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Abstract: Timely and accurate detection and characterization of microbial threats is crucial for
effective infection and outbreak management. Additionally, in food production, rapid microbe
identification is indispensable for maintaining quality control and hygiene standards. Current
methods for typing microbial strains often rely on labor-intensive, time-consuming, and expensive
DNA- and sera-serotyping techniques, limiting their applicability in rapid-response scenarios. In this
context, the IR Biotyper®, utilizing Fourier-transform infrared (FTIR) spectroscopy, offers a novel
approach, providing specific spectra for fast strain typing within 3 h. This methodology article serves
as a comprehensive resource for researchers and technicians aiming to utilize FTIR spectroscopy for
microbial strain typing. It encompasses detailed guidelines on sample preparation, data acquisition,
and analysis techniques, ensuring the generation of reliable and reproducible results. We highlight the
IR Biotyper®’s rapid and accurate discrimination capabilities, showcasing its potential for real-time
pathogen monitoring and source-tracking to enhance public health and food safety. We propose its
integration as an early screening method, followed by more detailed analysis with whole-genome
sequencing, to optimize detection accuracy and response efficiency in microbial surveillance systems.

Keywords: strain typing; Fourier-transform infrared spectroscopy; outbreak; surveillance; pathogen
detection

1. Introduction

Increased food production industrialization, international trade, global warming, and
changes to eating habits towards ready-to-eat foods have created a great challenge to ensure
food safety [1,2]. This is coupled with increased virulence and tolerance to hurdles by
foodborne pathogens, which has necessitated an increased demand for rapid food analysis
to ensure the safety and quality of food [3,4]. Food contamination with pathogens such
as Listeria monocytogenes, Cronobacter sakazakii, Shiga-toxin-producing Escherichia coli, and
Salmonella spp. is a major public health threat [5–7]. Rapid and early detection of these
microbial contaminants allows the timely implementation of appropriate measures to
terminate outbreaks and prevent further transmission and morbidity [8]. This requires
fast, affordable, and reliable tools for identification and classification of such threats. The
emergence of new microbial threats, in part due to adaptation of microorganisms, climate
change, modifications of human lifestyle and demographics, changes in economic devel-
opment, excessive land use, and increasing environmental pollution, has exacerbated this
need [9,10].

Understanding the diversity and characteristics of microbial strains is of paramount
importance in various fields, ranging from public health to industrial manufacturing.
Strain identification plays a critical role in outbreak investigation, epidemiology, food
safety, factory hygiene programs, vaccine development, disease detection, and treatment
modality decisions. Each microbial strain possesses unique genetic and phenotypic traits
that influence its pathogenicity, antibiotic resistance profile, and environmental adaptability.
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Therefore, accurate and rapid strain typing methodologies are indispensable for effective
management and control of microbial infections and other related challenges.

Several tools are being applied for pathogen detection to prevent and control out-
breaks. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST)
are well-established typing methods in microbiology laboratories [8,11,12], but have limita-
tions. PFGE is generally costly, labor-intensive, and time-consuming. MLST has excellent
reproducibility but is expensive and limited to applicable strains [11]. Matrix-assisted laser
desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has revolu-
tionized and reduced the time required for pathogen identification [13]. Although with
some limitations, it has been demonstrated to assist in outbreak investigation [14] as shown
by Bar-Meir et al. [15] in a neonatal intensive care unit. Additionally, MALDI-TOF MS
has been used to identify antimicrobial resistance markers [16]. However, it is currently
limited to identifying the isolates species and does not give details on the sequence type,
serotype, and MLST clonal complex (CC). Although very useful, such an approach would
not easily link isolates in an outbreak situation. The gold standard for this is whole-genome
sequencing (WGS; Table 1) [7]. WGS allows high-throughput analysis of entire bacterial
genomes, enabling extraction of information on phylogenetic relatedness, antibiotic resis-
tance, virulence traits, serotype, and MLST of an isolate from a single analysis. On the
food processor’s side, WGS allows efficient tracking of pathogen entry and distribution
routes enabling adjustments to limit entry and spread [17,18]. However, it is restricted in
terms of cost and time, taking an average of 2 to 4 days from colony identification to results.
Additionally, skilled researchers with bioinformatic knowledge are required to analyze the
genomes fully and to link them in an outbreak situation.

Table 1. Comparison of strain typing methods.

Strain Typing
Method

Discriminatory
Power Cost Time

WGS Highest High Lengthy
PFGE High Moderate to high Lengthy
MLST High 1 High Moderate

Sera Serotyping Moderate to high Low to moderate Moderate
FTIR High 2 Moderate Rapid

1 Limited to applicable strains. 2 Variable depending on species and sample preparation.

Fast and accurate pathogen detection is essential for correct disease diagnosis, treat-
ment of infection, and reporting of infectious disease outbreaks and events, which is
critical for controlling the course of an outbreak and avoiding large-scale epidemics and
preventable loss of life [7,19,20]. The recently introduced IR Biotyper® system (Bruker Dal-
tonics GmbH, Bremen, Germany), a Fourier-Transform Infrared (FTIR) spectroscopy-based
commercially available microbial typing system, is a good candidate for such low-cost,
simple, and rapid routine use in outbreak investigation. Through FTIR spectroscopy,
this system distinguishes strains by quantifying the absorption of infrared light by car-
bohydrates, lipids, nucleic acids, proteins, and lipopolysaccharides from microbial cells
producing highly specific metabolic fingerprint-like signatures [8,21]. Several studies have
shown that FTIR spectroscopy has high discriminatory power, enabling differentiation
at the species or subspecies level [10,22,23]. It has been successfully employed for strain
typing of pathogens such as Legionella pneumophila, Pseudomonas aeruginosa, Streptococ-
cus pneumoniae, Bacillus cereus group, and Staphylococcus aureus [21,24–27]. A variety of
FTIR-based methodologies have been utilized across microbial studies for tasks beyond
microbial identification, such as process monitoring, cell wall analysis, biofilm examina-
tion, stress response assessment, and investigation of environmental interactions (reviewed
by [23,28]). This versatility underscores the wide-ranging applications of FTIR spectroscopy
in understanding microbial systems.



Methods Protoc. 2024, 7, 48 3 of 13

In FTIR spectroscopy, various instruments and methodological approaches have been
employed when analyzing similar biological samples [28]. This paper highlights the
potential of the IR Biotyper® as a strain characterization tool that can be applied in place of
traditional typing methods. Moreover, it covers sample preparation, data acquisition, and
analysis techniques to ensure reliable and reproducible results.

2. Principle of FTIR Spectroscopy

Infrared spectroscopy is based on the principle of measuring the absorption of infrared
radiation by molecules [8]. Each molecule absorbs specific frequencies of infrared light
that match the vibrational frequencies of their chemical bonds [23]. When infrared light
interacts with a sample (bacterial or yeast cells), these wavelengths are absorbed by the
sample’s molecular bonds, causing them to vibrate (Figure 1). The resulting spectrum,
known as an infrared spectrum, contains peaks corresponding to the vibrational modes of
different chemical bonds present in the sample.
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Figure 1. Infrared spectroscopy measures the interaction of infrared radiation with matter. Upon
interaction with infrared light, molecular bonds within a sample vibrate (symmetric, antisymmetric,
scissoring, rocking, wagging, or twisting vibration), absorbing specific wavelengths of light. The
transmitted light carries chemical information of the sample, detected to produce an infrared spectrum
with peaks corresponding to different chemical bonds. This infrared spectrum offers insights into the
sample’s functional groups, enabling qualitative and quantitative analysis of its chemical composition,
facilitating bacterial or yeast strain typing. Figure created with BioRender.com.

In FTIR spectroscopy, infrared light is passed through the sample, and the transmitted
light is collected and analyzed using an interferometer [10]. The interferometer produces
an interferogram, which is then Fourier-transformed to generate the sample’s infrared
spectrum. This spectrum provides information about the functional groups present in
the sample, enabling qualitative and quantitative analysis of its chemical composition.
For bacteria or yeast strain typing, FTIR spectroscopy can characterize the biochemical
composition of cells, serving as their molecular fingerprints. Each strain exhibits a unique
FTIR spectrum due to variations in its cell wall composition, membrane structure, and
intracellular components. By comparing the FTIR spectra of different isolates, strains can
be differentiated and classified according to their spectral signatures.

BioRender.com
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3. Protocol for IR Biotyper®-Based FTIR Spectroscopy Analysis

To benefit from the selectivity of FTIR spectroscopy and ensure reliable reproducible
results, it is critical to adhere to a standard procedure for sample preparation using appro-
priate growth media at defined incubation temperature and duration.

3.1. Culture Preparation

To begin, strains must be resuscitated from cryo stocks by plating them on appropriate
media and incubating them under specified conditions. For instance, L. monocytogenes
can be plated on brain heart infusion (BHI) agar and incubated aerobically for 24 h at
37 ◦C. For FTIR analysis, starting with resuscitated cultures of the same age, pure single
colonies are selected for subculture on appropriate media and incubated for specific time
and temperature (Table 2). Strains should be streaked onto agar plates to achieve confluent
growth. Depending on the species, additional subculture and incubation may be required
to adapt the organisms to the growth conditions and increase cell mass. For liquid cultures,
single colonies from each strain should be inoculated into 10 mL of broth and incubated
under specific conditions. For example, L. monocytogenes can be grown in BHI broth and
incubated for 24 h at 37 ◦C with shaking at 150 rpm.

Table 2. Strain culture conditions.

Organism 1 Media Temperature Time Atmosphere

L. monocytogenes BHI, TSA 2a 37 ◦C 24 ± 0.5 h Aerobic

S. pneumonia Blood agar 3 37 ◦C 24 ± 0.5 h Microaerophilic,
capnophilic

S. enterica TSA b 37 ◦C 24 ± 0.5 h Aerobic

L. pneumophila BCYE 4 37 ◦C 48 ± 1 h Microaerophilic,
humid

1 Only species with a validated IR Biotyper® classifier have been included. 2 TSA: Tryptic soy agar. 3 Contains
5% sheep blood. 4 BCYE: Buffered charcoal yeast extract agar. a Other media such as Sheep blood agar, ALOA,
Oxford, Palcam, Rapid’ L. mono agar have been validated by the manufacturer. b Other media such as Sheep
blood agar, Chocolate, Mueller–Hinton, XLD, Salmonella Shigella, MacConkey agar have been validated by the
manufacturer.

The choice of media, temperature, and incubation time must be standardized to lever-
age the high selectivity of FTIR spectroscopy effectively. While blood agar and chromogenic
agar have been used successfully, their use is generally discouraged. Blood agar can in-
troduce additional variance, reducing discriminatory power, and chromogenic agar can
colorize the biomass, altering infrared absorbance characteristics. Additionally, old or
dried-out agar plates should be avoided, as variations in salt and nutrient concentrations
can impact the growth and phenotypes of the target organisms.

3.2. Sample Preparation and Assay Setup

For spectra acquisition using the IR Biotyper® (Bruker Daltonics GmbH & Co. KG),
the manufacturer’s instructions for sample preparation and spectra acquisition are recom-
mended (Figure 2).

For samples grown on agar, a full 1 µL loop of microbial colony material is collected
from the confluent part of the plate culture and resuspended in 50 µL of 70% ethanol
solution in a 1.5 mL suspension vial (IR Biotyper® kit, Bruker Daltonics). It is important not
to transfer any agar into the sample. After sufficient vortexing, 50 µL of molecular grade
water will be added.

For broth cultures, it is essential to ensure that the pellet is thoroughly washed to
remove any residual media. Depending on the species and growth level, 5–10 mL of culture
should be centrifuged at 6000× g for 5 min. After discarding the supernatant, the cells
should be washed twice with 5 mL of sterile phosphate-buffered saline (PBS), each followed
by 5 min of centrifugation at 6000× g. Finally, the washed cells should be resuspended
in 500 µL of PBS buffer for IR Biotyper® measurement. The amount of culture harvested
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and the amount of PBS used for final resuspension can be adjusted depending on the
absorbance values, which must fall in the range of 0.4–2.
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Figure 2. Sample processing protocol. A full loop of microbial colony material is collected from
overnight cultures and resuspended in 70% ethanol in suspension vials. Care is taken to avoid agar
transfer. After vortexing and addition of molecular grade water, 15 µL of the suspension is spotted
in quadruplicate onto a 96-well silicon target plate and allowed to dry. Quality controls (IRTS 1
and IRTS 2) are prepared similarly. The dried plate is then inserted into the IR Biotyper® for FTIR
spectroscopy analysis. Post-measurement, spectra undergo quality assessment, and those meeting
criteria are analyzed using dedicated software. Figure created with BioRender.com.

For both samples from agar and broth, 15 µL of the suspension will be spotted in
quadruplicate onto the 96-well silicon IR Biotyper® target plate (Bruker Daltonics, Germany)
and incubated at room temperature until the spots are dry (approximately 30–40 min).
Because water molecules strongly absorb infrared light and can distort the spectra [28],
sample spots must be sufficiently dried. However, care must be taken not to over-dry
the sample spots, as this can cause cracks, leading to increased background noise and
poor-quality spectra. The quality controls, Infrared Test Standards (IRTS 1 and IRTS 2)
of the IR Biotyper® kit, are resuspended in 100 µL of molecular grade water and mixed
at 1500 rpm for 15 min at room temperature, then 60 µL of absolute ethanol is added
with further mixing. Ten µL of the suspension are then spotted in duplicate onto the IR
Biotyper® target and left to dry as described for the samples. One well is left unused
to act as the blank or background reading reference. Thereafter, they will be subjected
to infrared spectroscopy analysis. All spectra are acquired intercalating a background
spectrum between each sample/control measurement. Two to three independent biological
replicates are best for each setup. From our experience, some microbes cannot be easily
resuspended in ethanol; hence, they can be resuspended in water alone. Alternatively,
the isolates can be resuspended in water first then sterilized with an equal amount of
70% ethanol.

3.3. Spectra Acquisition and Data Analysis

Using the IR Biotyper® instrument, absorption spectra are recorded in transmission
mode between wave numbers 4000 and 500 cm−1 using the OPUS software (Bruker Optics,
Bremen, Germany). The sample plate containing the dried suspension spots is inserted
into the instrument’s measurement chamber, which is continuously purged with dried
air. It is crucial that the room housing the instrument maintains a stable climate, that is,
humidity and temperature. The manufacturer’s acquisition method performs 32 scans for
background and sample spectrum taking approximately 1 min per well. A maximum of

BioRender.com
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30 samples, each with 3 technical replicates, can be analyzed per silicon plate. Results can
be obtained within 2–3 h from the time of culture harvest.

After measurement, the resulting spectra undergo a quality test. Spectra of poor
quality, such as those with inadequate minimum and maximum absorbance values (outside
the range of 0.4–2) and signal-to-noise ratio (R2 < 200 and R3 < 40), are identified. It
is recommended to remove these spectra, allowing only those of acceptable quality for
further analysis. A user-friendly IR Biotyper® Client interface software (Bruker Daltonics)
facilitates spectrum processing. The spectra (Figure 3) are smoothed using the Savitzky–
Golay algorithm and the second derivative of the spectra is calculated. The spectra are
then cut to the relevant spectral window/s and vector-normalized to regulate preparation-
related variance in biomass and, consequently, absorption. The current default relevant
spectral window of 1300–800 cm−1 is recommended, which primarily covers carbohydrates.
However, other splicing methods focusing on regions corresponding to lipids, proteins, or
proteins and carbohydrates can be applied (Table 3). For a detailed description of other
spectral windows, readers are referred to the review by Kassem et al. [23]. It is also possible
to create splicing methods that cover areas with high variance in the second derivative,
either manually or through the software automatically (see Figure 4).
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Figure 3. For visualization purposes, spectra of representative L. monocytogenes serotype 1/2a (blue)
and 4b strains (red) produced using the OPUS software (Bruker Optics, Germany) are presented.
Strains were cultivated on sheep blood agar at 37 ◦C for 24 h.

Table 3. Spectral windows and their recommended applications.

Spectral Window Recommended Application

1300–800 cm−1 Carbohydrates
3000–2800 cm−1 Lipids
1800–1500 cm−1 Proteins
1800–900 cm−1 Proteins and carbohydrates

All qualitatively acceptable spectra can then be classified using commercially available
classifiers, or users can develop their own classifier and integrate it into the IR Biotyper®.
For species with a classifier, such as L. monocytogenes [29], Salmonella spp. [30], S. pneu-
moniae [31], and L. pneumophila [26], the serogroup is also reported per well as the test is
running, with a traffic light system indicating classification confidence (green: high, yellow:
moderate, and red: low confidence).
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Figure 4. For visualization purposes, a second derivative spectra plot of representative L. monocyto-
genes serotype 1/2a (1043S) and 4b (N16-0044) strains, as seen in the IR Biotyper® Client interface
software, are presented. The strains were cultivated on sheep blood agar at 37 ◦C for 24 h. The grey
rectangle labeled BDSW marks the IR Biotyper® default splicing window: 1300–800 cm−1.

The data can be analyzed using the Client interface software, employing multivariate
statistical methods such as Hierarchical Cluster Analysis (HCA), Principal Component
Analysis (PCA), and Linear Discriminant Analysis (LDA), allowing both supervised and
unsupervised classification. Available linkage types include single, average, complete, and
Ward’s linkage types, while clustering methods such as Euclidean and Pearson’s correlation
are available. The data can be visualized as a dendrogram, distance matrix, and 2-D and
3-D scatter plots (Figure 5).
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Figure 5. Two-dimensional scatter plot of Linear Discriminant Analysis (LDA) model using the
serotype as a group identifier for L. monocytogenes strains. Spectra are color-coded by isolate, with
each • representing an absorption spectra technical replicate. Wave number region 1300–800 cm−1

(polysaccharides).

3.4. Key Considerations for FTIR-Based Protocols

To ensure accurate measurements, the FTIR spectrometer must be calibrated every
7 days using a Calibrator plate (Bruker Daltonics, Germany). The FTIR spectroscopy
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protocol might need to be optimized for each species. For instance, although this approach
resulted in high discriminatory power similar to the ones obtained by spa typing and PFGE
of S. aureus [32], the use of the IR Biotyper® has been reported to be challenging for S. aureus
strain typing. Optimization of the FTIR spectroscopy protocol, including reducing bacterial
amount (from 1 µL to 0.5 µL loopful of bacterial culture), bacterial concentration (from
15 µL to 12 µL spotting), sample preparation, and appropriate media choice, was required
to improve concordance of the results with WGS or PFGE data [33]. Wenning et al. [34]
demonstrated that changes to the sample preparation procedure result in significantly
impaired performance of FTIR spectroscopy, whereas they have fewer profound effects on
MALDI-TOF MS. These observations indicate that FTIR spectroscopy might be strongly
influenced by the sample preparation procedure, supporting the need for development of
optimized species-specific protocols.

3.5. Limitations of FTIR Spectroscopy

FTIR spectroscopy, like other strain typing methods, is not immune to limitations [23,28].
For instance, sample preparation requirements, including the need for specific sample forms
and processing, if not done properly, can introduce artifacts [35]. Its sensitivity to water,
which strongly absorbs infrared radiation, poses constraints, particularly in analyzing
water-rich samples. While FTIR can provide qualitative information about the chemical
composition of a sample, achieving accurate quantitative analysis can be challenging.
Factors such as sample thickness, homogeneity, instrumental parameters, and data analysis
can affect the accuracy of these quantitative measurements.

The discriminatory power and concordance between FTIR spectroscopy results and
WGS are not always consistently high. For instance, in the study by Zendri et al. [36],
while the concordance between FTIR spectroscopy and MLST types was notably high
for K. pneumoniae (Adjusted Rand Index [ARI] of 0.958), it was less satisfactory for P.
aeruginosa (ARI of 0.313). This suggests that additional efforts and protocol refinement
are required for certain species to enhance the performance of FTIR spectroscopy in strain
typing. Hu et al. [37] demonstrated that the growth of P. aeruginosa isolates on Mueller–
Hinton agar yields better discriminatory power compared to those grown on 5% sheep
blood agar used in the study by Zendri et al. [36]. Additionally, while the equipment is
affordable, there is a significant initial investment cost. However, with the high throughput
of the machine, investment recovery can potentially be achieved within a short duration,
especially for high throughput laboratories. Despite these limitations, FTIR spectroscopy
remains valuable across disciplines, but researchers must be mindful of its constraints and
employ complementary techniques where necessary.

4. Application of FTIR Spectroscopy

FTIR spectroscopy holds promise for various applications across different fields [23],
including epidemiological investigations, contamination source tracking, and quality con-
trol of probiotics, starter, and ripening cultures [22]. However, it is crucial that regardless
of the application, the results obtained through FTIR spectroscopy are consistent with WGS
for phylogenetic clustering [38,39].

4.1. Outbreak Investigation

During outbreaks of infectious diseases, such as foodborne illnesses or healthcare-
associated infections, identifying the specific strain responsible is crucial for implementing
targeted control measures. Different strains of bacteria may exhibit varying transmission
dynamics, virulence, and antibiotic resistance patterns. By employing strain typing tech-
niques like FTIR spectroscopy, researchers and public health officials can quickly identify
the causative strain, trace its source, and implement preventive measures to contain the
outbreak. The IR Biotyper® has demonstrated comparability to WGS in differentiating
extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae iso-
lates [20,21,37,40,41]. In a prospective vancomycin-resistant Enterococcus faecium outbreak
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investigation, FTIR spectroscopy showed better concordance with WGS-average nucleotide
identity (ANI) than MLST [42]. It has also shown applicability for real-time tracking and
monitoring of multidrug-resistant Acinetobacter baumannii isolates from an intensive care
unit outbreak [43].

4.2. Factory Hygiene Monitoring Programs

In industries where microbial contamination poses a risk to product quality and
consumer safety, such as food processing and packaging, maintaining stringent hygiene
protocols is essential. Pathogen strain typing enables the monitoring of microbial pop-
ulations within manufacturing facilities, identifying potential sources of contamination,
and implementing corrective actions to prevent product spoilage or contamination-related
recalls. Rapid and reliable strain identification methods like the IR Biotyper®-based FTIR
spectroscopy support real-time monitoring and quality assurance in factory environments,
allowing for easy identification of persistent strains or pathogen reintroduction.

4.3. Food Production Quality Control

The IR Biotyper® is also applicable for food quality control to verify if the starter
culture strains added during production remain consistent throughout the process. It
has been employed to accurately differentiate four Lactiplantibacillus plantarum probiotic
strains [44]. In this study, it demonstrated high discriminatory power even when the
strains were cultivated under different conditions. Interestingly, the growth medium (broth
and agar) did not affect its ability to distinguish the four probiotic strains [44]. In fact,
broth cultures exhibited higher reproducibility and discriminatory power compared to
agar cultures. Analysis of L. plantarum strains demonstrated that FTIR spectroscopy was
not only comparable to WGS and PFGE but also exhibited a higher discriminatory power
than MLST [45]. Furthermore, Deidda et al. [46] showed that FTIR spectroscopy analysis is
comparable to WGS, MLST, and PFGE in discriminatory power for Bifidobacterium longum
subsp. longum strains, and superior to MLST and PFGE in differentiating B. animalis subsp.
lactis strains.

4.4. Clinical Settings

The IR Biotyper® provides rapid, cost-effective, and high-throughput strain typing,
making it a valuable tool in clinical settings. Timely and accurate identification of pathogens
is essential for diagnosing infectious diseases, connecting nosocomial pathogens to en-
vironmental sources, and initiating appropriate treatment and corrective measures [40].
Different bacterial strains may display variations in antibiotic susceptibility, virulence, and
disease progression. Therefore, precise strain typing methods are essential for guiding
therapeutic decisions, particularly in cases of antibiotic-resistant infections or outbreaks of
multidrug-resistant bacteria. By quickly identifying the causative strain, the IR Biotyper®

can assist clinicians in tailoring treatment regimens to maximize efficacy and minimize
the risk of treatment failure. For instance, Potocki et al. [47] demonstrated that FTIR spec-
troscopy holds promise for facilitating diagnosis and targeted therapy for candidiasis. FTIR
spectroscopy has also shown significant discriminatory capability in veterinary hospital
epidemiological surveillance of K. pneumoniae [36], thus enabling the timely deployment of
effective infection control strategies in such settings. It has also been successfully applied
to characterize Gram-negative bacilli (A. baumannii, Enterobacter cloacae, and P. aeruginosa)
clones responsible for nosocomial outbreaks [25].

4.5. FTIR Spectroscopy in Basic Research

FTIR spectroscopy is applicable in basic research, particularly in the investigation of
cellular responses to stress and genetic modifications [23]. By comparing the intensity of
absorption peaks corresponding to different cellular components, researchers can quantify
the amount of each component present in different strains. For instance, using high
throughput FTIR spectroscopy, Smirnova et al. [48] demonstrated that altering temperature
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and nutrient levels impacts the metabolic processes and cellular chemical composition of
bacteria isolated from Antarctic green snow.

5. Research Outlooks

Our current research is focused on utilizing the IR Biotyper® for outbreak investigation
and improving the current classifiers to enhance discriminatory power, particularly among
closely related serogroups. A priority is achieving clear separation among L. monocytogenes
1/2a, 1/2b, and 1/2c serotype strains. Initial findings for L. monocytogenes show promising
clustering and outbreak detection capabilities, especially when outgroup strains are dis-
tantly related to the outbreak cluster. However, we have observed a low discriminatory
power (ARI of <0.4) when analyzing very closely related strains, indicating a potential limit
of discrimination based on single nucleotide polymorphism differences.

Pathogens do not respect borders, highlighting the necessity for efficient disease
surveillance at the local, national, and international levels [9]. One advantage of WGS is its
ability to facilitate the creation of global databases based on standardized nomenclatures,
such as the MLST databases. The benefit of such global databases lies in the international
exchange of data, enabling cross-border outbreak investigation, strain tracking, and source
identification in the global food chain [49,50].

It remains to be seen if a similar worldwide accessible database of FTIR reference
spectra can be established for the IR Biotyper®, which would allow this tool to be applicable
for international source tracking and multinational outbreak investigation. However, any
efforts to create such a database must be accompanied by a standardized protocol for
generating, storing, sharing, and analyzing FTIR spectra profiles to ensure comparability
between different laboratories. For these databases to be effective, they would need to in-
clude a wide range of reliably identified reference strains to cover the intraspecies diversity
of microbes [22]. A translational research approach is therefore needed to address these
limitations through interdisciplinary collaboration and open data sharing. Additionally,
further enhancement of the discriminatory power of the IR Biotyper® is necessary, and
the classifier database should be expanded to include other pathogens beyond the four
currently available. Overall, further validation of this procedure across different pathogen
species and by various laboratories is still required to facilitate widespread adoption.

6. Conclusions

This methodology provides a comprehensive guide for utilizing FTIR spectroscopy in
bacteria and yeast strain typing. By following the outlined steps for sample preparation,
FTIR data acquisition, and advanced data analysis techniques, reliable and reproducible
results can be obtained, rendering this approach valuable across various microbiological
applications.

In summary, the IR Biotyper® offers a rapid, high-throughput, non-destructive (does
not damage or alter the sample), environmentally friendly, cost-effective, and minimal
hands-on-time tool for microbial strain typing, making it well suited for diverse applications
in food microbiology, epidemiology, and clinical diagnostics. Through the utilization of
FTIR spectroscopy, researchers and public health officers can advance the understanding
of microbial diversity, enhance outbreak surveillance efforts, and improve strategies for
disease prevention and control. This method might be applied as an early isolate screening
or warning system, complemented by subsequent detailed analysis techniques such as
WGS. Its adoption for microbial strain typing has the potential to revolutionize rapid-
response scenarios in infection and outbreak management, as well as in food quality control
and hygiene standards.
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