
Supplementary Table S1: PRISMA checklist. Adapted from Tricco et al.[8] 

Section Item PRISMA-Scoping Review Checklist Item Reported 
on page # 

Title 
Title 1 Identify the report as a scoping review. Page 1 
Abstract 

Structured summary 2 
Provide a structured summary that includes (as applicable): background, 
objectives, eligibility criteria, sources of evidence, charting methods, results, and 
conclusions that relate to the review questions and objectives. 

Page 2 

Introduction 

Rationale 3 
Describe the rationale for the review in the context of what is already known. 
Explain why the review questions/objectives lend themselves to a scoping review 
approach. 

Page 3-5 

Objectives 4 

Provide an explicit statement of the questions and objectives being addressed with 
reference to their key elements (e.g., population or participants, concepts, and 
context) or other relevant key elements used to conceptualize the review questions 
and/or objectives. 

Page 5 

Methods 

Protocol and registration 5 
Indicate whether a review protocol exists; state if and where it can be accessed (e.g., 
a Web address); and if available, provide registration information, including the 
registration number. 

N/A 

Eligibility criteria 6 Specify characteristics of the sources of evidence used as eligibility criteria (e.g., 
years considered, language, and publication status), and provide a rationale. Page 6 

Information sources 7 
Describe all information sources in the search (e.g., databases with dates of 
coverage and contact with authors to identify additional sources), as well as the 
date the most recent search was executed. 

Page 6 

Search 8 
Present the full electronic search strategy for at least 1 database, including any 
limits used, such that it could be repeated. 

Suppleme
ntary 
material  

Selection of sources of evidence 9 
State the process for selecting sources of evidence (i.e., screening and eligibility) 
included in the scoping review. Page 6 



Data charting process 10 

Describe the methods of charting data from the included sources of evidence (e.g., 
calibrated forms or forms that have been tested by the team before their use, and 
whether data charting was done independently or in duplicate) and any processes 
for obtaining and confirming data from investigators. 

Page 6-7 

Data items 11 
List and define all variables for which data were sought and any assumptions and 
simplifications made. Page 6-7 

Critical appraisal of individual sources of evidence 12 
If done, provide a rationale for conducting a critical appraisal of included sources 
of evidence; describe the methods used and how this information was used in any 
data synthesis (if appropriate). 

N/A 

Synthesis of results 13 Describe the methods of handling and summarizing the data that were charted. Page 7 
Results 

Selection of sources of evidence 14 
Give numbers of sources of evidence screened, assessed for eligibility, and 
included in the review, with reasons for exclusions at each stage, ideally using a 
flow diagram. 

Page 7-8 

Characteristics of sources of evidence 15 
For each source of evidence, present characteristics for which data were charted 
and provide the citations. Page 7-8 

Critical appraisal within sources of evidence 16 
If done, present data on critical appraisal of included sources of evidence (see item 
12). N/A 

Results of individual sources of evidence 17 For each included source of evidence, present the relevant data that were charted 
that relate to the review questions and objectives. 

Page 7-16 

Synthesis of results 18 Summarize and/or present the charting results as they relate to the review 
questions and objectives. Page 7-16 

Discussion 

Summary of evidence 19 
Summarize the main results (including an overview of concepts, themes, and types 
of evidence available), link to the review questions and objectives, and consider the 
relevance to key groups. 

Page 16-19 

Limitations 20 Discuss the limitations of the scoping review process. Page 20-21 

Conclusions 21 
Provide a general interpretation of the results with respect to the review questions 
and objectives, as well as potential implications and/or next steps. Page 22 

Funding 

Funding 22 
Describe sources of funding for the included sources of evidence, as well as sources 
of funding for the scoping review. Describe the role of the funders of the scoping 
review. 

N/A 



Search strategy 

1  radiomic*.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, 
sy, ux, mx] (26879)  
2  peripheral arter*.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, 
rx, ui, sy, ux, mx] (82305)  
3  iliac.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy, ux, 
mx] (123101)  
4  femoral.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy, 
ux, mx] (395248)  
5  profunda.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy, 
ux, mx] (5214)  
6  popliteal.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy, 
ux, mx] (44899)  
7  coronar*.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy, 
ux, mx] (1316043)  
8  carotid.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy, 
ux, mx] (347913)  
9  2 or 3 or 4 or 5 or 6 or 7 or 8 (2147967)  
10  Positron emission tomography.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, 
bt, nm, ox, px, rx, ui, sy, ux, mx] (373048)  
11  PET.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy, ux, 
mx] (379424)  
12  Computed tomograph*.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, 
ox, px, rx, ui, sy, ux, mx] (1117069)  
13  CT.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy, ux, 
mx] (1845032)  
14  Magnetic resonance.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, 
px, rx, ui, sy, ux, mx] (2523101)  
15  Magnetic resonance imaging.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, 
nm, ox, px, rx, ui, sy, ux, mx] (1812058)  
16  MRI.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy, ux, 
mx] (926288)  
17  PET-CT.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy, 
ux, mx] (135475)  
18  10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 (4886004)  
19  1 and 9 and 18 (496)  
20  remove duplicates from 19 (342) 
 



Supplementary Table S2:  Quality assessment of the included studies using the Newcastle-Ottawa quality assessment tool. 

Study Selection Comparability Outcome Total score 
Carotid studies 
Chen et al.[14] 2/2*† 0/2 1/1‡§ 3/5 
Cilla et al.[15] 2/2*† 0/2 1/1‡§ 3/5 
Ebrahimian et al.[26] 2/2*† 0/2 1/1‡§ 3/5 
Kafouris et al.[36] 2/2*† 0/0¶ 1/1‡§ 3/3 
Liu et al.[37] 2/2*† 0/2 1/1‡§ 3/5 
Nie et al.[38] 2/2*† 0/2 1/1‡§ 3/5 
Le et al.[39] 2/2*† 0/2 1/1‡§ 3/5 
Shan et al.[40] 2/2*† 0/2 1/1‡§ 3/5 
Shi et al.[41] 2/2*† 0/2 1/1‡§ 3/5 
Xia et al.[42] 2/2*† 0/2 1/1‡§ 3/5 
Coronary studies 
Chen et al.[16] 2/2*† 0/2 1/1‡§ 3/5 
Chen et al.[17] 2/2*† 2/2 1/1‡§ 5/5 
Feng et al.[18] 2/2*† 0/2 1/1‡§ 3/5 
Homayounieh et al.[19] 2/2*† 0/2 1/1‡§ 3/5 
Hou et al.[20] 2/2*† 0/2 1/1‡§ 3/5 
Hu et al.[21] 2/2*† 0/2 1/1‡§ 3/5 
Jing et al.[22] 2/2*† 0/2 1/1‡§ 3/5 
Kim et al.[23] 2/2*† 0/0¶ 1/1‡§ 3/3 
Kwiecinski et al.[24] 3/3* 0/0¶ 2/3 5/6 
Lee et al.[25] 3/3* 1/1 2/3 5/7 
Li et al.[27] 2/2*† 0/2 1/1‡§ 3/5 
Li et al.[28]# 4/4 2/2 2/2| | 8/8 
Lin et al.[29]# 4/4 2/2 2/2| | 8/8 
Lin et al.[30]# 4/4 2/2 2/2| | 8/8 

Oikonomou et al.[31] 
Study 2# 4/4 2/2 2/2| | 8/8 
Study 3# 4/4 2/2 2/2| | 8/8 

Si et al.[32]# 4/4 2/2 2/2| | 8/8 



Wen et al.[33] 2/2*† 0/2 1/1‡§ 3/5 
You et al.[34]# 4/4 2/2 2/2| | 8/8 
Yu et al.[35] 2/2*† 0/2 1/1‡§ 3/5 
Note: * A non-exposed cohort was not applicable to this study. † Outcome of interest had already occurred as this was a retrospective study. ‡ An assessment of the length of 
follow up for the outcome to occur was not performed as the study was retrospective in nature. § An assessment of loss to follow up was not performed as the study was 
retrospective in nature. ¶ Not applicable as a control cohort was not selected. # Case-control study. | | An assessment of the non-response rate was not applicable. 
  



Supplementary Table S3: Imaging and radiomics methodology. Continuous variables displayed using mean ± standard deviation or 

median (interquartile range). 

Study Imaging technique  Radiomics 
architecture 

Segmentation and processing Performance 
evaluation 

Carotid studies 

Chen et 
al.[14] 

CT angiography using 60–80 ml of 
iodine contrast injected at 4-5 ml/s 
Scanner: 64-row CT scanner 
(SOMATOM Definition AS+, Siemens)  
Images acquired using embolic 
tracking 2 seconds after 100 HU 
reached in the aortic arch at the level 
of the tracheal bifurcation  
Tube voltage: 100 kV 
Tube current: 300 mA 
Matrix size: 512 × 512 
Field of view: 280 mm 
Slice thickness: 0.6 mm 
Slice interval: 0.5 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 3D Slicer 
Hardware: DNM 

Segmentation: manual segmentation of the plaque and 
semiautomated segmentation of the PVAT using 3D 
Slicer by two radiologists. The plaque and PVAT 
(defined as adipose tissue in the radial distance from the 
outer wall of vessel equal to the vessel diameter ranging 
from -190 to -30HU) were drawn at the level of the 
maximum plaque area in the arterial phase on CTA. 
PVAT was drawn semiautomatically by setting an 
attenuation threshold  
Processing: images resampled to 1×1×1 mm, discretised 
using a fixed bin width of 25 HU, and processed using 
Laplacian of Gaussian and Wavelet  
Features extracted: shape, first order, GLCM, GLDM, 
GLSZM, GLRLM and NGTDM 
Feature selection: features with ICC > 0.75 retained. t-
test or Mann-Whitney U-test used to remove features 
with non-significant differences (P < 0.05). Then LASSO 
regression applied 
Machine learning techniques: SVM  

Performance 
assessment: AUC 
from the ROC, 
accuracy, sensitivity, 
specificity, PPV, and 
NPV 
Internal validation: 
dataset split into 
training set (n = 100) 
and validation set (n = 
44). Tenfold cross 
validation performed 
No external 
validation  
 

Cilla et 
al.[15] 

CT angiography using 55 ml of 
iomeprol injected at 4 ml/s 
Scanner: 128-slice CT scanner 
(Brilliance 128, Philips Healthcare)  
Images acquired when attenuation of 
140 HU reached in the ascending aorta 

Adherence to 
radiomics guidelines: 
radiomic feature 
extraction performed 
in accordance with 
IBSI 

Segmentation: manual segmentation of all CT slices by 
a radiologist and a vascular surgeon 
Processing: nil 
Features extracted: first order, shape, GLCM, GLRLM, 
GLSZM, NGTDM and GLDM 

Performance 
assessment: AUC 
from the ROC, AUC, 
class-specific accuracy 
(proportion of both 
true positive and true 



Tube voltage: DNM 
Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.9 mm 
Slice interval: DNM 

Feature extraction 
software: Moddicom 
(radiomics software 
package for R) 
Hardware: DNM 

Feature selection: Spearman’s rank correlation 
coefficient used to remove correlated features (ρ ≥ 0.8). 
Then univariate analysis performed to select features 
associated with plaque classification (P <0.05). Finally, 
stepwise backward elimination applied to remove non-
significant features 
Machine learning techniques: logistic regression, SVM, 
CART  

negatives amongst all 
cases), PPV, 
sensitivity and F-
measure  
Internal validation: 
fivefold cross 
validation applied to 
each machine 
learning model 
No external 
validation  

Ebrahimi
an et 
al.[26] 

Dual-energy CT angiography using 
80-100 ml of iohexol injected at 5 ml/s 
Scanner: dual source 128-slice CT 
scanner (Siemens Definition Flash, 
Siemens Healthineers)  
Images acquired when the contrast 
bolus reaches the ascending aorta 
Tube voltage: dual-energy scan mode 
using 80 kV (tube A) and 140 kV with 
tin filter (tube B)  
Tube current: 320 mA (tube A), the 
system automatically selects the 
corresponding value for tube B 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 1 mm Slice interval: 
0.5 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 
PyRadiomics 
integrated into Dual-
Energy Tumour 
Analysis prototype 
software (eXamine, 
Siemens Healthineers) 
Hardware: DNM 

Segmentation: automated segmentation using Dual-
Energy Tumour Analysis prototype software (eXamine, 
Siemens Healthineers). Segmentation software 
integrates all three imaging planes to extract spectral 
and radiomic features over both the section with 
maximal stenosis and the entire length of stenosis. No 
assessment of the accuracy of the segmentation software  
Processing: images discretised using a fixed bin width 
of 25 HU 
Features extracted: shape, first-order, GLCM, NGTDM, 
GLSZM, GLRLM, GLDM, and higher-order features 
Feature selection: t-test and ANOVA used to identify 
statistically significant features (P < 0.05). Then MRMR 
algorithm applied to select the most relevant features. 
Finally, stepwise forward selection applied to identify 
the best feature subsets 
Machine learning techniques: multinomial logistic 
regression  

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
DNM 
No external 
validation  

Kafouris 
et al.[36] 

PET/CT using 0.14 mCi/kg 18F-FDG  
Scanner: Biograph 6 (Siemens) 
Image acquisition method: DNM 
Tube voltage: 110 kV  

Adherence to 
radiomics guidelines: 
features extracted 

Segmentation: manual segmentation. ROIs placed 
around the carotid artery wall on each axial CT slice 
guided by the co-registered PET/CT images 
Processing: image SUVs were discretised into 64 bins 

Performance 
assessment: AUC 
from the ROC 



Tube current: 30 mA 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 1.25 mm 
Slice interval: DNM 

according to IBSI 
guidelines 
Feature extraction 
software: in-house 
software based on 
Matlab platform 
(Version 9.3, Matlab 
R2017b)  
Hardware: DNM 

Features extracted: first order, GLCM, GLRLM, GLSZM 
and NGTDM 
Feature selection: Univariate logistic regression 
analysis used to identify features that can significantly 
predict the outcome (P < 0.157). Then Spearman’s rank 
correlation coefficient used to remove correlated 
features (ρ ≥ 0.8) 
Machine learning techniques: univariate logistic 
regression  

Internal validation: 
bootstrapping 
generating 200 
bootstrap samples 
No external 
validation 

Liu et 
al.[37] 

CT angiography using 70-90 ml of 
iohexol injected at 5-6 ml/s 
Scanner: dual-source CT scanner 
(SOMATOM Force; Siemens 
Healthineers) 
Images acquired when attenuation of 
100 HU reached in the aortic arch   
Tube voltage: 110 kV 
Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.5 mm 
Slice interval: 0.5 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: Radcloud 
platform (Huiying 
Medical Technology) 
Hardware: DNM 

Segmentation: manual segmentation using ITK-SNAP 
software (version 3.7) by two radiologists. ROIs placed 
within the border of the plaque. The inter- and intra-
class correlation tested by repeated segmentation of the 
same images at a later date 
Processing: nil 
Features extracted: shape, first order, GLDM, GLRLM, 
GLCM, GLSZM and NGTDM 
Feature selection: features with ICC > 0.75 retained. 
Then ANOVA used to identify significant features. 
Then LASSO applied to select the best features 
Machine learning techniques: LASSO used to construct 
a ‘radiomics score’ 

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
dataset split into 
training set (n = 135) 
and validation set (n = 
58)  
External validation 
using 87 patients  

Nie et 
al.[38] 

CT angiography using 50 ml of 
ioversol injected at 5 ml/s 
Scanner: dual-source CT scanner 
(SOMATOM Force; Siemens 
Healthineers) 
Images acquired when attenuation of 
100 HU reached in the descending 
aortic arch   
Tube voltage: 90-100 kV 
Tube current: adaptive 
Matrix size: DNM 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: Shukun AI 
Scientific Research 
Platform (Shukun 
Technology)  
Hardware: DNM 

Segmentation: automated segmentation using 
perivascular fat analysis software (Shukun Technology). 
The PVAT (defined as the equivalent diameter of the 
carotid artery beyond the outer wall of the vessel) with 
attenuation of -190 HU to -30 HU was segmented along 
the target length and width of the vessel. No assessment 
of the accuracy of the segmentation software 
Processing: nil 
Features extracted: first order, shape, GLCM, GLDM, 
GLRLM, GLSZM and NGTDM 

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
dataset split into 
training set (n = 163) 
and test set (n = 40) 
No external 
validation 



Field of view: DNM 
Slice thickness: DNM 
Slice interval: DNM 

Feature selection: MRMR algorithm and recursive 
feature algorithm applied to select the most relevant 
features 
Machine learning techniques: Bagging DecisionTree, 
XGBoost, random forest, SVM and quadratic 
discriminant analysis  

Le et 
al.[39] 

CT angiography using 70-100 ml 
iopamidol injected at 5 ml/s 
Scanner: PET/CT combined scanner 
with an integrated 64-slice CT scanner 
(GE Discovery combined 690, GE 
Healthcare) 
Images acquired when attenuation of 
100 HU reached in the aortic arch   
Tube voltage: 120 kV 
Tube current: 200 mA 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.625 mm 
Slice interval: 0.4 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 
PyRadiomics (version 
3.0) 
Hardware: DNM 

Segmentation: manual segmentation using TexRad 
(Feedback Medical Ltd) performed on single slice and 
multi-slice axial images. The ROI was eroded and 
dilated (single slice = circular structuring element of 
radius 1 with iterations of 1–2 for ROI dilation and 
erosion, multi slice = spherical structuring element of 
radius 1, with iterations of 1–2 for ROI dilation and 1 
iteration for ROI erosion) 
Processing: normalisation of images so that the pixel 
values assumed an approximate Gaussian distribution, 
resegmentation applied with a lower limit of 0 HU and 
upper limit of 200 HU 
Features extracted: first order, GLCM, GLRLM, 
GLSZM, GLDM, and NGTDM 
Feature selection: features with ICC ≥ 0.9 retained. Then 
Spearman’s rank correlation used to assess feature 
collinearity. For feature pairs with rs ≥ 0.95, the feature 
with the highest AUC in univariate logistic regression 
was retained. Finally, features were standardised to 
have a mean of zero and a variance of one  
Machine learning techniques: decision tree, random 
forest, LASSO, Elastic Net regression (weight for L1 and 
L2 penalties = 0.5), neural network, and XGBoost 

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
fivefold cross 
validation performed  
No external 
validation 

Shan et 
al.[40] 

CT angiography  
Scanner: 320 × 0.5-mm detector row 
CT scanner (AquilionONE, Canon 
Medical Systems)  

Adherence to 
radiomics guidelines: 
nil 

Segmentation: semi-automated segmentation using 3D 
Slicer by two radiologists. No assessment of the 
accuracy of the segmentation software 

Performance 
assessment: AUC 
from the ROC 



Image acquisition method: DNM 
Tube voltage: 80 kV 
Tube current: 100 mA 
Matrix size: DNM 
Field of view: 16 cm 
Slice thickness: 0.5 mm 

Feature extraction 
software: 
PyRadiomics 
integrated into Python 
Hardware: DNM 

Processing: images processed using Laplacian of 
Gaussian, wavelet decomposition, and exponential and 
gradient filters to reveal further features 
Features extracted: shape, first order, GLDM, GLRLM, 
GLCM, GLSZM and NGTDM 
Feature selection: features with ICC > 0.9 retained. Then 
t-test used to identify statistically significant different 
features between vulnerable and stable patients (P < 
0.05) 
Machine learning techniques: logistic regression, SVM, 
random forest, light gradient boosting machine, 
AdaBoost, XGBoost, and multi-layer perception  

Internal validation: 
dataset split into 
training set and 
validation set in a 
ratio of 7:3 
No external 
validation 

Shi et 
al.[41] 

CT angiography using 50-60 ml of 
non-ionic iodine contrast injected at 4-
5 ml/s 
Scanner: 256-slice CT scanner 
(Brilliance iCT; Philips Medical 
Systems) 
Image acquisition method: DNM 
Tube voltage: 120 kV 
Tube current: 250 mA 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.9 mm 
Slice interval: 0.45 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: The 
Deepwise Multimodal 
Research Platform 
(version 2.0, Beijing 
Deepwise & League of 
PHD Technology Co. 
Ltd) 
Hardware: DNM 

Segmentation: manual segmentation using The 
Deepwise Multimodal Research Platform by one 
radiologist. The outer border of the arterial wall was 
visually assessed and the plaque was accordingly 
segmented 
Processing: nil 
Features extracted: shape, first order, GLDM, GLRLM, 
GLCM, GLSZM and NGTDM 
Feature selection: features with ICC > 0.8 retained. Then 
features with Pearson’s correlation coefficient <0.7 
removed  
Machine learning techniques: analysis of variance F-
value, mutual information and linear models penalised 
with the L1 norm  

Performance 
assessment: AUC 
from the ROC, 
calibration, and 
decision curve 
analyses 
Internal validation: 
fivefold cross 
validation applied to 
each machine 
learning model 
No external 
validation 

Xia et 
al.[42] 

CT angiography using 60-80 ml of 
iopromide injected at 5 ml/s 
Scanner: SOMATOM Definition Flash 
dual-source CT scanner 
Images acquired when attenuation of 
150 HU reached in the aortic arch 
Tube voltage: 120 kV 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 
PyRadiomics (version 

Segmentation: manual segmentation using 3D Slicer 
(version 4.11) by one radiologist. The carotid artery with 
plaque was manually segmented into the targeted 
region 
Processing: nil 
Features extracted: shape, first order, GLCM, GLSZM, 
GLRLM, NGTDM and GLDM 

Performance 
assessment: 
predictive value of the 
model assessed using 
AUC from the ROC 
Internal validation: 
dataset split into 



Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.625 mm 
Slice interval: 0.625 mm 

2.4) integrated into 
Python  
Hardware: DNM 

Feature selected: random forest algorithm used to select 
features 
Machine learning techniques: random forest, XGBoost, 
logistic regression, SVM and k-nearest neighbour 

training set (n = 165) 
and validation set (n = 
66). Fivefold cross 
validation used on the 
training set 
No external 
validation 

Coronary studies 

Chen et 
al.[16] 

CT coronary angiography using 45 ml 
of iopromide injected at 5 ml/s 
Scanner: 256-row CT scanner 
(Revolution CT, GE Healthcare) 
Images acquired when attenuation of 
220 HU reached in the ascending aorta 
Tube voltage: 100 kV 
Tube current: 599 mA 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.625 mm 
Slice interval: 0.625 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: Perivascular 
Fat Analysis Tool 
(Shukun Technology) 
Hardware: DNM 

Segmentation: semi-automated segmentation using 
Perivascular Fat Analysis Tool by two radiologists. The 
PCAT was defined as all voxels ranging from −190 to 
−30 HU located within a radial distance from the outer 
vessel wall equal to the diameter of the vessel. No 
assessment of the accuracy of the segmentation software 
Processing: wavelet and Laplacian of Gaussian filters, 
and non-linear strength transformation  
Features extracted: shape, first order, GLDM, GLCM, 
GLRLM, GLSZM and NGTDM 
Feature selection: features with ICCs ≥ 0.9 retained. 
LASSO regression performed to reduce the number of 
features 
Machine learning techniques: multivariate logistic 
regression used to construct a ‘radiomics score’ 

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
dataset split into 
training set (n = 108) 
and validation set (n = 
47). Fivefold cross 
validation performed 
No external 
validation 

Chen et 
al.[17] 

CT coronary angiography using 60-70 
ml of iopromide injected at 4-5 ml/s 
Scanner: two dual-source CT scanners 
(Somatom Definition and Definition 
Flash, Siemens) 
Image acquisition method: DNM 
Tube voltage: 100-120 kV 
Tube current: DNM 
Matrix size: 512×512 
Field of view 

Adherence to 
radiomics guidelines: 
features extracted 
according to IBSI 
guidelines 
Feature extraction 
software: Radiomics, 
Syngo.Via FRONTIER 
(version 1.2.1, 
Siemens) 

Segmentation: manual segmentation using Radiomics, 
Syngo.Via FRONTIER 
Processing: images resampled to 1×1×1 mm, B-spline 
interpolation applied and discretisation of images to bin 
width 25 HU 
Features extracted: shape, first order, GLCM, GLSZM, 
GLRLM, GLDM and NGTDM 
Feature selection: features with ICC ≥0.8 retained. Then 
agglomerative clustering with Ward’s linkage and 

Performance 
assessment: 
predictive value of the 
model assessed using 
AUC from the ROC 
Internal validation: 
dataset split into 
training set and 
validation set in a 
ratio of 7:3. Fivefold 



Slice thickness: 0.75 mm 
Slice interval: 0.5 mm 

Hardware: DNM Spearman’s rank correlation used to retain the best 
features in each cluster (lowest P value in each cluster) 
Machine learning techniques: multivariable logistic 
regression and XGBoost used to construct the algorithm 

cross validation used 
on the training set (n = 
137) 
External validation 
using 159 patients  

Feng et 
al.[18] 

CT coronary angiography using 50-80 
ml of iopromide injected at 4-6 ml/s 
Scanner: dual-source CT scanner 
(Somatom Definition, Siemens 
Medical Systems) 
Image acquisition method: DNM 
Tube voltage: 120 kV 
Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.75 mm 
Slice interval: 0.5 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: Radiomics, 
Syngo.Via FRONTIER 
(version 1.3.0, 
Siemens) 
Hardware: DNM 

Segmentation: semi-automated segmentation using 
Coronary Plaque Analysis Syngo.Via Frontier (version 
5.0.2, Siemens Healthineers) by two radiologists. The 
proximal and distal ends of the plaque and area of 
maximum stenosis were manually defined whilst the 
software semiautomatically outlined the inner and 
outer contours of the plaque and the blood vessels. No 
assessment of the accuracy of the segmentation software 
Processing: wavelet and Laplacian of Gaussian filtering, 
and non-linear intensity transformation applied 
Features extracted: shape, first order and texture  
Feature selection: Boruta algorithm used to identify the 
10 most important features 
Machine learning techniques: random forest model 
and logistic regression used to construct the radiomics 
mode 

Performance 
assessment: AUC 
from the ROC, 
sensitivity, specificity, 
and accuracy 
Internal validation: 
dataset split into 
training set (n = 280) 
and validation set (n 
=120) 
No external 
validation 

Homayo
unieh et 
al.[19] 

CT coronary angiography  
Scanner: 256-detector-row single 
source CT scanner (GE Revolution, GE 
Healthcare), n = 55; 64-detector-row 
single-source CT scanner (Philips 
IQon, Philips Healthcare), n = 36;, and 
96-detector-row dual-source CT 
scanner (Siemens Definition Force, 
Siemens Healthineers), n = 15  
Image acquisition method: DNM  
Tube voltage: 120 kV 
Tube current: 30-50 mA 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: Radiomics, 
Syngo.Via FRONTIER 
(Siemens 
Healthineers) 
Hardware: DNM 

Segmentation: automated segmentation using 
Radiomics, Syngo.Via FRONTIER. No assessment of the 
accuracy of the segmentation software 
Processing: nil 
Features extracted: shape, first order, GLCM, GLRLM, 
GLSZM, NGTDM and GLDM 
Feature selection: radiomics extraction software 
automatically selected the best radiomic features 
Machine learning techniques: multiple logistic 
regression and kernel Fisher discriminant analysis 

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
nil 
No external 
validation 



Matrix size: DNM 
Field of view: DNM 

Hou et 
al.[20] 

CT coronary angiography  
Scanner: 64 detector row CT scanner 
(Somatom Flash, Siemens 
Healthineers) 
Images acquired when attenuation of 
200 HU reached in the aortic arch 
Tube voltage: 100 kV 
Tube current: 350-500 mA 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.5 mm 
Slice interval: 0.25 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: DNM 
Hardware: DNM 

Segmentation: semi-automated segmentation of the 
pericoronary adipose tissue. Automated software 
identified the pericoronary adipose tissue, however this 
was manually adjusted by two radiologists. If multiple 
lesions were present on a single vessel, the adipose 
tissue around the highest-stenosis lesion was 
segmented. No assessment of the accuracy of the 
automated segmentation software 
Processing: resampling of images to 1×1×1 mm3, 

standardising of the grey level to 1-32 scales   
Features extracted: first order, GLCM, GLRLM, 
GLSZM, GLDM and NGTDM  
Feature selection: features with ICC > 0.75 retained. 
Then Mann-Whitney U-test and LASSO regression used 
to select the best features 
Machine learning techniques: SVM, k-nearest 
neighbour, Light GBM, and random forest  

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
dataset split into 
training set (n = 123) 
and validation set (n = 
54). Tenfold cross 
validation used on the 
training set  
No external 
validation 

Hu et 
al.[21] 

CT coronary angiography  
Scanner: 64-slice dual-source CT 
scanner (Siemens Somatom Flash, 
Siemens Sector Healthcare) used for 
the training set, 64-slice high-
definition CT scanner (GE Discovery 
HD750, General Electric) used for the 
validation set 
Image acquisition method: DNM 
Tube voltage: DNM 
Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 
PyRadiomics library 
integrated into an 
unknown software 
Hardware: DNM 

Segmentation: manual segmentation using ITK-SNAP 
software (version 3.6.0) by two radiologists. Images 
sliced from the proximal to the distal end of the target 
lesion in perpendicular direction to the long axis of the 
target lesion. Then the lumen and the exterior borders 
of the blood vessel wall were manually delineated  
Processing: nil 
Features extracted: first order, shape, texture, higher 
order  
Feature selection: features with ICC > 0.75 retained. 
Then LASSO regression used to select the best features 
Machine learning techniques: logistic regression  

Performance 
assessment: AUC 
from the ROC, 
sensitivity, specificity, 
PPV, NPV, positive 
likelihood ratio, 
negative likelihood 
ratio 
Internal validation: 
dataset split into 
training set (n = 88) 
and validation set (n = 
31) 



No external 
validation 

Jing et 
al.[22] 

CT coronary angiography using 0.9 
ml/kg iopromide injected at 0.9 ml/kg 
Scanner: Discovery CT 750HD (GE 
Healthcare)  
Image acquisition method: DNM 
Tube voltage: 120 kV 
Tube current: 300-450mA  
Matrix size: DNM 
Field of view: DNM 
Slice thickness: DNM 
Slice interval: DNM 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 
PyRadiomics library 
integrated into 
Pericoronary Adipose 
Tissue Analysis 
software  
Hardware: DNM 

Segmentation: automated segmentation using 
CoronaryDoc software (China Shukun Technology Co.) 
based on multiple models. 
The ResU-Net model focuses on coronary artery 
segmentation. The segmented coronary vessels are 
straightened and reconstructed at 1 mm intervals along 
the centrelines. Then, the second ResU-Net model is 
applied to segment the coronary artery lumens. The 
model was trained on ≥ 10,000 cases of patients ranging 
from 20-90 years and was verified on another 
independent dataset comprised of > 2000 cases 
Processing: nil 
Features extracted: first order and texture features 
Feature selection: features with Spearman’s rank 
correlation coefficient ρ < 0.3 were removed. Then 
LASSO regression performed to select the best features  
Machine learning techniques: SVM, ridge regression 
classifier and logistic regression  

Performance 
assessment: AUC 
from the ROC, 
accuracy, specificity, 
sensitivity, PPV, and 
NPVs 
Internal validation: 
dataset split into 
training set and 
validation set at a 
ratio of 2:1. Fivefold 
cross validation 
performed 
No external 
validation 

Kim et 
al.[23] 

CT coronary angiography using 80 ml 
of iopamidol injected at 6 ml/s 
Scanner: Brilliance ICT 256 scanner 
(Philips Healthcare) 
Images acquired when attenuation of 
100 HU reached in the ascending aorta 
at the level of the carina 
Tube voltage: 100-120 kV 
Tube current: 300-800 mA 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: DNM 
Slice interval: DNM 

Adherence to 
radiomics guidelines: 
features extracted 
according to IBSI 
guidelines 
Feature extraction 
software: 
PyRadiomics 
integrated into Python 
Hardware: DNM 

Segmentation: semi-automated segmentation. First 
manual segmentation of the vessel walls using 
Aquarias. Then the PCAT from these delineated vessels 
was automatically identified (-190 to -30 HU) and 
segmented using in-house Python software. No 
assessment of the accuracy of the automated 
segmentation software 
Processing: images were discretised to 8, 16, and 32 
equally sized bins with identical HU ranges 
Features extracted: shape, first order, GLCM, GLDM, 
GLRLM, GLSZM and NGTDM 
Feature selection: radiomic features demonstrating a 
strong Pearon’s correlation coefficient (r > 0.95) with 

Performance 
assessment: 
predictive value of the 
model assessed using 
AUC from the ROC 
Internal validation: 
stratified threefold 
cross validation 
performed  
No external 
validation 



IVOCT features (thin-cap fibroatheroma and 
microchannels) were removed. Then each radiomic 
feature was assessed using univariate logistic regression 
and threefold cross validation to generate ROCs. The 
top 15 AUCs in each radiomic feature class (shape, first 
order, five texture features) were selected. MRMR used 
to reduce the number of features 
Machine learning techniques: multivariate logistic 
regression  

Kwiecins
ki et 
al.[24] 

PET/CT performed using 250 MBq 18F-
NaF  
Scanner: 128-slice Biograph mCT 
(Siemens Medical Systems) or 
Discovery 710 (GE Healthcare)  
Image acquisition method: DNM 
Tube voltage: DNM 
Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: DNM 
Slice interval: DNM 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: Radiomics 
Image Analysis 
(version 1.4.2) on R 
Hardware: DNM 

Segmentation: automated segmentation of the PET/CT 
using coronary microcalcification activity. Semi-
automated segmentation of the CTCA using 
Autoplaque (version 2.5, Cedars-Sinai Medical Center). 
Proximal and distal ends of the lesions were manually 
marked. Subsequent plaque quantification was fully 
automated using adaptive scan-specific thresholds. No 
assessment of the accuracy of the automated 
segmentation software 
Processing: nil 
Features extracted: DNM type of features extracted 
Feature selection: linear mixed models used to correct 
for intrapatient clustering and calculate the interpair 
similarity. Then, a hierarchical clustering dendogram 
was calculated and a dynamic tree-cut algorithm was 
used to identify the optimal number of feature clusters. 
Finally, the first principal component of each cluster 
was calculated 
Machine learning techniques: univariable and 
multivariable logistic regression, linear regression and 
random forest  

Performance 
assessment: nil  
Internal validation: 
DNM 
No external 
validation 

Lee et 
al.[25] 

CT coronary angiography  
Scanner: DNM 
Image acquisition method: DNM 

Adherence to 
radiomics guidelines: 
nil 

Segmentation: semi-automated segmentation of the 
coronary plaques using QAngioCT Research Edition 
(version 2.1.9.1, Medis Medical Imaging). No 

Performance 
assessment: AUC 
from the ROC 



Tube voltage: DNM 
Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: DNM 
Slice interval: DNM 

Feature extraction 
software: 
PyRadiomics 
integrated into Python 
Hardware: DNM 

assessment of the accuracy of the automated 
segmentation software 
Processing: Nil 
Features extracted: first order, GLCM, GLRLM, 
GLSZM, GLDM and NGTDM 
Feature selection: features with concordance correlation 
coefficient < 0.85 were excluded. Then the Boruta and 
XGBoost algorithms used to select the final features 
Machine learning techniques: multivariable Cox 
regression model  

Internal validation: 
dataset split into 
training set and 
validation set in a 
ratio of 8:2 
No external 
validation 

Li et 
al.[27] 

CT coronary angiography using 50-60 
ml iopromide 
Scanner: dual-source CT scanner 
(SOMATOM Definition Flash, 
Siemens Healthcare) 
Images acquired when attenuation of 
100 HU reached in the ascending aorta  
Tube voltage: 80-120 kV 
Tube current: 320-400 mA 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: DNM 
Slice interval: DNM 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 
PyRadiomics 
integrated into Python 
Hardware: DNM 

Segmentation: manual segmentation of the coronary 
plaques on short-axis section by one radiologist 
Processing: filtered using Laplacians of Gaussians, 
wavelet decompositions, square, square root, logarithm 
and exponential filters 
Features extracted: shape, first order, GLCM, GLDM, 
GLRLM, GLSZM and NGTDM 
Feature selection: LASSO regression used to select the 
best features  
Machine learning techniques: Naïve Bayes, decision 
tree, random forest, gradient boosting decision tree, 
SVM, multilayer perceptron, logistic regression, and k-
nearest neighbours  

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
dataset split into 
training set (n = 36) 
and validation set (n = 
8). Fivefold cross 
validation performed 
on the training set 
No external 
validation 

Li et 
al.[28] 

CT coronary angiography using 30-58 
ml contrast injected at 3.8-5.8 ml/s 
Scanner: second-generation dual-
source CT scanner (SOMATOM 
Definition Flash, Siemens 
Healthineers), third-generation dual-
source CT scanner (SOMATOM Force, 
Siemens Healthineers) or a 256-row 
wide-detector CT scanner (Revolution 
HD, GE Healthcare) 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 
PyRadiomics 
integrated into 
Research Portal 
(version 1.1, United 

Segmentation: automated segmentation of the coronary 
plaques using Research Portal (version 1.1, United 
Imaging Intelligence Co. Ltd.). The initial segmentation 
was performed using the “RB-Net” network. For finer 
segmentation of the coronary tree, key topological 
information was constructed by combining a 
convolutional graph network with a point cloud 
network technique. Finally, a bidirectional recurrent 
convolutional neural network was used to detect the 
ROI. The ROI was reviewed by two radiologists.  

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
dataset split into 
training set and 
validation set in a 
ratio of 8:2. Fivefold 
cross validation 
performed 



Image acquisition method: DNM 
Tube voltage: DNM 
Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.75 mm 
Slice interval: 0.5 mm 

Imaging Intelligence 
Co. Ltd.)  
Hardware: DNM 

Features extracted: shape, first order, GLCM, GLRLM, 
GLSZM, NGTDM and GLDM 
Processing: wavelet and Laplacian Sharpening filters 
applied  
Feature selection: ANOVA used to identify 
significantly different radiomics features (P <0.05). Then 
LASSO regression used to select the best features 
Machine learning techniques: DNM 

External validation 
using 50 patients  

Lin et 
al.[29] 

CT coronary angiography using 60-90 
ml iodine contrast injected at 5 ml/s 
Scanner: DNM 
Image acquisition method: DNM 
Tube voltage: 100-120 kV 
Tube current: 300-500 mA 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.5 mm 
Slice interval: 0.25 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: Radiomics 
Image Analysis 
software package 
(version 1.4.1) on R 
Hardware: DNM 

Segmentation: automated segmentation using 
Autoplaque software (version 2.5, Cedars-Sinai Medical 
Center). The PCAT was defined as all voxels ranging 
from -190 to -30 HU located within a radial distance 
from the outer coronary wall equal to the diameter of 
the vessel. No assessment of the accuracy of the 
automated segmentation software 
Processing: images were discretised to 8, 16, and 32 
equally sized bins with identical HU ranges 
Features extracted: shape, first order features, GLCM 
and GLRLM 
Feature selection: principal component analysis used to 
identify relevant features 
Machine learning techniques: XGBoost  

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
tenfold cross 
validation  
No external 
validation 

Lin et 
al.[30] 

CT coronary angiography using 60-90 
ml of iohexol injected at 5 ml/s 
Scanner: 320-detector-row CT scanner 
(Aquilion ONE ViSION, Canon 
Medical Systems)  
Image acquisition method: DNM 
Tube voltage: 100-120 kV 
Tube current: 300-500 mA 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.5 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: Radiomics 
Image Analysis 
software package 
(version 1.4.2) on R 
Hardware: DNM 

Segmentation: semi-automated segmentation using 
Autoplaque (version 2.5, Cedars-Sinai Medical Center). 
No assessment of the accuracy of the automated 
segmentation software 
Processing: images were discretised to 8, 16, and 32 
equally sized bins with identical HU ranges 
Features extracted: shape, first order, GLCM and 
GLRLM 
Feature selection: principal component analysis used to 
identify relevant features  
Machine learning techniques: XGBoost  

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
tenfold cross 
validation  
External validation 
on 19 patients 



Slice interval: 0.25 mm 
Oikonom
ou et 
al.[31] 

This study constituted of multiple patient cohorts hence the salient datasets have been described separately 

Study 2 

CT coronary angiography performed 
using iopamidol injected at 5-6 ml/s 
Scanner: 256-slice Brilliance iCT 
scanner (Philips Medical Systems), 
128-slice Definition Flash scanner 
(Siemens Healthcare), 192-slice 
Somatom Force CT scanner (Siemens 
Healthcare), 64-slice scanner 
(Definition Flash, Siemens 
Healthcare), 64-slice Siemens 
Sensation 64 (Siemens Healthcare), 
128-slice scanner (Somatom Definition 
Flash, Siemens Healthcare), 64 
detector row scanner (Brilliance 64, 
Philips Medical Systems) or 320 
detector row scanner (Aquilion ONE, 
Toshiba Medical Systems) 
Image acquisition method: DNM 
Tube voltage: DNM 
Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.625 mm 
Slice interval: DNM 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 
PyRadiomics 
integrated into 3D 
Slicer 
Hardware: DNM 

Segmentation: manual segmentation of the PVAT. 
PVAT defined as voxels ranging from -190 to -30 HU 
located within a radial distance from the outer vessel 
wall equal to the diameter of the respective vessel 
Processing: voxels discretised into 16 bins of 10 HU 
width. Wavelet transformation applied 
Features extracted: shape, first order, GLCM, GLDM, 
GLRLM, GLSZM, NGTDM and higher order  
Feature selection: features with ICC ≥0.9 retained. 
Spearman’s rank correlation coefficient used to remove 
correlated features (ρ ≥ 0.8). Hierarchical clustering 
performed using the squared Euclidean distance and 
the Ward method 
Machine learning techniques: random forest  

Performance 
assessment: 
predictive value of the 
model assessed using 
AUC from ROC 
Internal validation: 
dataset split into 
training set and 
validation set in a 
ratio of 4:1. Fivefold 
cross validation 
performed 
External validation 
performed on the 
validation dataset  

Study 3 
CT coronary angiography using 50-70 
ml of iopamidol injected at 5.5-6.5 
ml/s 



Scanner: 64-slice scanner (General 
Electric, LightSpeed Ultra, General 
Electric) 
Image acquisition method: DNM  
Tube voltage: DNM 
Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.625 mm 
Slice interval: DNM 

Si et 
al.[32] 

CT coronary angiography using 60-80 
ml of iodinated contrast injected at 4.5 
ml/s 
Scanner: 320-detector-row CT scanner 
(Aquilion ONE ViSION, Canon 
Medical Systems)  
Image acquisition method: DNM 
Tube voltage: 80-120 kV 
Tube current: automatic modulation 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.5 mm 
Slice interval: 0.5 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: Research 
Portal (version 1.1, 
United Imaging 
Intelligence, Co., Ltd.)  
Hardware: DNM 

Segmentation: automated segmentation using the VB-
net model. Tracking technology was used to connect the 
broken blood vessels that were segmented to improve 
the integrity of the blood vessel segmentation. Graph 
convolutional network-based point cloud for coronary 
artery segmentation and labelling was used to construct 
the key topological information of the coronary vascular 
tree. No assessment of the accuracy of the automated 
segmentation software 
Processing: voxels resampled to 1.0 mm × 1.0 mm × 1.0 
mm. Image normalisation applied  
Features extracted: shape, first order, GLCM, GLRLM, 
GLSZM, GLDM and NGTDM 
Feature selection: mRMR used to select 30 features. 
Then LASSO regression applied to select the most 
significant features 
Machine learning techniques: logistic regression  

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
dataset split into 
training set and 
validation set in a 
ratio of 7:3. Fivefold 
cross validation 
performed 
No external 
validation 

Wen et 
al.[33] 

CT coronary angiography  
Scanner: second- generation 128-
section dual-source CT system 
(Somatom Definition Flash, Siemens 
Healthineers) 
Image acquisition method: DNM 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 
PyRadiomics 

Segmentation: manual segmentation of the PCAT using 
3D slicer. PCAT was defined as all voxels in the range of 
-190 to -30 HU 
Processing: images discretised to bin width 25 HU 
Features extracted: first order, GLCM, GLRLM, 
GLSZM, GLDM and higher order  

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
dataset split into 
training set and 



Tube voltage: 100 kV 
Tube current: 370 mA 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: DNM 
Slice interval: DNM 

integrated into 3D 
Slicer (version 4.10.2) 
Hardware: DNM 

Feature selection: features with ICC > 0.75 retained. 
Univariate logistic analysis used to identify features that 
were able to significantly (P < 0.05) distinguish 
significant coronary artery stenosis from non-significant 
stenosis. Then, the Boruta algorithm was applied to 
select the most important features 
Machine learning techniques: logistic regression, 
decision tree and SVM 

validation set in a 
ratio of 4:1 
No external 
validation 

You et 
al.[34] 

CT coronary angiography using 
iopromide injected at 4.5-5.5 ml/s 
Scanner: 2 56-slice CT scanner 
(Brilliance iCT, Philips Medical 
Systems) 
Image acquisition  
Tube voltage: 100-120 kV 
Tube current: automatically adjusted 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: 0.9 mm 
Slice interval: 0.45 mm 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: Artificial 
Intelligence Kit (GE 
Healthcare)  
Hardware: DNM 

Segmentation: semi-automated segmentation  
of the epicardial adipose tissue. Manual segmentation of 
the pericardial adipose tissue. The automated 
segmentation undertaken on EATseg software, and then 
manually adjusted on 3D slicer (version 4.11) by two 
radiologists. Epicardial adipose tissue was defined as 
voxels in the range of -190 to -30 HU. No assessment of 
the accuracy of the automated segmentation software 
Processing: nil 
Features extracted: first order, GLCM, GLSZM, 
GLRLM, NGTDM and GLDM 
Feature selection: mRMR used to select 30 features. 
Then gradient boosting decision tree applied to filter 
features according to importance and those with a 
significant value for predicting MACE were retained 
Machine learning techniques: logistic regression  

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
dataset split into 
training set and 
validation set in a 
ratio of 7:3 
No external 
validation 

Yu et 
al.[35] 

CT coronary angiography using 20 ml 
of iopromide injected at 4-5 ml/s 
Scanner: 128-slice multidetector CT 
(Definition AS+, Siemens 
Healthineers)  
Image acquired 4 seconds after the 
contrast bolus reached the ascending 
aorta 
Tube voltage: 120 kV 

Adherence to 
radiomics guidelines: 
nil 
Feature extraction 
software: 
PyRadiomics 
integrated into an in-
house software  
Hardware: DNM 

Segmentation: automated segmentation using 
CoronaryDoc, FAI Analysis Tool (version 5.1.2, ShuKun 
Technology). The software employs the skeleton erosion 
shrinkage algorithm to establish the centre line of each 
coronary branch. Along the centreline of the three major 
vessels, the normal sections of the blood vessels were 
cut at equal intervals and stacked in sequence to 
reconstruct a three-dimensional straightened blood 
vessel image. Then a sliding window was used to select 

Performance 
assessment: AUC 
from the ROC 
Internal validation: 
dataset split into 
training set and 
validation set in a 
ratio of 2:1. Fivefold 
cross validation 



Tube current: DNM 
Matrix size: DNM 
Field of view: DNM 
Slice thickness: DNM 
Slice interval: DNM 

the starting and ending positions of the PCAT along the 
vessel. PCAT was defined as voxels in the range of -190 
to -30 HU. No assessment of the accuracy of the 
automated segmentation software 
Processing: DNM 
Features extracted: first order, GLCM, GLSZM, 
GLRLM, NGTDM and GLDM 
Feature selection: features with ICC > 0.85 retained. 
Then Spearman’s rank correlation applied to assess 
correlation between the radiomics features and 
fractional flow reserve-based stenosis label.  Features 
with low correlation or P value > 0.05 were removed. 
Next, LASSO regression applied to select the best 
features 
Machine learning techniques: SVM  

performed applied to 
training set 
No external 
validation 

Abbreviations: CT = computed tomography, HU = Hounsfield units, kV = kilovolts, mA = milliamperes, mm = millimetres, PVAT = peri-vascular adipose tissue, 3D = 3 
dimensional, CTA = computed tomography angiogram, GLCM = gray level co-occurrence matrix, GLDM = gray level dependence matrix, GLSZM = gray level size zone matrix, 
GLRLM = gray level run length matrix, NGTDM = neighbouring gray tone difference matrix, ICC = intraclass correlation coefficient, LASSO = least absolute shrinkage and 
selection operator, SVM = support vector machine, AUC = area under curve, ROC = receiver operating characteristic, PPV = positive predictive value, NPV = negative predictive 
value, DNM = does not mention, IBSI = Image Biomarker Standardisation Initiative, CART = classification and regression tree, ANOVA = analysis of variance, MRMR minimum 
redundancy maximum relevance, PET = positron emission tomography, mCi = millicurie, kg = kilogram, 18F-FDG = [¹⁸F]Fluorodeoxyglucose, ROI = region of interest, SUV = 
standard uptake value, PCAT = peri-coronary adipose tissue, Light GBM = Light Gradient Boosting Machine, IVOCT = intra-vascular ocular coherence tomography, MBq = 
megabecquerel,18F-NaF = [¹⁸F]Sodiumfluoride, MACE = major adverse cardiovascular events. 

  



Supplementary Table S4: The radiomics analysis and comparative analysis in the studies. 

Study Radiomics model Comparator model(s) 
Carotid studies 

Chen et 
al.[14] 

Various models using carotid plaque radiomic features, PVAT 
radiomic features, and a combination of both to distinguish between 
symptomatic and asymptomatic plaques 
Symptomatic plaques were defined as causing acute ischemic stroke 
or transient ischemic attack in the cerebral anterior circulation region 
within 2 weeks prior to the CT angiogram 

Model consisting of CT angiogram features (plaque ulceration (defined 
as extension of contrast > 1.5 mm beyond the vessel lumen), 
remodelling index (defined as area of the vessel at the maximum 
stenosis ÷ area of the distal vessel unaffected by plaque × 100%)) and a 
combined model incorporating CT angiography features with radiomic 
features 

Cilla et 
al.[15] 

Model to differentiate between vulnerable and non-vulnerable carotid 
plaques 
Plaque vulnerability assessed using histological assessment: 
vulnerable plaque defined as containing atheromatous debris or 
demonstrating intraplaque haemorrhage; non-vulnerable plaques 
defined as containing calcified or with collagen-rich sclerotic tissue  

Nil 

Ebrahimia
n et al.[26] 

Two models using spectral radiomic features or single-energy 
radiomic features to differentiate between different grades of 
ICA/CCA stenosis and prediction of surgical outcomes 

Model consisting of spectral segmentation features: mean mixed CT 
values (mean HU from mixed volume DECT images), mean iodine CT 
values (mean HU from material density iodine images), mean Vnc CT 
values (mean mixed HU - mean iodine HU), total iodine uptake, total 
iodine concentration (iodine within per unit volume in mg/mL), vital 
iodine uptake (iodine uptake within the part of the ROI that excludes 
the non-enhancing portion), and vital iodine concentration (iodine 
concentration within the part of the ROI that excludes the non-
enhancing portion).  

Kafouris et 
al.[36] 

Model based on 18F-FDG PET/CT radiomic features to predict event-
prone carotid plaques in patients with high-grade carotid stenosis. 
Event-prone plaques were defined using histological (extent of lipid 
core and severity of calcification) and immunohistochemical analysis 
(CD31 antibody density and CD68 antibody density) 

Model consisting of radiotracer uptake measurements: SUV and TBR  
 



Liu et 
al.[37] 

Model using carotid plaque radiomic features to distinguish between 
symptomatic and asymptomatic patients. Symptomatic defined as a 
stroke or TIA occurring in the carotid supplying territory 

Model consisting of CT angiography features (presence of calcification, 
maximum plaque thickness, classification of luminal stenosis using 
NASCET criteria) and a combined model incorporating CT angiography 
features with radiomic features  

Nie et 
al.[38] 

Model using PVAT radiomic features to differentiate between 
symptomatic and asymptomatic carotid plaques. Symptomatic 
defined as causing TIA, anterior circulation stroke, or monocular 
symptoms 2 weeks prior to the CT angiography and/or an MRI head 
demonstrating acute/subacute stroke  
 

Model consisting of CT angiography features (plaque thickness, plaque 
length, remodelling index (the average of the maximum external vessel 
diameter of the plaque over the normal diameter of the proximal and 
distal regions), plaque ulceration (spread of contrast deep into the 
plaque), high risk plaque (having ≥ 2 of positive remodelling index > 1.1, 
punctate calcification, or low-density plaque), and napkin ring sign) and 
a combined model incorporating CT angiography features with 
radiomic features 

Le et 
al.[39] 

Model using plaque radiomic features to differentiate between culprit 
and non-culprit carotid artery lesions. Culprit artery defined as the 
carotid laterality consistent with the stroke or TIA symptoms  

Model consisting of CT angiography features: Agatston score  

Shan et 
al.[40] 

Model using plaque radiomic features to identify vulnerable carotid 
plaques. Vulnerable plaques defined as observing contrast agent in the 
plaque indicating neo-vascularisation 

Nil 

Shi et 
al.[41] 

Model using plaque radiomic features to identify symptomatic carotid 
plaques. Symptomatic defined as acute/subacute stroke findings on 
MRI in the ipsilateral carotid artery territory within 2 weeks before 
imaging scans 

Model consisting of CT angiography and clinical features (plaque 
ulceration (defined as ≥ 1 mm contrast entering the plaque in a single 
plane), carotid rim sign defined as adventitial calcification (< 2 mm 
thickness) with interior soft plaque (>2mm thickness)) and 
homocysteine levels) and a combined model incorporating CT 
angiography and clinical features with radiomic features 

Xia et 
al.[42] 

Model using plaque radiomic features to predict the risk of TIA events 
in patients with carotid artery stenosis of 30–50%  

Model consisting of clinical features such as blood tests (triglycerides, 
low-density lipoprotein, homocysteine, uric acid, and fibrinogen), 
demographics (age, gender and BMI), blood pressure, diabetes, 
smoking, stenosis of the carotid artery, and current medications 
(antiplatelets and lipid-lowering drugs), and a combined model 
incorporating clinical features with radiomic features 

Coronary studies 



Chen et 
al.[16] 

Model using PCAT radiomic features to predict obstructive coronary 
artery disease in patients with T2DM 

Model consisting of CTCA features: Agatston score quantified, stenosis 
classified using the SCCT coronary 18-segmentation classification 
criteria31 

Chen et 
al.[17] 

Model using plaque radiomic features to predict rapid plaque 
progression in coronary arteries. Rapid plaque progression defined as 
an annual increase > 1% on follow-up CTCA scans 

Model consisting of CTCA features (calcific volume, fibrotic volume 
and low attention plaque volume) and a combined model incorporating 
CTCA features with radiomic features 

Feng et 
al.[18] 

Model using plaque radiomic features to predict plaque progression in 
coronary arteries. Plaque progression defined as the annual change in 
plaque burden 

Model consisting of CTCA features (non-calcified plaque burden and fat 
attenuation index) and a combined model incorporating CTCA features 
with radiomic features 

Homayou
nieh et 
al.[19] 

Model using plaque radiomic features from single-click whole heart 
non-contrast CT images to predict coronary artery stenosis and 10-
year MESA CHD risk  

Models consisting of clinical features (demographics, BMI, blood 
pressure, smoking history, co-morbidities (T2DM, hypertension, 
hyperlipidemia, heart disease and cerebrovascular accidents), family 
history of heart disease, blood glucose and lipid profile) and combined 
models incorporating clinical features with radiomic features 

Hou et 
al.[20] Model using PCAT radiomic features to predict myocardial ischaemia  

Various models incorporating different combinations of CTCA features 
(lesion length, maximum stenosis diameter, maximum stenosis area), 
CT-fractional flow reserve and pericoronary fat attenuation index  

Hu et 
al.[21] 

Model using coronary plaque radiomic features to predict myocardial 
ischaemia and MACEs 

Model consisting of CTCA features: Agatston score, lesion length, 
diameter stenosis and high-risk plaque characteristics (defined as ≥2 of 
low attenuation plaques, positive remodelling, spotty calcification, and 
napkin-ring sign) 

Jing et 
al.[22] 

Model using PCAT radiomic feature to predict ACS in patients with 
ACS, chronic CAD and no CAD 

Model consisting of CTCA features: FAI value of the right coronary 
artery  
 

Kim et 
al.[23] 

Model using PCAT radiomic features to identify plaques with 
microscopic features of vulnerability (thin-cap fibroatheroma and 
microchannels) that have been confirmed using intravascular optical 
coherence tomography 

Nil 

Kwiecinsk
i et al.[24] 

Model using plaque radiomic features from 18F-NaF PET/CT and 
CTCA to predict MI  Nil  

Lee et 
al.[25] 

Model of plaque radiomic features in normal coronary arteries to 
predict the development of coronary plaques 

Model consisting of CTCA features (plaque length and total plaque 
volume) and clinical features (age, gender, BMI, systolic blood pressure, 
smoking history, hypertension, T2DM, family history of heart disease, 



low-density lipoprotein cholesterol level, medication use) and a 
combined model incorporating CTCA and clinical features with 
radiomic features 

Li et al.[27] 

Model using plaque radiomic features in patients with CAD and end-
stage CHF to identify vulnerable plaques. Vulnerable plaque defined 
as having ≥ 2 of active inflammation, fibrous cap thickness < 65 μm 
and lipid core of > 40% of plaque total area, endothelial denudation 
with superficial platelet aggregation or plaque erosion, fissured or 
injured plaque, or intraplaque haemorrhage on histological 
assessment 

Model consisting of CTCA features: low attenuation plaque (3 regions 
of interest < 30 HU), positive remodelling (remodelling index > 1.1), 
spotty calcification (presence of calcified plaque with diameter <3 mm), 
napkin-ring sign  

Li et al.[28] 
Model using plaque radiomic features to distinguish between chronic 
total occlusion and subtotal occlusion. The degree of occlusion was 
assessed using invasive angiography  

Model consisting of CTCA features (total lesion length, transluminal 
attenuation gradient - defined as the change in HU per 10 mm of 
coronary artery length, remodelling - defined as ratio of >1 of the 
diameter of the occluded vessel to the adjacent normal vessel, 
classification of plaque calcification (low attenuation = -30-30 HU, non- 
calcified = 31-350 HU, calcified = > 350 HU)) and a combined model 
incorporating CTCA features with radiomic features 

Lin et 
al.[29] 

Model using PCAT radiomic features to distinguish between acute MI, 
stable CAD and no CAD 

Various models incorporating different combinations of clinical features 
(age, gender, T2DM, hypertension, smoking status, serum lipid levels, 
and CRP), CTCA features (PCAT attenuation values) and radiomic 
features 

Lin et 
al.[30] 

Model combining plaque radiomic features and CTCA features to 
distinguish between culprit and non-culprit lesions in patients with 
acute MI and in patients with stable CAD. Culprit lesions confirmed 
using invasive coronary angiography 

Model consisting of CTCA features only: positive remodelling, low 
attenuation plaque, spotty calcification, napkin-ring sign, total plaque 
volume, volumes and compositions of non-calcified plaque and low-
density non-calcified plaque 

Oikonomo
u et al.[31] 

Study 2: model using PVAT radiomic features to distinguish between 
MACE and non-MACE cases  
Study 3: model using PVAT radiomic features to identify changes in 
the adipose tissue related to acute MI over 6 months when compared 
to stable CAD patients 

Study 2: nil 
Study 3: model using perivascular fat attenuation index from CTCA 

Si et al.[32] 
Model using PCAT radiomic features to distinguish between acute MI 
and unstable angina cases 

Models consisting of CTCA features (fat attenuation index) and a 
combined model incorporating CTCA features with radiomic features  



Wen et 
al.[33] 

Model using PCAT radiomic features to identify haemodynamically 
significant coronary artery stenosis. Coronary artery stenosis 
confirmed using fractional flow reserve from invasive coronary 
angiography 

Models consisting of CTCA features (Agatston score and diameter 
stenosis) and a combined model incorporating CTCA features with 
radiomic features 

You et 
al.[34] 

Model using PCAT and EAT radiomic features to predict MACE 
within 3 years  

Various models consisting of combinations of clinical features (serum 
cholesterol, serum low-density lipoprotein cholesterol, and serum 
triglycerides) only, clinical features with PCAT radiomic features and 
clinical features with EAT radiomic features 

Yu et 
al.[35] 

Model using PCAT radiomic features to identify significant coronary 
artery stenosis. Coronary artery stenosis confirmed using invasive 
coronary angiography 

Model consisting of CT-FFR values 

Abbreviations: PVAT = peri-vascular adipose tissue, CT = computed tomography, ICA = internal carotid artery, CCA = common carotid artery, HU = Hounsfield units, DECT = 
dual-energy computed tomography, ROI = region of interest,, FDG = Fluorodeoxyglucose, PET = positron emission tomography, SUV = standard uptake value, TBR = target to 
background ratio, TIA = transient ischaemic attack, NASCET = North American Symptomatic Carotid Endarterectomy Trial, MRI = magnetic resonance imaging, BMI = body 
mass index, PCAT = pericoronary adipose tissue, T2DM = type 2 diabetes mellitus, CTCA = computed tomography coronary angiogram, SCCT = Society of Cardiovascular 
Computed Tomography, MESA = multi-ethnic study of atherosclerosis, CHD, = coronary heart disease, MACE = major adverse cardiovascular event, ACS = acute coronary 
syndrome, CAD = coronary artery disease, FAI = fat attenuation index, MI = myocardial infarction, CHF = congestive heart failure, CRP = C reactive protein, EAT = epicardial 
adipose tissue, FFR = fractional flow reserve. 


