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Abstract: Background: The cross-sectional area of skeletal muscles at the level of the third lumbar
vertebra (L3) measured from computed tomography (CT) images is an established imaging biomarker
used to assess patients’ nutritional status. With the increasing prevalence of low-dose CT scans in
clinical practice, accurate and automated skeletal muscle segmentation at the L3 level in low-dose CT
images has become an issue to address. This study proposed a lightweight algorithm for automated
segmentation of skeletal muscles at the L3 level in low-dose CT images. Methods: This study included
57 patients with rectal cancer, with both low-dose plain and contrast-enhanced pelvic CT image series
acquired using a radiotherapy CT scanner. A training set of 30 randomly selected patients was used to
develop a lightweight segmentation algorithm, and the other 27 patients were used as the test set. A
radiologist selected the most representative axial CT image at the L3 level for both the image series for
all the patients, and three groups of observers manually annotated the skeletal muscles in the 54 CT
images of the test set as the gold standard. The performance of the proposed algorithm was evaluated
in terms of the Dice similarity coefficient (DSC), precision, recall, 95th percentile of the Hausdorff
distance (HD95), and average surface distance (ASD). The running time of the proposed algorithm
was recorded. An open source deep learning-based AutoMATICA algorithm was compared with
the proposed algorithm. The inter-observer variations were also used as the reference. Results: The
DSC, precision, recall, HD95, ASD, and running time were 93.2 ± 1.9% (mean ± standard deviation),
96.7 ± 2.9%, 90.0 ± 2.9%, 4.8 ± 1.3 mm, 0.8 ± 0.2 mm, and 303 ± 43 ms (on CPU) for the proposed
algorithm, and 94.1 ± 4.1%, 92.7 ± 5.5%, 95.7 ± 4.0%, 7.4 ± 5.7 mm, 0.9 ± 0.6 mm, and 448 ± 40 ms
(on GPU) for AutoMATICA, respectively. The differences between the proposed algorithm and the
inter-observer reference were 4.7%, 1.2%, 7.9%, 3.2 mm, and 0.6 mm, respectively, for the averaged
DSC, precision, recall, HD95, and ASD. Conclusion: The proposed algorithm can be used to segment
skeletal muscles at the L3 level in either the plain or enhanced low-dose CT images.

Keywords: skeletal muscles; muscle segmentation; third lumbar vertebra (L3); low-dose CT images;
nutritional status

1. Introduction

The cross-sectional area of skeletal muscles at the level of the third lumbar verte-
bra (L3), as observed in computed tomography (CT) images, is an established imaging
biomarker used to assess the nutritional status of patients suffering from sarcopenia or
cancer cachexia [1–7]. Conventionally, the delineation of this area is performed manually
by trained radiologists, a process that is time-consuming and prone to errors [8–12]. The
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need for the accurate and automated segmentation of skeletal muscles at the L3 level in CT
images has led to the development of several algorithms [13–35].

These algorithms primarily fall into two categories: deep learning (DL) [13–29] and
traditional image-processing schemes [30–35]. The DL schemes employ convolutional neu-
ral network (CNN) models to facilitate the modelling process. The reported CNN models
used for skeletal muscle segmentation include U-Net [13–19], ResUNet [20], CDFNet [21],
FCN [22], FCN-2s-VGG16 [23–25], FCN-UNet [26,27], attention V-Net [28], and attention
U-Net [29]. However, the training of these CNN models requires a large amount of CT
images with manually annotated labels and powerful GPU devices. For example, Nowak
et al. [21] used 972 annotated CT images and an NVIDIA Titan RTX GPU for their model
training. The substantial time and cost involved in preparing and annotating large datasets,
the limitations of hardware resources, and the poor interpretability of DL schemes pose
challenges for the clinical application of these CNN models.

On the other hand, the traditional image-processing schemes typically use the shape of
the skeletal muscle as prior information to build segmentation pipelines [30,31], registration
templates [32,33], reference atlases [34], and random forest features [35]. However, these
approaches face challenges due to the irregular nature of skeletal muscle shapes, which
can vary significantly depending on the patient’s body size and posture. An evaluation
study by Charrière et al. [36] showed that the finite element method proposed in [33], later
commercialized as the ABACS module in the SliceOmatic software, underperformed in
dealing with L3 CT images featuring irregular muscle shapes. Despite these limitations, the
simplicity, lightness, and interpretability of the image-processing schemes make them more
straightforward to implement in clinical applications compared to the DL schemes [37].

With the rising concern over the health risks induced by X-ray imaging radiation, low-
dose CT scans have become increasingly prevalent in clinical practice [38–40]. However, all
the abovementioned algorithms [13–35] were designed for CT scans at the standard exposure
levels. This leaves a significant gap regarding the segmentation of skeletal muscles at the L3
level in low-dose CT images, which are characterized by compromised image quality [41–43].

To this end, this study aims to propose a novel, lightweight algorithm to segment skeletal
muscles at the L3 level in low-dose CT images. The proposed algorithm is composed of basic
image-processing units and adopts a divide-and-conquer strategy to segment the abdominal
and paraspinal muscles separately. The segmentation accuracy of the proposed algorithm
is evaluated against the observer-agreed gold standards. It is then directly compared with
the existing AutoMATICA algorithm [14], an open source DL-based software. Moreover, the
inter-observer variation is investigated to analyze the level of agreement between different
observers, and to establish a reference for the performance of algorithmic segmentation.

The highlights of this work are as follows:

(1) A lightweight image-processing algorithm is proposed for the automated segmenta-
tion of skeletal muscles at the L3 level in low-dose CT images.

(2) The proposed algorithm is developed using a small, unlabeled dataset and can be
efficiently run on a laptop without a graphic processing unit (GPU) device.

(3) The proposed algorithm is validated on both plain (i.e., non-contrast) and contrast-
enhanced L3 CT images.

(4) The results indicate that the segmentation accuracy of the proposed algorithm is
comparable to that of AutoMATICA, and close to the reference determined with the
inter-observer variation.

2. Materials and Methods
2.1. Patients

A group of 57 patients (38 males and 19 females) were included in this study with the
approval of the institutional review board (IRB) at Beijing Cancer Hospital on 2 March 2021
(approval code: 2021KT32). The patients were all diagnosed with rectal cancer and received
neoadjuvant chemoradiotherapy at the institution from April 2015 to July 2019. The ages of
the patients ranged from 30 to 79, with a median of 62.
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2.2. Image Acquisition

All the patients underwent pelvic CT scans with a Sensation Open CT scanner (Siemens
Healthineers, Erlangen, Germany) for radiotherapy simulation. Each patient was immobi-
lized using customized thermoplastic in the supine posture, and two image series (plain
and contrast-enhanced) were acquired. Low-dose image acquisition was performed using
the following parameters: a tube voltage of 120 kVp, a mean tube current of 110 mA, a
slice thickness of 5 mm, a matrix size of 512 × 512, and a pixel spacing of 1.27 × 1.27 mm2.
The X-ray exposure level used in this study was lower than the standard reference dose
level [44,45] and was comparable to the low-dose protocols [46,47]. In addition, a senior
radiologist reviewed all the cases and selected the most representative axial CT image at
the L3 level for each of the two image series.

2.3. Data Partitioning

To develop the skeletal muscle segmentation algorithm, a total of 30 cases were
randomly selected from the whole patient group (30/57, 52.6%) using the Fisher–Yates
shuffle [48]. The 60 corresponding CT images at the L3 level from these cases were utilized
as a training set to design the algorithm and tune parameters, without the need for manually
annotated gold standards. The other 27 cases, which included 54 CT images at the L3 level,
served as a test set to evaluate the segmentation accuracy of the proposed algorithm, using
manually annotated gold standards for comparison.

2.4. Gold Standard

The skeletal muscles in each of the CT images at the L3 level in the test set were
manually annotated by three groups of observers, denoted as O1, O2, and O3 hereafter.
In each of the groups, a non-medical undergraduate and an oncologist were paired to
annotate the skeletal muscles using the ITK-SNAP software (version 3.6.0) [49]. After
receiving relevant anatomical training from the expert (phase 1: basic anatomical structure
training, 4 h; phase 2: interactive segmentation training, 2 h per undergraduate), the
non-medical undergraduates annotated the skeletal muscles in the 54 L3 CT images in a
random order. Then, the paired oncologists reviewed and finalized the annotations, making
corrections if necessary. This pairing strategy was adopted to optimize time efficiency and
ensure accuracy, given the practical limitation that oncologists have limited availability for
extensive manual annotations. The manual annotation time was recorded.

A consensus gold standard was generated for each CT image at the L3 level in the test
set by using a majority voting scheme [50]. This scheme assigned a pixel to the highest class
on which at least two groups of observers agreed. Figure 1 shows the CT images at the
L3 level of a case in the test set and the gold standard on the contrast-enhanced CT image.
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range of standard skeletal muscle CT numbers [53]. 
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Connected component analysis was used to identify the body region from the non-air pix-
els in the original image (Figure 3A). A Chebyshev distance map was generated from the 
body region. The most probable distance was determined by locating the isocontour that 
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mented image (Figure 3B). The pixels outside and on the isocontour were then removed. 
Connected component analysis was then used to filter out the small regions. 

Figure 1. Both the plain (A) and contrast-enhanced (B) CT images at the third lumbar vertebral level of a
case in the test set. The gray scales of the CT images are the same. The corresponding gold standard on the
contrast-enhanced CT image (C) includes both the abdominal muscles (green) and the paraspinal muscles
(orange). For better visualization, the annotated image was cropped, and the gray scale was adjusted.
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2.5. Skeletal Muscle Segmentation

The proposed skeletal muscle segmentation algorithm was adapted from the algo-
rithm presented in [51]. Figure 2 shows the overall workflow of the proposed algorithm.
The workflow consists of three main components: preprocessing, abdominal muscle seg-
mentation, and paraspinal muscle segmentation [52]. Note that the abdominal muscle
segmentation and paraspinal muscle segmentation were performed concurrently, which
could lead to improved efficiency compared to that when performing them sequentially.
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Figure 2. Overall workflow of the proposed skeletal muscle segmentation algorithm.

2.5.1. Preprocessing

(a) Global thresholding: This step aims to remove most pixels belonging to adipose
tissue. The original image was first segmented with a given pair of lower and upper
thresholds, −29 and 150 Hounsfield unit (HU), respectively, which were considered the
range of standard skeletal muscle CT numbers [53].

(b) Skin removal: This step aims to remove skin tissue pixels for further analysis.
Connected component analysis was used to identify the body region from the non-air
pixels in the original image (Figure 3A). A Chebyshev distance map was generated from the
body region. The most probable distance was determined by locating the isocontour that
intersected the highest number of zero-valued pixels on the global thresholding segmented
image (Figure 3B). The pixels outside and on the isocontour were then removed. Connected
component analysis was then used to filter out the small regions.
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Figure 3. (A) The body region on the original image. (B) We used the most probable distance (red
contour) to remove the skin tissue pixels.

2.5.2. Abdominal Muscle Segmentation

(a) Abdominal muscle identification: The aim here is to identify the thin layer of
abdominal muscles. The convex hull of the contour of the segmented region in the previous
step was found (Figure 4A). Then, a Chebyshev distance map was generated from the
convex hull. Inside the segmented region, the most probable distance was determined by
locating the isocontour that intersected the highest number of zero-valued pixels (Figure 4B).
The pixels inside and on the isocontour were removed.
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Figure 4. (A) The contour (red) and the corresponding convex hull (gold) of the segmented re-
gion. (B) We used the most probable distance (red contour) to estimate the inside boundary of the
abdominal muscles.

(b) Abdominal muscle refinement: This step refines the segmented abdominal muscles
through an iterative process. Using the Chebyshev distance map from the previous step,
the isocontour that intersected the highest number of one-valued pixels was located. For
the pixels inside the isocontour, the convex hull of the largest connected dark region
was extracted. The pixels inside and on the convex hull were then removed (Figure 5).
This process was repeated until the number of removed pixels reached zero. Lastly, the
region belonging to paraspinal muscles was removed using the result of paraspinal muscle
segmentation obtained in the next subsection.
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Figure 5. We used the convex hull (cyan) of the largest connected dark region (red) inside the
isocontour (pink) to refine the inner profile of the abdominal muscles. The first process and the
second process of abdominal muscle refinement are shown in (A) and (B), respectively.

2.5.3. Paraspinal Muscle Segmentation

(a) Adaptive thresholding: This step aims to determine the paraspinal muscle candi-
dates. For the skin-removed body pixels in the preprocessed results, a normal distribution
was fitted to the peak of the pixel value histogram to obtain the mean value µ and the
standard deviation σ. Adaptive thresholds were then empirically set to be µ – 1.5σ and
µ + 1.5σ (confidence coefficient = 86.6%) (Figure 6), which were used as the lower and
upper segmentation thresholds. The pixels with values in between were segmented.

(b) Paraspinal muscle localization: This step is designed to find a bounding box
enclosing the entire paraspinal muscles for further analysis. The L3 vertebra region was
identified by using the connected component analysis from the bone tissue pixels in the
original image (Figure 7A). A bounding box was obtained based on the vertebra region
using the following methods. The upper border of the bounding box was determined
by the upper bound of the vertebra region. The lower border of the bounding box was
determined by the bottom-most pixel of the paraspinal muscle candidates. The left and
right borders of the bounding box were determined by shifting the vertical center line of the
vertebra (yellow line in Figure 7A) to the left and right directions by two times the greater
distance of the left and right bounds of the vertebra region from the vertical center line
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(Figure 7B). Connected component analysis was then used to filter out the small regions in
the bounding box.
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Figure 7. We used the left, right (red), and upper (pink) bounds and the vertical center line (yellow)
of the vertebra (A) to localize the paraspinal muscle region (blue bounding box) (B).

(c) Paraspinal muscle identification: The aim here is to discern paraspinal muscles
from both the muscle and non-muscle tissues. A series of rectangular boxes were generated
adaptively in the upper left and upper right corners of the bounding box. Some fixed-length
vertical lines were set in the upper left corner of the image along the x-direction, and the
distance between the adjacent lines was equal to the physical size of the pixel. If the pixel
value of the endpoint of any line was zero, a horizontal line was generated from the left
border to the endpoint. The horizontal line then continuously moved downwards until the
endpoint belonged to the muscle tissue pixels (Figure 8A). A series of boxes were generated
and the pixels inside the boxes were removed. A similar process was implemented but
starting with fixed-length horizontal lines along the y-direction, and the corresponding
vertical lines were generated and continuously moved to the right (Figure 8B). Two similar
processes were implemented in the upper right corner of the image as well.

(d) Paraspinal muscle refinement: The goal of this step is to refine the segmented
paraspinal muscles. Connected component analysis was used, and criteria regarding the
location and size of the regions were enforced to remove the non-muscle regions (Figure 9).
The regions located at the identified vertebra region were removed. The regions near the
top, left, and right borders were removed. The small regions were removed. The holes in
the image were filled.

Finally, the results of both the abdominal muscle segmentation and the paraspinal mus-
cle segmentation were combined to obtain the complete skeletal muscles. The pseudocode
for the proposed algorithm is provided in the Supplementary Materials.
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2.6. Comparison Study

The proposed algorithm was compared with AutoMATICA [14] for skeletal muscle
segmentation in low-dose CT images at the L3 level. AutoMATICA is based on a fully
supervised U-Net model, which was trained and validated on a dataset of 804 annotated
L3 CT images. These images were selected from 804 regular-dose abdominal CT scans
acquired from various patient populations, including critically ill patients, patients with
pancreatic cancer, and so on.

Both the proposed algorithm and AutoMATICA were executed on a laptop with
an Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz (manufactured by Intel Corporation,
Santa Clara, CA, USA) and an NVIDIA GTX 1650Ti GPU with 4 GB of memory (manu-
factured by NVIDIA Corporation, Santa Clara, CA, USA). The proposed algorithm was
tested solely on the CPU, whereas AutoMATICA was tested on both the CPU and the
GPU. The running time of each algorithm on the test set was recorded as an indicator of
computation complexity.

2.7. Performance Evaluation

For objective evaluation, quantitative metrics including Dice similarity coefficient
(DSC), precision, recall, 95th quantile of the Hausdorff distance (HD95), and average
surface distance (ASD) were used. The DSC, precision and recall measure the pixel-wise
overlap of the segmented and reference regions, while the HD95 and ASD estimate the
distance between the segmented and reference boundaries.

The DSC, precision, and recall are defined as

DSC(A, B) =
2|A ∩ B|
|A|+ |B| × 100% (1)
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precision(A, B) =
|A ∩ B|
|A| × 100% (2)

recall(A, B) =
|A ∩ B|
|B| × 100% (3)

where A is the segmented result and B is the corresponding gold standard.
The HD95 and ASD are defined below,

HD95(A, B) = percentile(max
a∈∂A

{
min
b∈∂B

||a − b||
}
∪ max

b∈∂B

{
min
a∈∂A

||b − a||
}

, 95th) (4)

ASD(A, B) =
1

|∂A|+ |∂B| ( ∑
a∈∂A

{
min
b∈∂B

||a − b||
}
+ ∑

b∈∂B

{
min
a∈∂A

||b − a||
}
) (5)

where point a is on the surface ∂A of the segmented result A, point b is on the surface ∂B of
the gold standard B, and || · || is the Euclidean norm of the points a and b.

To evaluate the segmentation accuracy of the proposed algorithm and AutoMATICA,
two metric sets (DSCs, precisions, recalls, HD95s, and ASDs) were computed. The first
and second sets were calculated by comparing the segmentation results obtained by each
algorithm with the gold standards for plain CT images and contrast-enhanced CT images
in the test set, respectively. The averaged metrics over the different image types were then
calculated and denoted as summary results.

To evaluate the inter-observer variation, three metric sets were computed. The first,
second, and third sets were calculated by comparing the manual annotations made by O1,
O2, and O3 with the gold standards for all the CT images in the test set, respectively. The
reference for the performance of algorithmic segmentation was determined by calculating
the averaged metrics over the different groups of observers.

2.8. Statistical Analysis

The Wilcoxon signed-rank test [54] was used to compare the summary segmenta-
tion accuracy on the test set between the proposed algorithm and AutoMATICA. The
significance level was set to 0.05.

3. Results
3.1. Segmentation Accuracy Comparison with AutoMATICA

Table 1 lists the segmentation accuracy of both the proposed algorithm and AutoMATICA
in the test set. The results of statistical analysis are also shown. The proposed algorithm
outperformed AutoMATICA in terms of precision and HD95 (all p < 0.01), but it performed
worse than AutoMATICA in terms of DSC and recall (all p < 0.01). The proposed algorithm
showed a comparable performance to AutoMATICA in terms of ASD (p > 0.05). Additionally,
for both the proposed algorithm and AutoMATICA, the differences in segmentation accuracy
between the plain and contrast-enhanced CT images were within 0.2%, 0.5%, 0.5%, 0.9 mm,
and 0 mm, respectively, for the averaged Dice, precision, recall, HD95, and ASD.

Figure 10 shows the results of eight skeletal muscle segmentations compared with
the corresponding gold standards. The DSC and HD95 are also given for reference. The
first four subfigures [Figure 10(a1–a4)] represent a patient case where both the proposed
algorithm and AutoMATICA demonstrate a good performance in the plain and contrast-
enhanced CT images, with highly overlapped skeletal muscle segmentation results and gold
standards. AutoMATICA outperformed the proposed algorithm in terms of segmenting the
paraspinal muscles, resulting in better DSC and HD95 values. In contrast, the remaining
four subfigures [Figure 10(b1–b4)] represent another patient case where both the algorithms
demonstrate a poor performance due to the inaccurate segmentation of the abdominal and
paraspinal muscles. Compared to the proposed algorithm, AutoMATICA showed a higher
number of pixels classified as incorrect categories, which resulted in lower values for DSC
and HD95.
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Table 1. Comparison of the segmentation accuracy of both the proposed algorithm and the Auto-
MATICA algorithm in the test set. All the values are reported as MEAN ± SD.

Metrics † Algorithm
Image Series

Summary p-Value *
Plain-CT CE-CT

DSC (%)
Proposed 93.2 ± 1.6 93.2 ± 2.2 93.2 ± 1.9

<0.01AutoMATICA 94.0 ± 4.6 94.2 ± 3.4 94.1 ± 4.1

precision (%) Proposed 97.0 ± 2.2 96.5 ± 3.5 96.7 ± 2.9
<<0.01AutoMATICA 92.5 ± 6.1 93.0 ± 4.8 92.7 ± 5.5

recall (%)
Proposed 89.7 ± 3.0 90.2 ± 2.9 90.0 ± 2.9

<<0.01AutoMATICA 95.7 ± 4.0 95.7 ± 4.0 95.7 ± 4.0

HD95 (mm)
Proposed 4.6 ± 1.1 4.9 ± 1.5 4.8 ± 1.3

<0.01AutoMATICA 6.9 ± 4.8 7.8 ± 6.5 7.4 ± 5.7

ASD (mm)
Proposed 0.8 ± 0.2 0.8 ± 0.3 0.8 ± 0.2

>0.05AutoMATICA 0.9 ± 0.6 0.9 ± 0.6 0.9 ± 0.6
* Statistical analyses were conducted to compare the summary results of the proposed algorithm with those of the
AutoMATICA algorithm. † Abbreviation: DSC, dice similarity coefficient; HD95, 95th quantile of the Hausdorff
distance; ASD, average surface distance; Plain-CT, plain CT images; CE-CT, contrast-enhanced CT images.
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Figure 10. Demonstration of the skeletal muscle segmentation results using the proposed algorithm
and the AutoMATICA algorithm. (a1–a4) Both the algorithms perform well on the plain and contrast-
enhanced CT images of a patient case; (b1–a4) both the algorithms perform poorly on the plain and
contrast-enhanced CT images of another patient case. The algorithm segmentation result is shown in
pink region, the gold standard is shown in the blue region, and the overlap is shown in the yellow
region. Abbreviation: DSC, dice similarity coefficient; HD95, 95th quantile of the Hausdorff distance;
Plain-CT, plain CT images; CE-CT, contrast-enhanced CT images.

3.2. Inter-Observer Variation

Figure 11 shows the distributions of inter-observer variation in DSC, precision, recall,
HD95, and ASD, respectively. We can see that O1 and O3 showed greater agreement with
the gold standards compared to those of O2. The reference metrics determined with the
averaged DSC, precision, recall, HD95, and ASD over O1, O2, and O3, were 97.9 ± 1.7%,
97.9 ± 1.9%, 97.9 ± 1.9%, 1.6 ± 1.0 mm, and 0.2 ± 0.2 mm, respectively. The difference
between the summary metrics of the proposed algorithm and the reference metrics were
4.7%, 1.2%, 7.9%, 3.2 mm, and 0.6 mm, respectively, for DSC, precision, recall, HD95,
and ASD.
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Figure 11. Boxplots of Dice similarity coefficient, precision, recall, 95th percentile of the Hausdorff
distance, and average surface distance of inter-observer variation in the test set. The boxes report the
first quartile, median, and third quartile; the whiskers extending from the boxes indicate variability
outside the first and third quartiles; the outliers are plotted as individual points beyond the whiskers;
and the triangles report the mean values.

3.3. Time Cost

Table 2 lists the manual annotation times of O1, O2, and O3, as well as the running
times of both the proposed algorithm and AutoMATICA. Compared with manual annota-
tion, the computer algorithm reduced the processing time by at least 140 times. Moreover,
the averaged running time of the proposed algorithm on the CPU was approximately one-
fifth that of AutoMATICA on the CPU, and approximately two-thirds that of AutoMATICA
on the GPU.

Table 2. Comparison of the time cost for the manual annotation of skeletal muscles by three groups of
observers and skeletal muscle segmentation using both the proposed algorithm and the AutoMATICA
algorithm. The manual annotation time costs are reported as MEAN, while the algorithm-based time
costs are reported as MEAN ± SD. Note that the time cost is measured in milliseconds.

Items † O1 O2 O3 Proposed
(CPU) *

AutoMATICA
(CPU) *

AutoMATICA
(GPU) *

Plain-CT - - - 289 ± 37 1416 ± 43 447 ± 39
CE-CT - - - 316 ± 45 1681 ± 40 448 ± 42
Summary 334,444 212,222 455,556 303 ± 43 1548 ± 140 448 ± 40

† Abbreviation: Plain-CT, plain CT images; CE-CT, contrast-enhanced CT images; O, observer. * (CPU) indicates
the algorithm’s running time on the CPU, and (GPU) indicates the algorithm’s running time on the GPU.

4. Discussion

The cross-sectional area of skeletal muscles measured from L3 CT images is an es-
tablished imaging biomarker to assess nutritional status in patients with sarcopenia and
cancer [1–7]. In this study, we proposed a lightweight image-processing algorithm to
achieve the automated segmentation of skeletal muscles at the L3 level in low-dose CT
images. This algorithm was adapted from our preliminary study [51]. Compared to the
previous version, we made several optimizations to enhance its generalization across
different body types and skeletal muscle morphologies, using data from a larger patient
group with two types of CT images. Additionally, this study provides a more detailed
description of the algorithm’s steps. The performance of the proposed algorithm was
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evaluated on a testing group of 27 patients in comparison with that of the open source
DL-based AutoMATICA algorithm.

For algorithm development, the proposed algorithm exhibited advantages over Auto-
MATICA in two aspects. First, the required data volume was much smaller. Herein, we only
used 60 unannotated L3 CT images, while AutoMATICA was trained on 804 annotated L3
CT images. Despite the significant discrepancy in required data size, the results in Table 1
indicated that the segmentation accuracy of the proposed algorithm was comparable to that
of AutoMATICA. Second, the computational complexity was significantly reduced. The
proposed algorithm was composed of basic image-processing units, while AutoMATICA
was based on a complex CNN model. The results in Table 2 showed that the averaged
running time of the proposed algorithm on the CPU was over five times shorter than that
of AutoMATICA on the CPU, and even shorter than that of AutoMATICA on the GPU for
processing one L3 CT image in the test set.

For performance evaluation, three sets of manual annotations of skeletal muscles on
the L3 CT images from different observers were collected to evaluate the segmentation
accuracy of the proposed algorithm in an unbiased manner, and to establish a reliable
estimate of the reference for algorithm performance. By comparing the segmentation
results of the proposed algorithm with the consensus gold standards derived from these
three sets of manual annotations, we aimed to reduce the potential for biased evaluations,
which is a frequent issue when relying on a single-observer-annotated ground truth [13–35].
Moreover, the inter-observer variation was evaluated to provide a reference for algorithm
performance, i.e., the human-level upper limit of the segmentation tasks. The results in
Section 3.2 indicated that the segmentation accuracy of the proposed algorithm was close
to the reference determined with the inter-observer variation.

Compared with the previous studies [13–35], one of the highlights of this study was
that we validated the proposed algorithm on both plain and contrast-enhanced L3 CT
images. As shown in Figure 10, the injection of contrast agent induced substantial pixel
value shifts in not only the blood vessels, but also the abdominal organs, including the
intestines, kidneys, and liver. This pixel value shift posed a serious challenge for skeletal
muscle segmentation algorithm. Nevertheless, the results in Table 1 showed that the
proposed algorithm achieved satisfactory segmentation accuracy when processing the L3
CT images acquired with plain and contrast-enhanced scanning protocols, with the DSCs
all exceeding 86%.

The proposed algorithm’s lightweight and interoperable design offers distinct benefits
for clinical applications. Unlike state-of-the-art (SOTA) deep learning models [17–21,28,29],
which typically require substantial computational resources and are often constrained to
running on GPUs, the proposed algorithm is designed to run efficiently on a standard laptop
without the need for GPU devices. This makes it particularly suitable for clinical settings
where hardware resources may be limited. Furthermore, the SOTA deep learning models
often suffer from poor interpretability, making it difficult to visualize and understand the
specific processes involved in image segmentation. In contrast, the proposed algorithm is
fully interpretable, providing viewable results at each step. This transparent aligns well
with the demand for interoperable and reliable algorithms in clinical practice. In terms of
segmentation accuracy, the SOTA deep learning models [17–21,28,29] reported averaged
DSC values of 0.93, 0.9379, 0.94, 0.92, 0.95, 0.9577, and 0.939, respectively. The proposed
algorithm achieved an averaged DSC of 0.932, demonstrating that its segmentation accuracy
is comparable to these advanced models.

The limitation of this study comes in two aspects. First, limited by the IRB scope, we
only collected low-dose CT images from 57 patients. The data volume used for algorithm
development and evaluation was relatively small. Second, the proposed algorithm was
developed for segmenting skeletal muscles in a representative axial CT image at the L3
level for each image series, although it can be extended to three-dimensional images with
necessary adaptation. Future studies are needed to address these issues.
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5. Conclusions

The proposed lightweight image-processing algorithm can be used to segment skeletal
muscles at the L3 level in either the plain or enhanced low-dose CT images. Further studies
are warranted to demonstrate that the proposed algorithm can serve as a computer-aided
tool for assessing the nutritional status in patients with rectal cancer or other malignancies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/tomography10090111/s1, Table S1: Pseudocode of the
proposed lightweight image-processing algorithm.
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