15,17,21,27,31,33,36,37,39,41,42], semi-automated [16,18,23,25,30,34,40] or auto-
mated segmentation [19,22,24,26,28,29,32,35,38]. Moreover, in some studies, different ROIs
underwent combinations of segmentation, including manual with semi-automated seg-
mentation [14] or semi-automated with automated segmentation [20]. Where manual
segmentation was performed, this process was undertaken by one individual in three stud-
ies [27,41,42] or two individuals in eight studies [14–16,18,21,34,37,40]. The most commonly
used software was 3D Slicer. Further information on the segmentation methodology is
outlined in Table 2 and Supplementary Table S3.

3.5. Processing

An array of image processing methods were used (Supplementary Table S3). In some
studies, the voxels were discretised into fixed bin widths of 25 HU [14,17,26,33] or into a
specific number of bins, such as 8 [23,29,30], 16 [23,29–31], 32 [23,29,30] or 64 [36]. Other
studies reported the resampling of voxels to 1 × 1 × 1 mm [14,17,20]. Various filtration
methods were used, including Wavelet transform [14,16,18,27,28,40], Laplacian of Gaus-
sian [14,16,18,27,40], exponential filter [27,40], gradient filter [40], Laplacian sharpening
filter [28] and non-linear transformation filter [16,18]. Some studies did not report any
processing steps [15,19,21,22,24,25,35,37,38,41,42].

3.6. Radiomic Feature Extraction

A minority of studies [15,17,23,36] reported adherence to published radiomics guide-
lines; this involved feature extraction in accordance with the Image Biomarker Standard-
ization Initiative [48]. Most commonly, feature extraction was performed using the PyRa-
diomics package integrated into various software [21–23,25–27,35,39,40,42]. Alternatively,
some authors reported using the R platform [15,24,29,30], 3D Slicer [14,31,33] or an in-house
software [36]. The types of features extracted are shown in Figure 3.

3.7. Dimensionality Reduction and Feature Selection

In 11 studies [14,16,17,20,21,31,33,35,37,39–41], intraclass correlation was used to as-
sess the reproducibility of the image segmentation technique between different clinicians.
Studies used an intraclass correlation threshold of 0.75 [14,20,21,33,37], 0.8 [17,41], 0.85 [35]
or 0.9 [16,31,39,40] when selecting radiomic features. A variety of dimensionality reduction
and feature selection techniques were employed as shown in Figure 4. Generally, a combi-
nation of statistical methods were used; however, in five studies [18,27,29,30,42], a single
method was selected (Supplementary Table S3). Additionally, Houmayounieh et al. [19]
did not specify the statistical method utilised in their study.

3.8. Machine Learning Methods

In total, 21 different machine learning methods were used as illustrated in Figure 5.
The median number of machine learning methods used per study was one. When stratified
by disease type, the median number of machine learning methods used were two in carotid
studies and one in coronary studies.
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In the carotid studies, the outcomes of interest included differentiating between symp-
tomatic and asymptomatic lesions [14,37–39,41], distinguishing between vulnerable and
non-vulnerable lesions [15,36,40], predicting surgical outcomes [26] and predicting complica-
tions such as a transient ischaemic attack arising from lesions [42] (Supplementary Table S4).
Symptomatic plaques referred to sequalae such as stroke or transient ischaemic attack arising
from atherosclerotic disease. Vulnerable plaques were defined using histological analysis [36],
immunohistological analysis [36] or invasive angiography [40].
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Machine learning methods in the coronary studies were used to predict structural
changes to arterial plaques such as rapid progression [17,18] stenosis [19,25,31,33,35] or
complete obstruction [16], whilst, in other studies, functional changes such as myocardial
ischaemia were predicted (Supplementary Table S4) [20,21]. Alternatively, modelling was
utilised to predict clinical outcomes such as the MESA CHD risk [19], major adverse cardio-
vascular events (MACEs) [21,34] or acute coronary syndrome (ACS) [22,24]. Other studies
focused on using radiomic analysis to differentiate rather than predict. This included
differentiating between types of structural changes, such as occluded and non-occluded
arteries [28] (validated using invasive coronary angiography) or culprit and non-culprit
lesions. [30] Alternatively, clinical sequalae differences in the severity of ACS [29] or be-
tween MACE and non-MACE cases [31] were explored. Two studies utilised radiomic
analysis to identify vulnerable plaques [23,27] that were validated using optical coherence
tomography [23] or histological analysis [27].
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With the exception of four studies [15,23,24,40], a comparator model was used to assess
the performance of the radiomics models (Supplementary Table S4). Comparator models
incorporated conventional CT features only [13,15–17,19,21,25–27,29–32,34,36–38], conven-
tional PET/CT features only [36], clinical features only [19,34,42] or a combination of con-
ventional CT and clinical features [25,29,34,41]. Additionally, some studies evaluated the
performance of models that combined conventional imaging features with radiomic fea-
tures [14,17,18,25,28,29,32,33,37,38,40–42] or clinical features with radiomic features [19,29,34].
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3.9. Performance Evaluation and Validation

The majority of studies [14–23,25–42] used area under the curve from the receiver oper-
ator characteristic curve to assess the performance of machine learning methods (Figure 6).
One study [24] did not describe their method of performance assessment. Nineteen stud-
ies [14,16–18,20–22,25,27,28,31–35,37,38,40,42] split data into training sets and validation sets.
Three- [23], five- [15–17,22,27,28,31,32,35,39,41,42] or ten-fold [14,20,29,30] cross validation
was performed in 1, 12 and 4 studies, respectively. Alternatively, Kafouris et al. [36] performed
bootstrapping to validate their model. Moreover, in five studies [17,28,30,31,37], external
validation was performed, comprising 315 patients.
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4. Discussion

This review highlights the increasing frequency of publications exploring radiomics in
the cardiovascular imaging domain. This corroborates with findings from Pinto dos Santos
et al. [49], who observed an exponential increase in publications pertaining to radiomics
from 2012 to 2019, predominantly in the oncology setting. To explore the clinical applica-
bility of radiomic analysis in cardiovascular disease, all studies included in this scoping
review applied radiomic analysis to predict clinical outcomes such as death, restenosis,
stroke or myocardial infarction. This demonstrated that clinically relevant questions were
being explored, most research was single-centre and retrospective observational studies
that lacked adherence to published guidelines or external validation of the results lim-
ited the reproducibility of their findings. Consequently, many of the studies served as
feasibility/proof of concept works.

Approximately four-fifths of the patients were evaluated in coronary artery studies.
This disparity is likely due to differences in the approach to imaging carotid disease and
coronary disease. Duplex ultrasound is the modality of choice for investigating carotid
disease; however, the inclusion of this technique was outside the remit of this review. In
contrast, CTA of the carotid arteries is recommended as a second-line investigation by
the ESVS [47]; hence, fewer patients would have been routinely investigated using this
modality. CT coronary angiography (CTCA) is recommended as the primary imaging
modality for coronary disease, which facilitates radiomic analysis using large datasets of
routinely available imaging. Additionally, in the field of coronary disease, imaging data
were also derived from large multi-centre clinical trials, such as the SCOT-HEART trial [31].

Voxel intensity discretisation reduces the range of intensity values to a computationally
practical number to facilitate radiomic analysis. This is most commonly achieved through
two different methods [5]. Firstly, voxel intensity values can be organised into a fixed
number of bins, most commonly into 2N bins (with N ranging 3 to 8), as observed in five
studies [23,29–31,36]. Alternatively, intensities can be discretised into equally sized bins
with a fixed bin width that enables the comparison of different images, as the bins with the
comparative ranges will represent the same data intervals [5]. In this scoping review, in five
studies [14,17,26,33], a fixed bin width of 25 HU was used. Setting an optimal bin number
can be challenging, as having too few can cause features to be averaged out between
the bins whilst having too many bins can preclude the identification of features from
background noise. Overall, the impact of discretisation on feature reduction is equivocal:



Tomography 2024, 10 1482

Shafiq-ul-Hassan et al. [50] found that 44 out of 51 radiomic features were dependent on
the grey-level discretisation, whereas Larue et al. [51] noted that the stability of radiomic
features was not significantly influenced by choice of bin widths.

This scoping review included a range of imaging modalities to reflect contemporary
clinical practice. For instance, CTA is a second-line imaging modality to investigate carotid
disease as stipulated by the ESVS [47] and was used in nine studies. Similarly, CTCA is
recommended for the identification of coronary artery disease by the European Society
of Cardiology [4] and was utilised in 18 studies. This highlights the potential to apply
radiomic analysis to imaging datasets from real world practice to support large-scale
research. Additionally, alternative imaging modalities such as PET/CT were also included
to reflect novel research directions.

There was variability in scanning parameters between different studies and a lack of
standardisation in the acquisition protocols adopted by different imaging centres. This
is an important consideration, as evidence has demonstrated that factors such as tube
current [52], slice thickness [53] and contrast enhancement [54] impact what radiomic
features are extracted from images. Consequently, the repeatability of radiomics studies is
contingent on consistency in image acquisition and reconstruction protocols. To address
this, there are various options, including adhering to published image acquisition guidance
such as the British Society of Cardiovascular Imaging Standards of practice of CTCA [55] or
employing a dummy object consisting of various densities to adjust scanning parameters
and standardise protocols between centres [56].

The clinical significance of the peri-vascular adipose tissue has been highlighted
through research into conventional CT features. For instance, the literature has demon-
strated that peri-coronary adipose tissue is associated with coronary plaques [57] and an
increased risk of death [58], whilst attenuation has been used to differentiate between
flow-limiting and non-flow-limiting lesions [59]. Nonetheless, there is a paucity of evidence
summarising published research on the radiomic analysis of the peri-vascular adipose
tissue; this scoping review has demonstrated that there are numerous published studies
both in carotid disease [38] and coronary disease [16,22,33,35].

There was diversity in the segmentation methods utilised in different studies. The
choice of segmentation technique can be dependent on operator experience and the avail-
ability of software for automation of this process. Semi-automated or manual segmentation
is susceptible to observer bias, labour-intensive and time-consuming [5]. Contrarily, auto-
mated segmentation is faster and reduces inter- and intraobserver variability. Nonetheless,
the published evidence on the superiority of automated segmentation is equivocal. Gresser
et al. [60] observed a higher predictive ability of a lymph node manual segmentation
model for detecting bladder cancer when compared to an automated model, whilst an-
other study [61] investigating radiomic features of hypopharyngeal cancer on MRI found
that automated segmentation models based on the DeepLab V3+ and U-Net architectures
performed similar to manual segmentation. With respect to automated segmentation,
this review identified that a variety of different software based on convolutional neural
networks such as U-Net, Rb-Net and V-Net were employed.

Limitations and Areas for Further Research

Several limitations were identified in the existing literature. An inherent shortcoming
of radiomics is a lack of generalisability of findings across different settings or population
groups. Given that the fundamentals of radiomic features pertain to the distribution and
relationship between different parts of an image, this is contingent on how images are
acquired, segmented and analysed. A lack of standardised imaging acquisition protocols
between different radiological centres introduce variations in the acquisition and recon-
struction of images, leading to changes in the images that may fail to reflect the underlying
variation in pathology. Similarly, in the case of manual segmentation, different readers
may interpret images differently, resulting in the loss of important data. In the case of
automated segmentation, algorithms that perform complex computations can be derailed
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by background noise. This can be addressed by reporting measures of error, using stan-
dardised imaging acquisition protocols and reporting the inter-operator variability for
image segmentation.

Another limitation was heterogeneity in reporting between the studies. For exam-
ple, some studies reported the techniques used for feature selection without expanding
into detail on what criteria were used to select or discard features. This is an important
consideration, as the selection of features with high repeatability and reproducibility is
necessary to reduce the risk of false discovery (type 1 error) [62]. To ameliorate this, the
use of a quality assessment tool such as CheckList for EvaluAtion of Radiomics research
(CLEAR) [63], METRICS or the Radiomics Quality Score [64] is recommended to foster
transparent high-quality reporting.

The translatability of the research included in this review into clinical practice is
limited. Most of the included research constituted retrospective single-centre studies, and
only five studies performed validation of their methodology using external datasets. To
address this limitation, higher-level research such as multi-centre prospective randomised
controlled trials is necessary, consisting of large sample sizes to improve the predictive
power of the machine learning algorithms. Another possible approach is to utilise big
data through shared datasets obtained from routine clinical data. This is advantageous,
as it increases the study sample size, thus improving the predictive ability of machine
learning models and accounting for variations in disease processes between different
individuals and capturing temporal changes in imaging technology [7]. Nonetheless, such
an approach requires investment into hardware infrastructure and is contingent on legal
and ethical regulations.

As outlined by Munn et al., the indications for systematic reviews and scoping reviews
differ [65]. The former type of evidence synthesis is generally utilised to evaluate all the
available evidence for a well-defined clinical question and establish the effectiveness or
appropriateness of interventions that address that question. In contrast, scoping reviews are
used to identify the key concepts and methodology related to a broad clinical question. In
the case of this scoping review, the effectiveness of the radiomic techniques using area under
the curve (AUC) values or receiver operating characteristic (ROC) values was not explored,
as this level of examination is generally undertaken in systematic reviews. Nonetheless,
this could be covered in a subsequent systematic review.

Finally, there is a paucity of evidence on economic evaluations in the field of radiomics.
In the oncology setting, Di Pilla et al. [66] conducted an economic evaluation of a screening
program for the identification of BRCA 1/2 carriers and demonstrated an incremental
cost-effectiveness ratio of between EUR 653 and EUR 3800 for a radio-genomic model based
on ultrasound imaging. In theory, radiomics could result in health benefits by extracting
additional data from clinical images used to inform clinical management at a low cost.
For instance, in the field of cardiovascular medicine, radiomics could be used to tailor
imaging surveillance regimes according to the predicted risk, resulting in cost savings
as compared to a blanket screening programme. Moreover, in high-risk patients, more
aggressive treatment could be initiated to prevent potential complications.

5. Conclusions

This review highlights published research on radiomic analysis of the coronary and
carotid arteries using CT and PET/CT imaging modalities. Much of the evidence is single-
centre, retrospective observational studies with limited generalisability or repeatability.
There is significant heterogeneity in the image acquisition protocols, segmentation tech-
niques, processing and analysis between the studies. To improve the clinical applicability
of radiomics, there is a need for the implementation of standardised imaging acquisition
guidelines, adherence to published reporting guidelines, quality analysis of the results and
economic evaluation of the costs and benefits. These changes can facilitate the expansion of
radiomic analysis into smaller and peripheral imaging centres, thus creating more robust
consolidated techniques.
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