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Abstract: Quantitative analysis of intracranial vessel segments typically requires the identification
of the vessels’ centerlines, and a path-finding algorithm can be used to automatically detect vessel
segments’ centerlines. This study compared the performance of path-finding algorithms for vessel
labeling. Three-dimensional (3D) time-of-flight magnetic resonance angiography (MRA) images
from the publicly available dataset were considered for this study. After manual annotations of the
endpoints of each vessel segment, three path-finding methods were compared: (Method 1) depth-first
search algorithm, (Method 2) Dijkstra’s algorithm, and (Method 3) A* algorithm. The rate of correctly
found paths was quantified and compared among the three methods in each segment of the circle
of Willis arteries. In the analysis of 840 vessel segments, Method 2 showed the highest accuracy
(97.1%) of correctly found paths, while Method 1 and 3 showed an accuracy of 83.5% and 96.1%,
respectively. The AComm artery was highly inaccurately identified in Method 1, with an accuracy of
43.2%. Incorrect paths by Method 2 were noted in the R-ICA, L-ICA, and R-PCA-P1 segments. The
Dijkstra and A* algorithms showed similar accuracy in path-finding, and they were comparable in
the speed of path-finding in the circle of Willis arterial segments.

Keywords: magnetic resonance angiography; cerebral arteries; vessel segmentation; graph structure;
Dijkstra algorithm; A* algorithm; depth first search

1. Introduction

Abnormal morphological characteristics of the cerebral blood vessels are associated
with vascular diseases. For example, stenosis of any artery due to intracranial atheroscle-
rosis can cause ischemia in the brain tissue, resulting in stroke and other cognitive brain
disorders [1,2]. Development of intracranial aneurysms [3,4] may be associated with high
blood pressure on the weakened vessel wall and potentially could result in ruptures and
cerebral hemorrhages if left untreated [5]. Three-dimensional (3D) computed tomography
angiography (CTA) and 3D time-of-flight MR angiography (TOF-MRA) are commonly
used to noninvasively obtain data on the cerebral vessels [6,7]. The geometric information
such as vessel tortuosity [8] and distributions of the diameters of the vessels [9] is extracted
and evaluated to study correlations between vessel abnormalities and diseases. Quanti-
tative evaluation based on the geometry of the cerebral arteries has been reported in the
literature [9–11]. For example, a cumulative distribution function of the cross-sectional
diameters in a vessel segment was evaluated [9]. Tortuosity descriptors such as the sum
of angle metrics, inflection count metric, triangular index, relative length, and product
of angle distance were used to find the relationship between diseases and morphological
features [12,13]. These quantities are typically calculated on a vessel segment after identify-
ing the vessel’s centerline, and a path-finding algorithm can automate the identification
of the centerline.

Labeling of the arteries in the circle of Willis (CoW) has been of interest to researchers
since the CoW is essential in maintaining the circulation of blood flow even in the occlusion
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of an artery and has important bifurcations that anatomically separate the intracranial
arteries of interest [14–16]. For example, the internal carotid artery (ICA) branches into the
anterior cerebral artery (ACA) and middle cerebral artery (MCA). In the posterior circu-
lation, the basilar artery (BA) is connected to the left and right posterior cerebral arteries
(PCA). Tracking of the vessel’s centerline can be performed via a path-finding algorithm
after manual annotations of two endpoints of a vessel segment. This procedure is relatively
simple and straightforward when compared with deep learning-based segmentation of
the intracranial vessel segments [17]. The development of deep learning segmentation
models requires manual segmentations of individual arterial segments for the generation of
training data. The manual segmentation process involves slice-wise manual tracing in a 3D
volume consisting of hundreds of slices, and it is thus time-consuming and laborious [18].
Hence, the centerline tracking approaches can improve the efficiency of vessel labeling and
its subsequent quantification without the need for deep learning model training data gener-
ation. Previous studies have demonstrated methods adopting path-finding algorithms such
as Dijkstra’s algorithm in analyzing 3D angiography data [19–21]. However, they did not
demonstrate detailed comparisons of accuracy among available path-finding algorithms in
vessel image analysis.

In this study, we evaluated the performance of three path-finding algorithms in
robustly identifying the cerebral arterial segments in the CoW. In terms of path-finding
accuracy and computational time, we compared a depth-first search (DFS) based algorithm
that does not involve a graph structure to a Dijkstra algorithm and an A* (A star) algorithm,
both of which require a graph representation.

2. Materials and Methods

Figure 1 illustrates the flowchart of the presented vessel labeling methods. The pre-
processing steps involving Otsu thresholding and 3D seeded region growing have been
implemented in Matlab version 9.13 (The Mathworks Inc., Natick, MA, USA). Skeletoniza-
tion, graph structure generation, path-finding methods, and visualization of the centerlines
in 3D were implemented in Python version 3.10 (Python Software Foundation).
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2.1. Data

We used publicly available magnetic resonance angiography (MRA) data from the IXI
Dataset (https://brain-development.org/ixi-dataset) (accessed on 21 July 2023). Sixty Neu-
roimaging Informatics Technology Initiative (NIfTI) files were considered to evaluate the
performance of path-finding algorithms. The imaging parameters are as follows: Philips Medi-
cal Systems Intera 3T, repetition time = 16.7 ms, echo time = 5.8 ms, number of phase-encoding
steps = 286, reconstruction diameter = 240 × 240 mm2, acquisition matrix = 288 × 286,
flip angle = 16-deg, in-plane pixel spacing = 0.4–0.6 mm, spacing between slices = 0.8 mm.
We applied the bi-cubic interpolation along the slice dimension to generate iso-resolution
image data with the same pixel spacing in all three directions. After the interpolation, the
final voxel size was isotropic with the 0.6 mm voxel spacing.

2.2. Vessel Segmentation and Skeletonization

The user selected an axial slice that shows three cross-sections of the vessels, which
are the right internal carotid artery (ICA), left ICA, and basilar artery (BA). Supplementary
Figure S1 shows an example axial slice showing three vessels’ cross-sections. A seed
point was manually annotated by the mouse click within each of the three cross-sections
(Supplementary Figure S1). With each seed point, 3D seeded region growing was performed
using the region-growing function [22] available in Matlab. The segmented arteries after
the region growing included the region of the CoW. The three segmentation results were
obtained in binary masks, and the union set operation was performed to combine the three
segmented masks into one final binary mask of the vessels. Skeletonization was performed
to find the centerlines of the vessels using the scikit-image Python library [23].

2.3. Annotation of Two Endpoints

Following the anatomical terminology provided by Dumais et al. [17], we identified
14 vessel segments by manually annotating two endpoints in each vessel segment. The
vessel segments of interest were (1) AComm (anterior communicating artery), (2) R-A1
(right anterior cerebral artery A1), (3) L-A1 (left anterior cerebral artery A1), (4) R-M1
(right middle cerebral artery M1), (5) L-M1 (left middle cerebral artery M1), (6) R-ICA
(right internal carotid artery), (7) L-ICA (left internal carotid artery), (8) R-PComm (right
posterior communicating artery), (9) L-PComm (left posterior communicating artery),
(10) R-P1 (right posterior cerebral artery P1), (11) L-P1 (left posterior cerebral artery P1),
(12) R-P2 (right posterior cerebral artery P2), (13) L-P2 (left posterior cerebral artery P2),
and (14) BA (basilar artery). Some endpoints were shared among the vessel segments. For
example, the R-A1 and R-M1 segments share a common branch point (Figure 2). The same
is true for the BA, R-P1, and L-P1 segments.

The Plotly (Plotly Technologies Inc., Montreal, QC, Canada) Python library (https://plotly.
com/python) (accessed on 21 July 2023) was used to visually identify the vessel segments in
the 3D space. The mouse hovering on the target endpoint shows its position information in
3D coordinates. For each vessel segment, the position information of the two endpoints
was the input to our path-finding algorithms. During manual annotation, we recorded the
position information of the two endpoints in vessel segments. If no centerline exists in a
certain vessel segment, we recorded ‘0 0 0′ for the vessel segment. The position information
was saved in a text file with .txt extension for each subject. The visualization result of
the colored vessel segments was saved in a .html file, which was reserved for further
investigation to check the accuracy of the vessel annotations.

https://brain-development.org/ixi-dataset
https://plotly.com/python
https://plotly.com/python
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Figure 2. An example of colored labeling of the arteries in the circle of Willis. The left figure is
the centerlines after skeletonization, and the right figure shows the labeled segments in colors after
applying a path-finding algorithm. The numbers in the middle text show the 3D coordinates of the
two endpoints in each vessel segment along with the vessel segment’s name.

2.4. Path-Finding Algorithms

In this study, we implemented three path-finding algorithms for comparisons: (Method 1)
DFS-based path-finding algorithm, (Method 2) Dijkstra’s algorithm, and (Method 3) A* algorithm.

For Method 1, we implemented a maze-solving algorithm based on DFS
(Supplementary Figure S2). Given two endpoints, from the start point, Method 1 at-
tempted to find the next neighbor pixel and record the visited pixel locations using the
push operation in a stack. When there is no neighboring pixel anymore, the visited locations
were taken out of the stack until the algorithm found the neighboring pixel which was not
visited. The algorithm was terminated when the endpoint was reached. The remaining
data containing pixel locations in the stack indicate the coordinates along the path that
connects the two endpoints. We implemented the method in C++ on the Microsoft Visual
Studio environment. PyBind11 (https://github.com/pybind/pybind11) (accessed on 21
July 2023) was used to create Python bindings to the C++-compiled code [24]. Hence, the
3D coordinates along the path were able to be obtained and saved in a variable in Python.

Methods 2 and 3 require the generation of a graph structure from the skeleton vessel
image as shown in Figure 1. To generate a graph from the skeleton image, we used the
Skan version 0.10.0 Python library (https://skeleton-analysis.org/stable) (accessed on 21
July 2023) [25]. Dijkstra’s algorithm is well known as the shortest path-finding algorithm in
a graph structure [26]. In our implementation, the pixels along the centerlines represented
vertices (or nodes), and the connections with their neighboring pixels represented edges.
The weights between the two connected nodes were calculated as the Euclidean distance of
the two points. We used the Dijkstra() function provided by the SciPy Python library [27].
The Dijkstra() function is based on the Fibonacci heap implementation, which has the time
complexity of O(E + V logV) (here, E is the number of edges, and V is the number of
vertices) and is more time efficient than the list implementation whose time complexity is
O(V2) [28]. A* algorithm is another method for the shortest path search in a graph structure.
In contrast to Dijkstra’s algorithm, which finds the shortest path from a starting point
to all goal points, the A* algorithm only finds the shortest path from a starting point to
a destination point, and it introduces heuristic cost values as well as graph weights to
find the next node [29]. In our study, we used and modified the code available from the
python-astar open-source library (https://github.com/jrialland/python-astar) (accessed
on 21 July 2023). The heuristic cost value was calculated by computing the Euclidean
distance between the nodes of interest and the destination node.

https://github.com/pybind/pybind11
https://skeleton-analysis.org/stable
https://github.com/jrialland/python-astar
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2.5. Evaluation

We compared the three methods in terms of path-finding accuracy and computational
time in Python. For each vessel segment, we provided the two endpoints and let the
methods automatically find a path. We counted the number of incorrect paths and the num-
ber of correct paths for each vessel segment after building consensus on the path-finding
correctness. An incorrect path was defined as a path that connects the two endpoints but is
not the path we expected. To measure computational time, we used the time.perf_counter()
function. Since we used the already annotated endpoints, during the time measurements
there were no manual annotation procedures for recording two endpoints in all the vessel
segments. For Method 1, we measured the time interval of the DFS path-finding algorithm
taken to find paths in all segments in each subject. For Methods 2 and 3, we first mea-
sured the time interval of the graph structure generation from the skeleton image and then
measured each time interval of the path-finding algorithm (i.e., SciPy’s Dijkstra() function
for Method 2 and python-astar’s find_path() function for Method 3). For each method of
Methods 2 and 3, we summed the time intervals including the graph structure generation
and the path finding. These time intervals were compared to the time measured from
Method 1 for each subject’s data. The evaluation was performed on a Windows PC (13th
Generation Intel® Core™ i7-13700K 16-Core Processor Central Processing Unit).

A Fisher’s exact test was used to analyze any differences between the path-finding
methods in detecting the correct centerlines of the vessel segments. A two-sample unpaired
Student’s t-test was performed to determine if the computational time between the two
methods was significantly different. A p-value of <0.05 was considered statistically significant.

3. Results

Table 1 summarizes the accuracy of the three algorithms in finding the paths between
two endpoints in each vessel segment. Method 1 produced 121 incorrect paths out of
735 paths, and Method 2 produced only 21 incorrect paths out of 735 paths. Method 3
produced 29 incorrect paths. The accuracy (97.1%) of Method 2 was significantly higher
than that (83.5%) of Method 1. The accuracy of Method 3 was 96.1%. The AComm is highly
inaccurate in Method 1 with an accuracy of 43.2%. Method 2 is superior to Method 1 in
all vessel segments except for the R-ICA segment. Method 3 is comparable to Method 2
in every vessel segment, except for the AComm segment. Fisher’s exact test resulted in
statistically significant associations in most vessel segments in Method 1 and Method 2.
As shown in Table 1, AComm, ACA A1, PComm, L-PCA P1, L-PCA P2, and BA showed
statistically significant associations, while MCA M1, R-PCA P1, R-PCA P2, and ICA were
not statistically significant (p > 0.05). This implies that the choice of a path-finding method
affected the correct detection of paths in AComm, ACA A1, PComm, L-PCA P1, L-PCA
P2, and BA. The same was true in the association of Method 1 with Method 3. However,
there was no statistically significant association between Method 2 and Method 3, except
for AComm.

The seeded region-growing algorithm was advantageous because it did not seg-
ment unwanted vessels such as veins or outer intracranial vessels. The inclusion of the
veins or outer intracranial vessels can obscure the visual appearances of the CoW arteries
(Supplementary Figure S3) and make it challenging to locate the two endpoints when
identifying a vessel segment in the CoW. The undetected paths in Table 1 resulted from a
non-existent binary vessel mask possibly due to either under-segmentation of the seeded
region-growing algorithm or non-enhancement of the vessel itself, and thus the path-
finding algorithms were not able to be applied to the vessel segments. AComm had 16
undetected paths (i.e., 26.7% of the total subjects). R-PComm and L-PComm had 46 and 42
undetected paths (i.e., 76.7% and 70.0% of the total subjects), respectively.
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Table 1. Evaluation of the path-finding methods.

Method 1
(DFS Algorithm)

Method 2
(Dijkstra Algorithm)

Method 3
(A* Algorithm) p-Value * p-Value † p-Value ‡ No. of Undetected

Paths TotalNo. of Correct
Paths

No. of Incorrect
Paths

No. of Correct
Paths

No. of Incorrect
Paths

No. of Correct
Paths

No. of Incorrect
Paths

AComm 19 25 44 0 36 8 <0.001 <0.001 0.006 16 60

ACA A1 R 51 9 60 0 60 0 0.003 0.003 1 0 60
L 49 10 59 0 59 0 0.001 0.001 1 1 60

MCA M1 R 55 5 60 0 60 0 0.057 0.057 1 0 60
L 58 2 60 0 59 1 0.496 1 1 0 60

PComm R 8 6 14 0 14 0 0.016 0.016 1 46 60
L 10 8 18 0 18 0 0.003 0.003 1 42 60

PCA P1 R 52 8 57 3 58 2 0.204 0.095 1 0 60
L 51 9 60 0 60 0 0.003 0.003 1 0 60

PCA P2 R 55 5 60 0 60 0 0.057 0.057 1 0 60
L 51 9 60 0 60 0 0.003 0.003 1 0 60

BA 53 7 60 0 60 0 0.013 0.013 1 0 60

ICA R 51 9 50 10 50 10 1 1 1 0 60
L 51 9 52 8 52 8 1 1 1 0 60

Total 614 121 714 21 706 29 105 840

* Comparison between Method 1 (DFS algorithm) and Method 2 (Dijkstra algorithm). † Comparison between Method 1 (DFS algorithm) and Method 3 (A* algorithm). ‡ Comparison
between Method 2 (Dijkstra algorithm) and Method 3 (A* algorithm).
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Computational time was compared among the three methods in all subjects’ data
(Supplementary Table S1). To isolate the path-finding algorithms from the manual annotation,
we loaded the text file which contained all the manually annotated endpoints of the vessel
segments, and we focused on measuring time on the path-finding procedures subject by sub-
ject. Method 1 took an average (±standard deviation) of 1489.4 (±191.4) ms. Method 2 took
shorter than Method 1 with an average (±standard deviation) of 458.2 (±63.4) ms. Method 3
took an average (±standard deviation) of 458.0 (±63.4) ms, which was comparable to
Method 2. The difference between Method 1 and Method 2 (or Method 3) was statistically
significant (p < 0.0001), while the difference between Method 2 and Method 3 was not
statistically significant (p > 0.4). In Methods 2 and 3, the conversion of the skeleton to
the graph structure was the main bottleneck and took 98.95% and 99.00% of the total
computational time, respectively. Moreover, it is important to note that manual annotation
of the endpoints required the user to rotate and zoom in and out of the 3D skeletal vessel
for correct identification of the vessel segments and took approximately 10 min per subject.

4. Discussion

Path finding is essential for annotating and quantifying vessel segments and has the
potential to be useful in planning invasive procedures such as mechanical thrombectomy.
This current study compared the performance of three path-finding algorithms in the total
840 arterial segments in the CoWs. Method 1 does not require a conversion of the skeleton’s
centerlines to the graph representation and is based on the DFS algorithm. Since it does
not construct a graph representation, it is deemed as rather simple, when compared to
Methods 2 and 3, which require the construction of a graph and utilize the shortest path-
finding Dijkstra and A* algorithms, respectively. Our path-finding results indicate that
Method 1 is prone to errors when there is a loop in the vessel’s centerlines (Figure 3). The
shortest path-finding algorithms can avoid such errors in case of the existence of a loop.
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Figure 3. Incorrect path-finding results using Method 1 when compared with correct path-finding
results using Methods 2 and 3. (a) Basilar artery (BA) segment, (b) right posterior cerebral artery
P2 (R-P2) segment, and (c) anterior communicating artery (AComm) segment. Method 1 finds
detoured paths in (a–c). The colorful lines indicate the specific vessel segments (see Figure 2 for the
correspondences between colors and vessel segments).
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There are two possible reasons for the incorrect path-finding results. First, when the
path forms a loop, Method 1 may not find the shortest path and instead can take a path that
leads to the other endpoint regardless of the path’s length. The ‘loop’ path was frequent
in the AComm segments, where there are alternative paths that detour via A2 segments.
Second, when there are multiple paths between the two endpoints, Method 2 always finds
the shortest path, which is sometimes not the correct path (Figure 4). We often detected
an incorrect path by comparing it with a symmetrical vessel anatomy located in the other
hemisphere of the brain. Additional routes in the main arteries may be attributed to either
incorrect segmentation due to noise in the image or errors in the skeletonization process.
By improving segmentation performance or denoising the gray-scale TOF-MRA images,
the incorrect path-finding problem may be resolved.
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tion results. This under-segmentation occurred dominantly in the PComm segments. 

Figure 4. Incorrect path-finding results using Methods 2 and 3 when compared with correct path-
finding results using Method 1. (a) The R-ICA and L-ICA segments in Method 2 found the shortest
paths, but the paths are incorrect, given the nature of tortuous vessels in the ICA in general. Compare
the ICA vessels indicated by the purple arrows. (b) The L-ICA segment in Methods 2 and 3 found the
shortest paths, which is incorrect. Compare the ICA vessels indicated by the yellow arrows.

Compared to the A* algorithm, Dijkstra’s algorithm finds the shortest paths for all
nodes, although in our case we need only a single shortest path between the initial and
destination nodes. Hence, the Dijkstra algorithm may not be the most time-efficient for
path finding by nature. Since the A* algorithm only cares about finding the shortest
path between the two endpoints, it is theoretically more time-efficient than the Dijkstra
algorithm. However, in our evaluation, there were little or no noticeable improvements in
the A* algorithm over the Dijkstra algorithm in terms of computational time, which was
not expected given the inherent advantage in time efficiency in the A* algorithm.

The seeded region-growing algorithm used in this study provided under-segmentation
results. This under-segmentation occurred dominantly in the PComm segments. Since we
focused on the evaluation of the path-finding methods, it is a fair comparison, although
there was an under-segmentation issue in several vessel segments. However, there is
room for improvement in automatic segmentation. One way would be to use advanced
segmentation methods based on encoder–decoder deep convolutional neural network
architectures [30,31] or a multiscale image analysis approach [32]. Our study was based
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on MRA images, but it is possible to extract vessel segments from CTA images. Notably, a
direct application of our region-growing segmentation to CTA images would be challenging
because the region-growing method is based on the similarity of intensity in the blood,
and contrast-enhanced arteries may not be distinguished from nearby bone structures in
CTA images [33,34]. The errors in vessel segmentation are likely to occur especially in the
regions where the arteries and bones are very close (e.g., internal carotid arteries, vertebral
arteries, etc.). For CTA images, recent studies proposed automatic deep learning-based
vessel segmentation methods to improve the accuracy of vessel segmentation [18,35].

Manual annotation of the endpoints in 3D space is tedious and can be prone to errors
if not carefully checked. As such, it would be intriguing to investigate the feasibility of
automatic landmark localization methods [36–38] to localize the vessel segments’ endpoints
which we manually annotated in this study. Landmark localization of the two endpoints
may also be helpful in automatically detecting occlusions of the arterial segments in
ischemic stroke patients’ data.

This study has several limitations. First, the number of subjects used for the analysis is
small. However, increasing the number of subjects would not significantly affect the study
outcome, as there are already more than 10 segments for each subject’s MRA image data.
Second, we did not perform intrarater or interrater variability in evaluating the correctness
of the paths. Third, the image segmentation quality has imperfections since it showed
under-segmentation results, especially in the PComm segments. However, improving the
segmentation results may not significantly affect the outcome of the study because all three
methods used the same segmented binary vessel masks for the analysis. Fourth, we did
not consider disconnected vessel segments, which may result from the occlusions or severe
stenoses of arterial segments. The development of a method for identifying disconnected
vessel segments would be important for automatically detecting the vessel’s occlusion. Last
but not least, we only considered arterial segments in the CoW arteries. Extending the
analysis to other intracranial vessel segments such as ACA A2 and MCA M2 would be an
important venue for further research.

5. Conclusions

Our study indicates that a graph representation of the centerlines of cerebral arteries
in the CoW is advantageous in semi-automatically labeling the cerebral arteries when it
is used with the shortest path-finding algorithms such as the Dijkstra algorithm and the
A* algorithm. Among the three path-finding algorithms, the Dijkstra algorithm resulted in
the highest accuracy of 97.1%, and it was slightly higher in accuracy than the A* algorithm.
When the DFS approach was used, the incorrect path-finding results mostly occurred for
the vessel segments with multiple paths connecting the two endpoints. Path-finding results
for the Dijkstra and A* algorithms were incorrect when the paths were visually compared
with the paths in the other brain hemisphere. Full automatization of vessel segmentation
and landmark localization with deep learning would be desirable in order to increase time
efficiency and avoid manual annotation procedures.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/tomography9040113/s1, Figure S1: A slice used for the selection of
three seed points. The cross-sections of the right internal carotid artery (orange), the left internal carotid
artery (blue), and the basilar artery (green) are shown. The seed locations for seeded region growing
are indicated by the arrows; Figure S2: The pseudo-code of the depth first search (DFS) based maze
solving algorithm. This algorithm is referred to as Method 1; Figure S3: Seeded region growing. (a) A
vessel segmentation result after the Otsu’s thresholding. Disconnected vessels are present, which
sometimes obscure the view of the artery of interests. (b) A vessel segmentation result after applying
the seeded region growing algorithm to the Otsu-thresholded vessel. Disconnected vessels disappear,
and vessel visualization is improved; Table S1: Comparison of computational time measurements.
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