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Abstract: Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples
are a gold standard in oncology for tumor characterization, and the identification of prognostic
and predictive markers. However, despite the abundance of archived FFPE samples, their research
use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to
create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies
on large patient groups. Semiautomatic constructed tissue microarrays (TMAs) were created for
two tumor patient cohorts and IHC stained for seven antibodies (ABs). AB expression in the tumor
and surrounding stroma was quantified using the AI-supported image analysis software QuPath.
The data were correlated with clinicopathological information using an R-script, all results were
automatically compiled into formatted reports. By minimizing labor time to 7.7%—compared to
whole-slide studies—the established workflow significantly reduced human and material resource
consumption. It successfully correlated AB expression with overall patient survival and additional
clinicopathological data, providing publication-ready figures and tables. The AI-assisted high-
throughput TMA workflow, validated on two patient cohorts, streamlines modern histopathological
research by offering cost and time efficiency compared to traditional whole-slide studies. It maintains
research quality and preserves patient tissue while significantly reducing material and human
resources, making it ideal for high-throughput research centers and collaborations.

Keywords: immunohistochemistry; tissue microarrays; AI; workflow; FFPE tissue

1. Introduction

Tissue microarrays (TMAs) consist of multiple tissue cores derived from formalin-fixed
paraffin-embedded (FFPE) tissue samples on a single slide. TMAs enable high-throughput
analysis of multiple samples under standardized conditions with high reproducibility. This
innovative approach, first described by Wan et al. in 1987 [1], enables the aggregation of
multiple tissue samples in a single paraffin block, the TMA block. Cores measuring between
0.6 and 2.0 mm are extracted from FFPE tissue blocks and arranged within a new paraffin
block in a grid pattern. Compared to conventional whole-slide tissue sections, TMAs are
more economical and efficient, saving material, reagents, antibodies, human resources and
preserving tissue samples. In the processing of tissues for biochemical methods such as
immunohistochemistry (IHC) and mass spectrometry imaging [2,3], TMAs provide a more
consistent evaluation due to reduced variability [4–6].
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Biobanks play a crucial role in biomedical research involving patient tissues and have
emerged as a viable option for sourcing patient samples for the creation of TMAs. They
are instrumental in the collection, storage, and processing of patient samples, providing
technological platforms for research collaborations. These collaborations extend to project
planning and execution, positioning biobanks as intermediaries between pathologists,
clinicians, researchers, and patient samples. In research collaborations, patient tissues are
procured from archives and processed according to the project design. Moreover, biobanks
provide sample-specific clinicopathological data such as WHO- and UICC-classification
and patient follow-up in a pseudonymized manner.

Despite biobanks being accessible for research collaborations, a considerable amount
of scientific potential remains untapped in archived tissue samples. Limiting factors include
time-consuming procedures, and high personnel needs for IHC studies, especially when
human resources are limited. The medical field faces a shortage of pathologists amidst
rising workloads due to an aging population and increasing diagnostic complexity [7].

Digital pathology, supported by AI, offers a promising solution [8,9]. Advances in
whole-slide scanning technology have enabled the digitization of microscopic tissue ex-
amination and the subsequent inclusion of AI. Studies show that AI-assisted pathologists
achieve higher diagnostic accuracy than either AI or pathologists alone [10–14]. AI algo-
rithms are also implemented in research to help interpret tissue samples, offering improved
accuracy and reduced inter-observer variability [15]. AI is yet to be broadly applied in
routine diagnostics, but promising or even certified solutions are already available [8,16–18],
suggesting that AI’s role in pathology is set to grow.

However, a reliable workflow integrating these techniques for large-scale patient
studies is not yet established. The primary goal of the ensuing study was to develop and
optimize a resource-efficient workflow using advanced hardware and software to conserve
resources while simultaneously meeting state-of-the-art scientific standards.

2. Materials and Methods
2.1. Patient Tissue

Two patient cohorts (Cohort A and Cohort B) were included in the presented study. All
FFPE tumor samples were derived from the archives of the Institute for Surgical Pathology
(ISP) and the Biobank of the Comprehensive Cancer Center Freiburg (CCCF Biobank), both
located at the University Medical Center Freiburg, Germany. All patients included in the
study underwent surgery at the University Medical Center Freiburg, Germany. Informed
consent was obtained from all patients prior to inclusion. Both presented studies were
approved by the local Ethics Committee of the University of Freiburg (REF 21-1684 and REF
20-289). All tissue samples were processed and diagnosed at ISP according to guideline-
conformant and standardized gross sectioning protocols. Cohort A consisted of 49 patients
with intrahepatic cholangiocellular carcinoma. Cohort B consisted of 142 patients with
non-small cell lung cancer, which were subdivided into subcohorts of 78 patients with
adenocarcinoma (B1) and 64 patients with squamous cell carcinoma (B2). All cases were
confirmed during primary diagnosis using IHC staining (Cytokeratin 7, Cytokeratin 5/6,
p40, thyroid transcription factor 1).

Tumor-containing FFPE tissue specimens were sectioned (using the Leica RM 2255
microtome, Leica Biosystems, Nussloch, Germany), stained with hematoxylin–eosin (H&E)
(using the TissueTek Prisma autostainer, Sakura Finetek Europe, Alphen aan den Rijn, The
Netherlands), and histologically reviewed by board-certified pathologists before inclusion.

Clinicopathological data were automatically extracted from the ISP’s structured re-
ports (SRs) of oncological patient samples, established by Aumann et al. [19–21]. In short,
these template-based SRs are organized into distinct text blocks containing WHO- and
UICC-classification relevant data, including histological subtype, pT-, pN-, pM-, L-, V-,
Pn-status, tumor size, number of lymph node metastases, distant metastases, and surgical
margin status. To generate the histopathological reports, all relevant data were entered into
predefined templates, leading to the automatic creation of the pathological reports. Simulta-
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neously, an integrated electronic form linked to the cancer registry database was compiled
in accordance with the Early Detection of Cancer and Cancer Registries Act [22] introduced
in 2015 in Germany, which mandates the systemic documentation of malignancies.

Patient outcome was obtained by request through the University Medical Center
Freiburg’s computational center. Data were compiled and securely stored on a user-restricted
network drive. Next, every tissue specimen was pseudonymized with a unique identifier. To
ensure an unequivocal sample-to-patient linking, a barcode-based pseudonymization was
developed. Therefore, FFPE blocks and corresponding slides were labeled with barcodes
generated using the BarCode Generator software (Bytescouts, v. 7.3). The labels comprised
Data Matrix barcodes ciphering 6–9 characters. Adjacent to the barcodes, the caption
was visualized in Arial font, size 15.75. All labels were printed using a Zebra ZD421
printer (Zebra Technologies Corporation, Lincolnshire, IL, USA) on precision-fit labels of
23 × 8 mm.

2.2. Annotation of Regions of Interest

All H&E-stained slides were digitized using a Pannoramic 1000 scanner (3DHIS-
TECH Ltd., Budapest, Hungary) with a 20-fold microscope objective (20×, NA 0.8, Plan-
Apochromat, 0.25 µm/pixel). After digitization, all images were reviewed for sufficient
quality (focus, completeness, and artifacts). For the accurate transfer of specific tissue
areas during TMA creation, punching areas were annotated using the CaseViewer software
(Sysmex, v. 2.3). For both patient cohorts, circular regions of interest (ROI) of 1.0 mm in
diameter were annotated within the tumor and the adjacent non-neoplastic tissue. Annota-
tions were color-coded (tumor ROIs—red and non-neoplastic tissue—green) and labeled
for distinction. If possible, up to three ROIs per patient per tissue type were annotated,
although two tissue cores per tissue sample are considered representative, as shown in
previous studies [23,24].

2.3. TMA Construction

Three repeatable steps define TMA construction: drilling of core holes into an empty
paraffin block (Acceptor blocks) (Figure 1A), extraction of cores from FFPE blocks (Donor
blocks) (Figure 1B), and their transfer into the Acceptor block (Figure 1C). This process is
repeated, resulting in the construction of a TMA (Figure 1D).
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Figure 1. Schematic depiction of the TMA block construction. (A): A cylindrical cavity is drilled in
the Acceptor block. (B): A tissue core is removed from the Donor block. (C): The core is embedded
into the Acceptor block. (D): Repeated application results in the construction of a TMA. Source: Own
illustration (PowerPoint, 2016).



Methods Protoc. 2024, 7, 96 4 of 17

2.4. Semi-Automated TMA Construction

The TMA Grandmaster (TMA GM) is a semi-automated microarrayer that streamlines
the construction of TMAs (Figure 2B). Upon setting up a new project in the TMA Control
software, TMA GM’s block holders are loaded with Acceptor and Donor blocks. An inte-
grated camera then captures images of these blocks, creating digital copies and identifying
their barcoded pseudonyms for accurate tracking.
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Figure 2. Schematic representation of the workflow for TMA construction with the TMA Grandmaster,
AI-supported evaluation of antibody expression with QuPath, and script-based statistical analysis
with RStudio. Source: Own illustration (PowerPoint 2016).

The selected TMA grid involved cores of 1.0 mm in diameter spread over a paraffin
block of 24 × 37 mm with a minimal spacing of 0.4 mm. By selectively deactivating certain
spots in the layout, an asymmetric grid was set. The transfer process was set up in a
random sequence within specific TMA blocks. The arrangement of patients across the
TMA blocks was sequential. Next, digital slides, including the previously annotated ROIs,
were automatically overlaid onto the digital Donor blocks and manually aligned. The
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punch and transfer processes were initiated once the ROIs were confirmed for transfer
into the Acceptor block. After the transfer, TMA data encompassing core localization and
clinical information were exported for precise sample identification. As a part of external
quality controls, tonsil, and placenta tissue samples with verified antibody expression
were included in the TMA layout to ensure the sensitivity and specificity of subsequent
analyses (e.g., IHC stains). Each cohort was allocated to separate TMA blocks. For Cohort
A, two TMA blocks were created. Cohort B encompassed six TMA blocks. Additionally, a
second set of TMAs, referred to as TMA Clones, was created for each study. These clones
had an identical layout to the original TMAs but included spatially adjacent tissue cores.
This was achieved by creating a second set of annotations next to the primary ROIs and
subsequently transferring these cores into the TMA Clones.

2.5. TMA Block Processing

After the punching process, the TMA blocks were melted to prevent tissue loss during
the subsequent sectioning and IHC staining (Figure 2C).

For melting the TMA blocks, protocols already described in the literature [25–28] were
tested, refined, and optimized. The adapted melting process involved a series of multiple
incubation cycles at 37 ◦C for 60 min, interspersed with active cooling of the samples on
ice for ten minutes. This step was performed three times for Cohort A and six times for
Cohort B.

2.6. Immunohistochemistry

Tissue sections of 2 µm thickness (Leica RM2255 rotary microtome, Leica Biosystems,
Nussloch, Germany) were prepared from the melted TMA blocks and deparaffinized. One
section per TMA was stained with H&E. Further sections were IHC stained using the
EnVision FLEX detection system (Dako, K8000, Agilent Technologies, Santa Clara, CA,
USA) and commercially purchased primary antibodies.

From Cohort A, two of the three TMAs were IHC stained with the following six
antibodies each: Anti-Biglycan (BGN, Abcam, monoclonal rabbit antibody, (EPR20235)),
Anti-Histone H1.0 (H1, Abcam, monoclonal rabbit antibody, (EPR6537)), Anti-Kruppel-like
factor 7 (KLF7, Sigma Aldrich, polyclonal rabbit (HPA030490)), Anti-Lactate Dehydroge-
nase antibody (LDH1A1, Abcam, monoclonal rabbit antibody (EP1566Y)), Anti-SKI (SKI,
Invitrogen, polyclonal rabbit antibody (PA5-51253)), Anti-Vitronectin/S-Protein antibody
(VN, Abcam, monoclonal rabbit Antibody (EP873Y)).

From Cohort B, all six TMAs were stained with anti-ubiquitin-like modifier-activating
enzyme 1 (UBA1, Invitrogen, Recombinant Rabbit Monoclonal Antibody (SD08-62)). The
staining protocol included the following steps: antigen unmasking with retrieval solution
(UBA1, SKI: sico 5, five minutes; BGN, H1, KLF7, VN: sico 2, two minutes; LDH1A1:
pH 6.1, 30 min; ten-minute incubation with blocking reagent (EnVision FLEX Peroxidase
Blocking Reagent, DAKO), staining with the above-mentioned primary antibodies at a
respective concentration of 4.0 µg/mL (UBA1), 0.5 µg/mL (BGN, H1, SKI, VN), 1:100
(KLF7, concentration not specified), 1:1000 (LDH1A1, concentration not specified) and
60 min. incubation at room temperature each, 15 min. incubation with Mouse Linker
(EnVision Flex + Mouse Linker, DAKO), 20 min. incubation with peroxidase (EnVision
FLEX/HRP, DAKO), 10 min. incubation with Envision FLEX DAB + Substrate Buffer (1:51)
and finally counterstaining with hematoxylin. Subsequently, all stains were verified for
specific antibody expression, using both internal and external controls, and digitized as
previously described.

2.7. QuPath Analysis

The analysis of the IHC staining was performed using QuPath (v0.3.0) [29] (Figure 2D).
Initially, stain separation was performed to separate the color spectrum into individual
color channels and to enable accurate quantitative analysis. Individual cores were detected
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automatically with the “TMA-Dearrayer” function and overlaid with a digital grid. The
TMA layout was imported for sample-pseudonym annotation of every single core.

To quantify antibody expression in tissue marked by DAB staining, individual cells
were detected using QuPath’s ‘Positive cell detection’. Key settings included ‘Detection
image’ to guide cell nucleus identification, with options like ‘Hematoxylin OD’ for cyto-
plasmic AB staining and ‘Optical density sum’ for nuclear AB staining. ‘Minimum and
maximum area’ settings defined nuclear size limits and were also used for excluding ar-
tifacts. ‘Threshold’ identified nuclei based on color intensity, adjusted for faint staining.
‘Max background intensity’ excluded high-intensity non-nuclear elements. ‘Cell expansion’
defined the extension of the simulated cell membrane around nuclei. ‘Intensity threshold
parameters’ and ‘Score compartment’ were crucial for detecting DAB staining, varying
based on nuclear or cytoplasmic expression patterns. ‘Single Threshold’ categorized cells as
DAB-positive or -negative, with adjustable intensity levels (1+, 2+, 3+). Settings were tested
on various TMA cores, visually inspected for segmentation and DAB-detection accuracy,
and adjusted iteratively in QuPath to optimize cell segmentation. Ultimately, the trained
model was applied to all TMA cores. To distinguish cell types, an ‘Object Classifier’ was
trained by manually annotating cell groups to the tissue classes “Tumor” and “Stroma”.
QuPath extracted features from these annotated cells for further classification, including
morphological characteristics like size, shape, or texture. For Cohort A, 1088 annotations
with a cumulative area of 5.11 mm2 covering 42,308 cells were assigned; for Cohort B,
501 annotations covering 19.63 mm2 with 144,927 cells were assigned. These manually
classified cells served as training data for the classification model using the Random Tree
machine learning algorithm. The model was trained with extracted features to under-
stand patterns and relationships between features and target classes, assigning each cell to
appropriate classes. Results were visually inspected and refined iteratively by manually
annotating wrongly classified tissue areas, further enhancing the classifier before it was
applied across all TMA cores.

Finally, all metrics for each core were exported as a .tsv file, including the absolute
expression percentage within the tumor and surrounding stromal cells. Additionally, the H-
Score, quantifying both intensity and percentage of antibody expression, was automatically
calculated and displayed on a scale of 0–300.

2.8. Statistical Analysis with RStudio

All statistical analyses were automated through a custom script coded with R (v4.0.3;
R Core Team 2020) in the graphical interface RStudio (v2023.03.0+386 RStudio Team (2020).
RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, USA), which compiled
the QuPath results of antibody expression with clinicopathological data (Figure 2E). Inter-
ested readers can be granted access to the code upon request. The script performed the
following tasks:

1. Importing both clinicopathological data and QuPath analyses into R (readxls).
2. Sorting QuPath results by patient and calculating variable distribution as well as

mean and median values per patient and tissue type (dplyr).
3. Compilation of these values with clinicopathological data into a new dataset (R

Base Package).
4. Calculation of an optimal cutoff for antibody expression and dichotomizing into

high and low expression subgroups (cutpointr).
5. Generation of survival curves and statistical significance assessment via log-rank

testing (survival).
6. Visualization of Kaplan–Meier curves (survminer).
7. Univariable and multivariable Cox regression analyses for hazard ratios (survival;

gtsummary).
8. Tabular visualization of the Cox regression (gtsummary).
9. Export of graphs, tables, and Kaplan–Meier curves in various formats (JPEG, PNG,

PDF, or DOCX).
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3. Results
3.1. Pseudonymization with Barcoded Labels

The barcode reading feature of the TMA GM utilizes a built-in camera rather than an
infrared scanner, resulting in reduced barcode legibility in conditions of poor contrast, low
quality, or contamination, such as paraffin deposits. This made it inadequate for reading
imprinted barcodes on paraffin cassettes with a detection rate of <10% under present
conditions. The development of DataMatrix barcode labeling for Donor blocks significantly
increased detection rates to at least 83% (two-sample t-test, two-tailed: p < 0.001; Table 1).
This ensured a reliable association of each core to its respective Donor block as well as the
simultaneous pseudonymization of the cohort.

Table 1. Labeling the paraffin cassettes with DataMatrix barcodes improved their automatic detection
by the microarrayer significantly (p < 0.01).

Test

Barcode-Detection

t-Test
Without Label With Labels

Detected Barcodes/
FFPE Blocks

Detection
in %

Detected Barcodes/
FFPE Blocks

Detection
in %

1. 5/60 8.3% 54/60 90%

p < 0.001 *
2. 3/60 5.0% 50/60 83%

3. 5/60 8.3% 52/60 86%

4. 4/60 6.6% 53/60 88%
* Two-sample t-test, two-tailed.

A Zebra ZD421 printer was used to create custom, non-glossy, non-permanent labels
of 23 × 8 mm in size. These labels did not interfere with the existing identifying codes on
the tissue blocks and ensured easy, residue-free removal.

In essence, switching to DataMatrix barcoded labels improved detection rates to over
83%, ensured reliable core-to-Donor-block association, and successfully pseudonymized
patient samples.

3.2. TMA Layout

The TMA layout was meticulously designed based on the required number of core
samples, as demonstrated in Figure 3. If the anticipated amount of core samples was below
the TMA’s full capacity, the layout editor was initially adjusted by decreasing the rows
and columns (thus limiting the potential core count), allowing increased spacing between
cores. Minimum spacing (0.4 mm) frequently caused cores to overlap upon dislodging
during microtome cutting. Overlapping, in turn, resulted in certain cores becoming unfit for
evaluation, thus reducing the sample size. To prevent overlapping, distances of 0.7–0.8 mm
between cores were chosen. Moreover, an asymmetrical layout was implemented for
precise spatial orientation and accurate macroscopic allocation of punch samples; this was
accomplished by deactivating core transfer in spots in the upper right corner of the layout.
Random core arrangement in the layout was chosen to normalize batch effects.

Substantially, the TMA layout was meticulously designed to optimize core spacing
and prevent overlap, ensuring precise sample allocation and reducing evaluation issues.
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Figure 3. Examples of TMA layouts. (A) A suboptimal symmetrical TMA layout with linear core
arrangement and minimal spacing (0.4 mm) between cores. This layout accommodates the maximum
number of cores (n = 286 with 1 mm core diameter) but complicates spatial orientation and may
lead to core overlaps during microtome cutting. (B) An asymmetrical TMA layout with random
core arrangement. The upper right corner is deactivated for punching and aids in orientation.
The increased spacing of 0.7 mm between cores prevents overlaps during cutting but reduces the
maximum number of cores (n = 177). Source: Own illustration.

3.3. Overlay of Digital H&Es and Digital Donor Blocks

The precise overlay of digital H&Es and the donor block is critical to TMA creation.
Misalignment could lead to the extraction of a core that did not match the annotated
position within the Donor block. Consequently, the tissue cylinder embedded in the TMA
block would not correspond to the originally annotated ROI on the digital H&E image.
Automated overlays by TMA Control Software (version 3.3) were inadequate, especially
with low-contrast tissues like adipose material or symmetric samples, often resulting in
misalignment (Figure 4A,B). High-contrast, asymmetric samples yielded better overlay
accuracy (Figure 4C). Manual correction was required for all samples (Figure 4D). This
represented a significant additional factor in terms of labor and time during the creation of
the TMAs.

Essentially, accurate digital overlay between H&E images and Donor blocks is crucial
for TMA creation, requiring manual correction due to software limitations, especially with
low-contrast tissues.

3.4. Melting Process and Core Loss

Core loss refers to dislodgement or shift on the TMA slide during the slicing and/or
staining process. Core loss occurs due to inadequate tissues-paraffin adhesion to the sur-
rounding paraffin while being transferred from the Donor Block into pre-drilled cylindrical
cavities in the Acceptor block, resulting in a visible gap. To re-establish adhesion, TMA
blocks must undergo a melting process. Therefore, a protocol of alternating incubation at
37 ◦C and rapid cooling on ice was established. For Cohort A, a loss of 17 of 429 cores (4%
loss) was observed in the H&E slides. For Cohort B, doubling the melting cycles reduced
the loss rate significantly to an average of 1.25% (two-sample t-test, two-tailed: p = 0.001;
Table 2).

Therefore, a method for significantly reducing core loss in TMA slides was successfully
established through alternating incubation and cooling cycles.
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Table 2. Loss of cores on H&E slides: The TMAs of Cohort A underwent three melting cycles,
resulting in an average of 4% of cores lost. Cohort B underwent six melting cycles, reducing the rate
of core loss to 1.25%.

Cohort Absolute
Cores

Core
Loss

Core Loss in
% Core Loss Within the Cohorts

A TMA 1 170 6 3.5%

4%

p = 0.001 *

* two-sample t-test,
two-tailed

A TMA 2 139 5 3.5%

A TMA 3 120 6 5.0%

B TMA 1 165 4 2.4%

1.25%

B TMA 2 168 3 1.7%

B TMA 3 156 3 1.9%

B TMA 4 132 1 0.7%

B TMA 5 129 1 0.8%

B TMA 6 123 0 0%

3.5. Sectioning, Staining, and Digitization of TMAs

Sectioning TMAs with a microtome, IHC staining, and digitization were implemented
as described above. The beneficial economic effects (in time and materials) compared to
whole-slide studies are demonstrated in Table 3. In detail, for both cohorts, sectioning
18 slides took 60 min. Subsequent IHC staining required 720 min for both cohorts, including
incubation times (456 min). Digitization of all TMAs took 135 min and 26.1 GB of storage
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space. In total, 5.4 µg of antibody were required (excluding LDH1A1 and VN due to lack
of concentration information). For whole-slide consumables, the required time and disk
space were significantly higher.

Table 3. Schematic representation of the labor and material expenditure of studies using the presented
workflow compared to the expenditure of similar whole-slide studies. The time estimates for whole-
slide methods are based on an average of comparable whole-slide studies from the CCCF Biobank
Freiburg over the period of three years.

Cohort A TMAs Whole-Slides

Number of blocks 2 TMAs 91 FFPE blocks

Number of IHC-stains 6 6

Slides required 12 546

Sectioning 40 min 2730 min (45.5 h)

IHC staining 480 min * 6552 min (109.2 h) *

Digitization 90 min 4095 min (68.25 h)

Necessary storage space 17.4 GB 791.7 GB

Evaluation of IHC 630 min (10.5 h) 2730 min (45.5 h)

Statistical analysis with R 120 min (2 h) 300 min (5 h)

Total working hours 22.67 273.45

Antibody amount 0.6 µg ** 27.3 µg **

Cohort B TMAs Whole-Slides

Number of blocks 6 TMAs 305 FFPE Blocks

Number of IHC-stains 1 1

Slides required 6 305

Sectioning 20 min 1525 min (25.4 h)

IHC staining 240 min * 3660 min (61 h) *

Digitization 45 min 2287.5 min (38.1 h)

Necessary storage space 8.7 GB 442.25 GB

Evaluation of IHC 315 min (5.25 h) 1525 min (25.4 h)

Statistical analysis with R 60 min (1 h) 120 min (2 h)

Total working hours 11.25 164.6

Antibody amount 4.8 µg 244 µg
* manual staining including incubation times of 304 (Cohort A) and 152 min (Cohort B). ** Amount excluding
LDH1A1 and VN due to lack of concentration information.

3.6. Staining Evaluation with QuPath

The exported layout data ensured distinct mapping of each core to its respective patient
(Figure 5A), annotated with the Donor block, and patient pseudonym. Antibody expression
is reported as both a percentage and an H-Score, with separate values for tumor and stroma
(Figure 5B). Cell segmentation settings yielded consistent results within the same cohorts
and stains. The cell classifier for differentiating cell types was not universally applicable
and needed retraining for each single TMA slide. On average, evaluating a stained TMA
slice took 52.5 min, including manual verification of each core’s proper classification.
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Figure 5. In QuPath, the TMA layout is adopted. Each core is annotated with the block and patient
pseudonym. The location of the cores in the layout is indicated by X and Y coordinates (A). The
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3.7. Correlation of Biomarker Expression and Clinicopathological Data with R

All statistical calculations and visualizations were performed with the custom-coded
script in R (Figure 6). The cohorts were dichotomized by an automatically calculated cut-off
into high- and low-expressors. The impact of the biomarker expression on overall survival
was analyzed per log-rank test. In uni- and multivariable Cox regression models, the
biomarker expression was further analyzed for its effect on the hazard ratio. The yielding
results were visualized by Kaplan–Meier curves and life tables in .png or .jpg files, as
shown exemplarily in Figures 7 and 8.
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The workflow involved creating TMAs with a semi-automated tissue microarrayer
from archived FFPE tissue samples, followed by AI-assisted analysis of the IHC-stained
TMAs. The generated data is script-based correlated with clinicopathological data retrieved
from the LIS and statistically analyzed. The results are graphically presented as ready-
to-use figures and tables. The focus is the generation of valid, reproducible results while
significantly reducing personnel and material resources compared to manual whole-slide
studies. To accomplish this, a continuous workflow was established by aligning individual
technology platforms in tissue processing, slide evaluation, and data analysis (Figure 2).
This refined workflow was then applied to two patient-cohorts of different tumor types for
proof of concept, assessing a total of seven potential biomarkers and statistically correlating
them with corresponding clinicopathological data.

4. Discussion

The presented study introduces a scalable and replicable workflow for efficient
IHC biomarker studies on large patient cohorts, beginning from FFPE tissue blocks to
publication-ready results. The method optimizes the use of resources and is an alter-
native to traditional whole-slide IHC studies. The workflow allows for quicker result
generation—saving time and cost—and increasing productivity and efficiency while main-
taining result reliability.

For the proof of concept, it was applied and validated on two tumor patient cohorts.
The workflow relies on three components:

a. Semi-automatically created TMAs, available through existing patient consent forms and
a positive ethical vote for research projects, annotated with clinicopathological data.

b. AI-supported evaluation of AB expression of these TMAs.
c. Script-based correlation of AB expression with clinicopathological parameters and

statistical analysis, resulting in immediate generation of publication-ready figures
and tables.

Compared to a whole-slide study, the presented workflow significantly reduced
material and labor resources. Labor time decreased to 7.7% (34.00 vs. 438.11 h). Only
18 unstained slides (2% of the whole-slide study’s 851) were required, taking 15.25 h to
process versus 347.49 h for whole-slide studies (4.3%). Antibody use was also significantly
lower (5.4 µg vs. 271.3 µg, or 1.9%). Labor for sample evaluation and analysis was cut to
20.6% (18.75 vs. 90.6 h). “Material loss” of patient tissue was minimized, preserving FFPE
samples for potential future diagnostic investigations while reducing the number of slides
improved digitization speed, storage needs, and computational analysis efficiency.

The resulting resource savings correlate with high initial costs. Despite the undeniable
expenses associated with acquiring equipment such as the TMA Grandmaster, barcode
printers for slides and capsules, slide scanners, and PCs, digital pathology is advancing
steadily. This progress is reflected in innovations like barcode-driven workflows and the
digitization of slides, among other advancements, providing an opportunity to implement
diagnostic pipelines in research and ultimately aiming to reduce overall costs. Further-
more, proficiency in image analysis and R-scripts, along with expertise in histopathology
and statistical analysis, is essential to fully realize the efficiency and potential of these
digital tools.

Current patient consent forms enable numerous future projects with the same TMA
blocks, producing at least 500 blank slides. The quantity is effectively doubled due to the
availability of TMA clones, enabling hundreds of biomarker investigations.

Histomorphological tumor heterogeneity represents a challenging aspect of oncologi-
cal research, affecting therapy and diagnosis [30]. While TMAs are debated for their accu-
racy in representing tumor heterogeneity, studies by Nocito et al., Camp et al., and Torhorst
et al. demonstrate the representativeness of TMAs compared to whole-slides [23,24,31].
This study used three cores of 1.0 mm punch diameter per tumor for analysis, covering
multiple times the tissue area than previously described methods in studies [23,24]. Core
loss, due to inadequate tissue-paraffin adhesion, ranges from 4 to 25% [25–28,32,33]. The
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authors’ protocol of multiple melting cycles significantly reduced TMA core loss, though
variability in institute-specific factors, such as tissue fixation methods, types of paraffin,
FFPE block storage, antigen retrieval techniques, or the specific tissue entity employed in
TMAs, limits comparison between studies to vague interpretations.

In terms of multimodal applications, TMAs are not only effective for IHC but are also
compatible with other, more advanced techniques like in situ hybridization [34] and multi-
plex techniques [35]. The TMAs generated with this workflow are furthermore analyzed
by Matrix-assisted Laser Desorption Mass Spectrometry Imaging (MALDI-MSI) [2,3,36],
Cytometry by Time of Flight (CyTOF) [37,38], and Spatial Transcriptomics [39,40]. These
methods validate research results and help bridge gaps between histomorphology, IHC,
omics, and molecular pathology.

Regarding data analysis, QuPath, an open-source platform for tissue classification and
staining evaluation in histopathological images using machine learning algorithms [29] was
applied. The software proved effective for cell classification within individual TMA slides.
However, its performance varied across different slides, necessitating the creation of sepa-
rate classification models for each, an obstacle also highlighted in prior studies [29,41,42].
Despite these limitations, using QuPath for TMA analysis significantly reduced evaluation
time. Analyzing a TMA with 30 patients took 52.5 min, totaling 15.75 h for all TMAs,
compared to 70.9 h required for manual analysis, based on average onsite analysis duration.
While verifying each cell’s classification in TMAs was time-consuming, it was an integral
part of the quality control process. QuPath further supported the objective quantifica-
tion of AB expression and structured data exportation, facilitating data management and
streamlining subsequent statistical analysis.

The coded R-script was custom-fit for the data structure of QuPath’s results while
remaining adaptable for future projects with other biomarkers or clinical data. The R-script
auto-saves results as Kaplan–Meier survival curves and hazard ratios in an image format.
Incorporating new projects into this framework requires minor adjustments, like updating
file paths and accommodating clinical data differences. Proficiency in R and understanding
the script’s architecture are necessary, limiting user-friendliness. Despite this, the script’s
adaptability and speed in statistical analysis are advantageous. This is exemplified in the
analysis of Cohort A, where the expression of six antibodies was investigated in both tumor
and stromal cells across the entire cohort. The script’s adjustment to the project design and
analysis took only two hours, resulting in high-quality figures and tables.

The CCCF-Biobank has already implemented the workflow to generate entity-specific
TMA collections from samples within the CCCF Biobank and ISP. These TMAs are accessi-
ble to collaborating partners for research purposes. Partners benefit from the expedited
workflow, by receiving publication-ready results in significantly less time compared to
traditional methods.

5. Conclusions

In conclusion, the presented study outlines a scalable and reproducible workflow
for efficient IHC biomarker investigations on large patient cohorts, from FFPE tissue
blocks to publication-ready results. The workflow optimizes resource utilization and offers
an alternative to traditional whole-slide IHC studies, resulting in quicker result genera-
tion, cost and time savings, and increased productivity and efficiency while maintaining
result reliability. Despite requiring initial investment and expertise, this workflow can
be adapted for broader use (i.e., metabolomics and spatial transcriptomics) in various
high-throughput tissue-based studies, including biomarker discovery and validation. The
method’s scalability positions it as a valuable tool for large-scale clinical research and diag-
nostic advancements, promoting more efficient data generation and enabling researchers to
focus on data interpretation and application rather than extensive manual processing. The
integration of AI in histopathological research workflows also paves the way for higher
standardized protocols in pathology and related fields, ultimately contributing to more
reliable and reproducible scientific outcomes.
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