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Abstract: Symmetric instruction machines (SIAs) and symmetric Turing machines (STMs)
are models of computation involving concepts derived from those of classical Turing
machines such as tape (memory) and head (processor), but with different functional and
structural characteristics. The former model (SIAs) introduced in this paper and preferred
by Mark Burgin is a result of a reformulation of the latter model (STMs) published in several
articles by the second author in the past. The properties of both models are analyzed and
compared. The word “symmetric” in both cases represents the feature of the design which
is distinct from classical Turing machines where only cells on the tape change under the
action of the head. In both models, symmetric computing involves changes of the tape
and parallel (“symmetric”) changes of instructions listed in the head. The key difference
between SIAs and STMs is in the dynamic of the changes, which in the former model has
the form of compound one-way actions and in the latter model, it has the form of uniform
mutual interactions, which only in specific realizations can be separated into a pair of
actions. Because of the untimely passing of Mark Burgin, the discussion of the two models
and cooperation on the paper has never been finished. For this reason, the arguments of
both authors are reported even though, in some cases, they are mutually inconsistent or
even contradictory.

Keywords: philosophy of computation; Turing machines; unconventional computation;
symmetric Turing machines; interaction-based computation; computing power

1. Introduction
Scientific terminology is not free from ambiguity. There are many examples of identical

terms understood in very different ways in inquiries of different subjects. If the subjects
are not related, a misunderstanding is unlikely. The more related subjects are, the higher
the risk is. This relatively close relationship has a place in the case of the term “symmetric
Turing machine”, which makes it necessary to begin with disambiguation of this term. In
this paper, a symmetric Turing machine, which is a generalization and modification of
the usual Turing machine, is completely unrelated to the special case of Turing machines
distinguished by the condition that their configuration graphs are undirected, that is, one
configuration yields another configuration whenever yielding is reversed, as defined by
Harry R. Lewis and Christos H. Papadimitriou [1].

To avoid further potential misunderstandings and to make this paper self-contained, a
summary of the idea of symmetric Turing machines, its motivation, and its relationship to
other ideas of unconventional computing is presented in Section 2, titled “Symmetric Turing
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Machines”, as a report on the earlier publications of the second author. In a nutshell (the
details will follow in Section 2), in a symmetric Turing machine (with its name abbreviated
to s-machine following the tradition initiated by Turing who called his original model
of computation an a-machine, followed by c-machine for choice machine, u-machine for
unorganized machines, etc.), each step of computation modifies (or possibly retains) both
the present (active) cell on the tape and, at the same time, the present (active) instruction in
the head of the machine. The description or identification of the s-machine is based on the
configuration of the instructions in the head but on the dynamic of the mutual interaction
between the cells and the instructions. In short, the one-way action of the classical Turing
machine is replaced by mutual interactions in the s-machine. It is this characteristic of s-
machines that makes their inquiry of special importance for the philosophy of computation,
particularly in the context of natural computing systems.

This paper was written in unusual circumstances. The first author, Mark Burgin,
passed away before the work on the paper was finished. Mark Burgin proposed, after dis-
cussions with the second author, a preliminary version of the paper, which was reproduced
without any essential changes (except for editing of the section numbering, references,
typos, etc.) in the present final version as an extensive Section 3, titled “Symmetric In-
struction Machines” (the title originally proposed by Mark for the entire original paper
by both authors). He asked the second author for revisions, corrections, or comments on
the draft, overtly expecting additional input from the second author. Since the second
author had objections to the preliminary version (mainly because the presented model did
not fully involve a departure from the classical Turing machine), he communicated his
suggestions to Mark for changes, specifically, some revisions of the claims about symmetric
Turing machines. Mark responded to the suggestions of revisions with a short acknowledg-
ment “It looks reasonable”. No other response arrived and after some time, there was an
announcement about his illness and passing.

It would be unethical to revise Mark’s preliminary version of the paper with the
second author guessing what exactly Mark had endorsed in such a short response. Instead,
Section 4, titled “Interactive Processing of Information in Symmetric Turing Machines”,
presents what the second author considered necessary to add or revise. It contains a
reformulation of the statements, theorems, and examples that are marked with asterisks
in Section 3. In short, all of them become true if the term “symmetric Turing machine” is
replaced by “symmetric instruction machine”. The former term represents a very general
model of computation, which, in the draft, was reduced to its very special case of a
symmetric instruction machine.

The symmetric instruction machine is a model for the realization of the idea of the
symmetric Turing machine (s-machine) within a framework closer to the traditional con-
ceptualization of computation and as such is of great interest. In our discussions, while
expressing his appreciation for the theoretical model of s-machines to which he referred
to in his earlier publication [2], Mark was always concerned about the feasibility of their
construction or physical realization. He applied the idea of symmetry of such machines in
his model of the symmetric inductive Turing machine presented at the 2019 IS4SI Summit
at the University of California, Berkeley [2]. In our discussion after his presentation, I
challenged his statement that symmetric processing (such as in s-machines) cannot in-
crease computing power beyond that of the Turing machine as he claimed in his talk and
published in his proceedings paper: “Automata that perform transformations with their
programs, such as reflexive Turing machines, were explored in [3]. It was proved that
these machines have the same computing power as Turing machines. This result disproved
Kleene’s conjecture [4], which suggested that algorithms that change their programs while
computing would be more powerful than Turing machines” [2]. My argument was that
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the fact that one particular type of computing with changing programs (or with changing
instructions in the case of Turing machines) does not have increased computing power does
not disprove the conjecture that some models of this type do. Mark agreed but remained
skeptical about the practicality of such a general symmetric model. He believed that sym-
metric Turing machines are of interest because of their efficiency rather than computing
power. We planned our cooperation on further inquiry into symmetric Turing machines,
which only became feasible two years later due to our busy schedules. This paper reports
the results of this cooperation that was tragically and sadly disrupted by Mark Burgin’s
untimely passing.

2. Symmetric Turing Machines
2.1. Motivations for Symmetric Turing Machines

The ideas behind symmetric Turing machines published by the second author in a
series of articles starting in 2013 had their sources in inquiries into unconventional, natural
computing, and philosophical questions related to this subject [5–8]. These inquiries were
originally motivated by the objective of finding a description of information dynamics
that can be associated with computation in natural processes, for instance, in living organ-
isms, their populations, and ultimately in general complex systems considered intelligent
or conscious.

On the other hand, these inquiries could help in answering the frequently asked but
never definitely answered question about what computation is. This question is non-trivial
as the computer has become a paradigmatic symbol for any artifact or natural system
involving information. As always for any non-trivial concepts, while everyone accepts
the work of Turing’s theoretical model of computation (classical Turing machine) as a
paradigmatic instance of computation for which multiple equivalent models have been
developed, the consensus ends with the question about the possibility of non-equivalent,
more computationally powerful forms of computation.

Turing himself provided examples of such non-equivalent models (e.g., oracle ma-
chines); however, they had only theoretical meaning due to the status of oracles. The quest
for more powerful computation models stimulated multiple attempts, resulting in some
breakthrough developments, such as quantum computing. In most cases, such alternative
models of computation increased the efficiency of computation, breaking the barriers to
the practical feasibility of some computations but did not increase computational power
(capacity to compute what at the lower power is non-computable). Thus, the challenge
of the central issue of a generalization beyond the original model introduced by Turing
has not been overcome, which hindered the attempts to define computation in a way that
satisfies everyone.

Whatever way a definition of computing is formulated, it requires a genus (a more
general concept that is already defined) that is close enough to the defined concept to
simplify its differentia (the description of how all other concepts within the same genus differ
from it). The attempts to use the intuitive but very general (highly removed in abstraction)
concepts such as “information processing” as a genus led to either overgeneralization (such
that every process involving information is considered a computation) or the circular
definition of information processing through the hidden use of the concept of computation
in Turing machines.

There was another source of problems in the context of natural computing. While it
was relatively easy to translate the original expressions “read” or “print” in the works of
Turing who illustrated his a-machine as a work of a human “computor” into the work of
technological devices for the physical realizations of a-machines as electronic computers,
such translation is much more difficult when we consider the realization of computing in
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natural systems such as living cells. In such a case, we do not have actions but interactions
of several components of a cell at the same or similar scale. The terms, such as “head” or
“tape”, used for Turing machines lose their intuitive meaning.

Thus, in the description of a symmetric Turing machine (s-machine), we will only use
terms such as “tape” and “head” metaphorically to make it easier to understand the way
s-machines generalize the a-machines of Turing. Someone who knows Turing machines
can easily imagine the structure of an s-machine by analogy to an a-machine. However, it
is important to remember that the objects that these terms represent may have different
functional and structural characteristics, and functions such as “reading” and “printing”
completely lose any meaning.

2.2. Conceptual Foundations for Symmetric Turing Machines

Before the description of s-machines is given, the assumptions underlying their con-
ceptualization (explained in detail elsewhere) are as follows [5–8]:

• Since, in all natural instances of dynamics (not only in physics), instead of action,
we always have interaction, and in the model of symmetric Turing machines, all
dynamical processes are interactions. Actions are idealizations of specific instances
of interaction in which the change of state of one side of the interaction is so small
in comparison to the change of the state of the other side that it can be neglected
in approximations;

• There are two mutually associated manifestations of information called selective and
structural. The distinction is the differences in the way in which information manifests
itself, not in the type of information. One manifestation is always associated with the
other. In this particular context, an example of selective information is the choice of a
character in a cell of the tape or of an instruction assigned to a particular instruction
list position while structural information is the configuration of all characters on the
tape or the configuration of all instructions in the list of instructions. Of course, in the
former case, we can consider the structural information of the configuration of points
from which a character is formed, and in the latter case, we can consider the selective
information associated with the selection of one of many configurations of characters;

• The model of the symmetric Turing machine presented here uses the traditional
terminology of Turing machines such as “head” and “tape” in their entirely new
meaning. The purpose of retaining the terms is to support the understanding of the
construction as a generalization of Turing machines. In particular, “instructions” in
the head are just local states of the components of the head. They do not instruct
any action.

• Since the dynamic of symmetric Turing machines is based on the interaction between
the states of components of the two global information systems but not necessarily
the values observable from the outside (e.g., reading of characters representing these
states), symmetric Turing machines can be considered analog generalizations of digital
Turing machines. In this case, the analog–digital distinction is borrowed from quantum
theory distinctions between the description of the system (here, the information
system) in terms of the states (analog) or observables (digital). In the case where we
can uniquely identify the states with observables (such as in Turing machines where
we assume that what the head reads in a cell on a tape is the actual state of the cell
and the process of reading does not change this state), the analog description can be
replaced by a digital one.



Philosophies 2025, 10, 16 5 of 16

2.3. Description of Symmetric Turing Machines

Now, we can proceed to the description of the model of the symmetric Turing machine
in the form of a list of main points of its theoretical construction, illustrated below in
Figure 1. The description summarizes the content of the publications by the second author
preceding his cooperation with Mark [5–8]. However, the discussions with Mark and his
questions were very helpful later in writing this summary by pointing at the parts of the
original publications that required additional clarification.
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1. Computation is understood as an interaction of two compound global information
systems (called the “head” and “tape”), each consisting of an infinite but countable
sequence of components, which themselves are information systems (the former is
called “instruction list positions” (ilp) and the latter is called “cells”). We assume that
each component can have an associated address indexed by an integer.

2. For each of the global information systems (head and tape), there is a separate, possibly
but not necessarily different alphabet or catalogue of the possible states of their
components (local information systems). The state of such component (ilp or cell) is
a selection of an element from the appropriate alphabet/catalog. Every particular
choice of a state for a cell or of an instruction for an instruction list position (ilp) is local
selective information. Notice that the choice of a character for the cell or instruction
for ilp does not identify the position of the cell or instruction in their configurations.

3. Each state of either of the global information systems (head or tape) is associated
with the configuration of the states of their components (choices of elements from
the corresponding alphabet for all their components). We can say that states of the
global information systems carry structural information of the configuration, but this
is equivalent to compound selective information as long as the components have
assigned addresses.

4. It is important to note that the elements in the alphabet/catalogue for the head are
functionally identical to the elements of the alphabet/catalogue for the tape. The
state of an ilp (which, here, to maintain the analogy with Turing machines, is called
an instruction), actually itself does not instruct anything or have any function in
determining the process of computation but it is a variable entering the functions
describing the dynamic of the computation. Possibly confusingly, the determination of
the process of computing is not in the instruction but in the dynamic of the s-machine.
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The characters (representing states of cells) and instructions (representing states of ilp’s)
do not have any fundamentally different features.

5. The process of computing involves more than one level of an information system.
At the local level, the interaction is between a single pair of local component infor-
mation systems called an active cell and active ilp. It is possible to consider further
generalization, allowing for the involvement of a greater number of active compo-
nents, but at this stage of inquiry, we will restrict local interactions to one pair of
active components. This local dynamic expressing the interaction of the pair of active
components transforms (or possibly retains) their states. This can be described as
follows. At the local level, each step of the computation at the local state (cj,ik) of
the active machine components (j,k) (where it is understood that the j-th cell is active
and has character cj and the k-th ilp is active and has instruction ik) is described by the
function (c′ j,i′k) = Φloc(cj,ik), where cj and c′ j belong to the catalogue of n cell states
(characters), and ik with i′k belong to the catalogue of m states of ilp (instructions). The
function Φloc does not depend explicitly on j and k, but exclusively on the values of cj

and ik.
6. The second level of the dynamic, called the intermediate dynamic here, links the local

and global levels of the information systems. It describes how the states of active
components (at the local level) determine the selection of the addresses of the next pair
of active components (including the possibility that either of the two addresses remains
unchanged). Addresses link the lower, local level of the component information
systems (more exactly, their states) with the upper, global level in which the global
configuration is involved. In this case, we have another function (j′,k′) = Φm(cj,ik)
(with index m indicating its “middle” status between the two levels), which, in this
case, is (in principle) a compound function of j and k with the internal component
function assigning the value (cj,ik) to (j,k), but its dependence on j and k may be
eliminated (by defining each j′ as j+s, where s is an integer function of the values
of cj and ik, and similarly defining each k′ as k+r, where r is an integer function of
the values of cj and ik; then, Φm depends exclusively on the values of cj, ik, and the
parameters s and r).

7. Finally, we have the third function Φglob describing the dynamic of the s-machine
exclusively at the global level, which can be derived from the other two functions Φloc

and Φm so that it does not have to be included in the identification of the s-machine.
We have here the function (c’,i’) = Φglob(c,i,t) describing the change in the global
states of the two interacting systems which form the machine after t iterations starting
from the global states c = (cj: j∈J) and i = (ik: k∈K), where J and K are sets indexing
the components of the global information systems and in this context, both can be
identified as the sets of all integers.

8. The description of an s-machine includes the assumptions that both catalogues include
a neutral or void element (neutral element for cells and neutral element for ilp’s) and
that in the initial state of the computation, all but a finite number of cells and ilp’s are
in this neutral state. We have also a normalization condition identifying the initial
active cell and initial active ilp. For simplicity, we may assume that this initial state for
(j,k) = (0,0).

9. It is obvious that the s-machine in which the state of each instruction list position (ilp)
always remains the same, allowing for the identification of ilp’s with the respective
instructions, is a usual a-machine. The disassociation of the change in the local state
of the tape from the head and describing it as an interaction between the active local
components of the compound systems is just a reinterpretation.
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10. The concept of a universal symmetric Turing machine loses its classical meaning.
Symmetric Turing machines are identified by their dynamic (more specifically, by the
two functions Φloc and Φm). Thus, the universality would require a consideration of all
possible choices of these functions. While in the case of the former function, we have
a finite number of choices for new local states, the number of choices for the second
function is infinite. Moreover, both functions (or at least one of them) can be non-
computable (throughout this paper, non-computable means Turing non-computable),
for instance, due to the use of non-computable sets in their description.

11. It can be easily observed that as long as the two functions Φloc and Φm are com-
putable, there is a possibility to emulate the work of the s-machine using an a-machine.
However, there is nothing that requires computability.

The diagram in Figure 1 provides a visual representation of the structural and func-
tional description of symmetric Turing machines. The diagram in Figure 2 provides such a
representation for the classical Turing machine model. The symmetry is reflected in the fact
that we can exchange the names “head” and “tape” and the description will be still accurate
after interchanging “cell”–“ilp” and “character”–“instruction” pairs. It is important that we
have two global information systems, each of them compound, consisting of multiple local,
component information systems. An interaction is described by the dynamic described by
two functions removed from the “head”.
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One of the most important consequences of the generalization of Turing machines
to symmetric Turing machines (actually, one of the main motivations for the way this
generalization was designed by the second author) is the possibility of designing hierarchic
multilevel computing systems which can be found in natural computation, particularly
in living objects. Because the components of the global information systems do not have
essentially different functional or structural characteristics, we can consider a multilevel,
compound computing machine in which each pair of consecutive global information
systems is an s-machine. A global information system can be a head for one s-machine and
a tape for another at the same time, as described in Figure 3.

The apparent similarity of multilevel compound s-machines and neural networks
designed for deep learning does not go far as the component s-machines may have very
different dynamics (including non-computable dynamics) while all layers of deep learning
neural networks have the same traditional dynamic.



Philosophies 2025, 10, 16 8 of 16Philosophies 2025, 10, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 3. Diagram of a multilevel compound S-machine. 

The apparent similarity of multilevel compound s-machines and neural networks 

designed for deep learning does not go far as the component s-machines may have very 

different dynamics (including non-computable dynamics) while all layers of deep 

learning neural networks have the same traditional dynamic. 

2.4. Difference Between Symmetric Turing Machines and Other Models of Computation Involving 

Changes in Instructions or Interactions 

There is a natural question about whether and how s-machines are related (different 

or similar) to other computing system designs, particularly machines involving 

interactions. The answer is that to the best knowledge of the second author, the attempts 

to involve the changes in instructions or interactions were focused on configurations of 

several (at least more than one) Turing machines operating in a classical way or their 

equivalents or alternatively, on the external computing resources, but not on the internal 

structure or function of machines. Of course, Turing’s oracle machines (o-machines) do 

not require additional Turing machines and actually, by definition, reject a-machines as 

oracles, but their design requires the engagement of an external component of an oracle. 

Similarly, choice machines (c-machines) require choices made by an external agent. 

Choice machines were excluded from consideration by Turing as they assumed the finite 

number of choices made throughout every computation which can be realized by a single 

a-machine in which all possible choices (of a finite number) are considered. In 

non-deterministic Turing machines in which in all or some steps of computing the 

transition to the next state of either a cell or instruction (traditionally, the latter is called 

the state of the machine) is not determined by the present state can be reduced to the case 

of c-machines and therefore does not increase the computational power if the number of 

choices is finite. However, neither c-machines nor non-deterministic machines are 

comparable with general s-machines, as they do not admit changes in instructions. 

There are several directions of inquiry in computational systems involving changes 

in instructions or interactions, but all such systems known to the second author are 

configurations of Turing machines. For instance, the direction of inquiry called 

Amorphous Computing overtly makes such an assumption: “An amorphous computing 

medium is a system of irregularly placed, asynchronous, locally interacting computing 

elements. We can model this medium as a collection of “computational particles” 

sprinkled irregularly on a surface or mixed throughout a volume. Each particle has 

modest computing power and a modest amount of memory. The particles are not 

synchronized, although we assume they compute at similar speeds, since they are all 

fabricated by the same process [...]. Thus, the entire amorphous medium can be regarded 

as a massively parallel computing system, ...” [9]. 

Figure 3. Diagram of a multilevel compound S-machine.

2.4. Difference Between Symmetric Turing Machines and Other Models of Computation Involving
Changes in Instructions or Interactions

There is a natural question about whether and how s-machines are related (different or
similar) to other computing system designs, particularly machines involving interactions.
The answer is that to the best knowledge of the second author, the attempts to involve
the changes in instructions or interactions were focused on configurations of several (at
least more than one) Turing machines operating in a classical way or their equivalents
or alternatively, on the external computing resources, but not on the internal structure or
function of machines. Of course, Turing’s oracle machines (o-machines) do not require
additional Turing machines and actually, by definition, reject a-machines as oracles, but
their design requires the engagement of an external component of an oracle.

Similarly, choice machines (c-machines) require choices made by an external agent.
Choice machines were excluded from consideration by Turing as they assumed the fi-
nite number of choices made throughout every computation which can be realized by
a single a-machine in which all possible choices (of a finite number) are considered. In
non-deterministic Turing machines in which in all or some steps of computing the transition
to the next state of either a cell or instruction (traditionally, the latter is called the state of the
machine) is not determined by the present state can be reduced to the case of c-machines
and therefore does not increase the computational power if the number of choices is finite.
However, neither c-machines nor non-deterministic machines are comparable with general
s-machines, as they do not admit changes in instructions.

There are several directions of inquiry in computational systems involving changes
in instructions or interactions, but all such systems known to the second author are con-
figurations of Turing machines. For instance, the direction of inquiry called Amorphous
Computing overtly makes such an assumption: “An amorphous computing medium is a
system of irregularly placed, asynchronous, locally interacting computing elements. We
can model this medium as a collection of “computational particles” sprinkled irregularly
on a surface or mixed throughout a volume. Each particle has modest computing power
and a modest amount of memory. The particles are not synchronized, although we as-
sume they compute at similar speeds, since they are all fabricated by the same process [...].
Thus, the entire amorphous medium can be regarded as a massively parallel computing
system, ...” [9].

A more structured system consisting of a family of Turing machines indexed by the
parameter t (related in some sense to time) is considered in evolutionary computing: “An
Evolutionary Turing Machine (ETM) is a series of (possibly infinite) Turing Machines TM[t]
working on population x[t] in generations t = 0, 1, 2, ...” [10]. In this case, the compound
system of Turing machines is not just their sequence but the computation involves an
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algorithmic transition between the components. However, the structure is built not within
computing Turing machine or its generalization but between Turing machines.

The closest to the idea of s-machines is interactive computing, which was designed by
Peter Wegner [11]. However, here too, the interaction is not within a component Turing
machine or its generalization, but between a collection of orthodox Turing machines. This
makes this form of interactive computing system of Turing machines incomparable to
s-machines. However, in Wegner’s analysis of the involvement of interaction, we can find
a parallel to the functional analysis of s-machines. He writes, “Turing machines cannot
model interaction machines (which extend Turing machines with interactive input/output)
because interaction is not expressible by a finite initial input string. Interaction machines ex-
tend the Chomsky hierarchy, are modeled by interaction grammars, and precisely capture
fuzzy concepts like open systems and empirical computer science. Computable func-
tions cannot model real-world behavior because functions are too strong an abstraction,
sacrificing the ability to model time and other real-world properties to realize formal
tractability” [11]. This claim can be criticized as an overstatement as it is possible to find
simple systems with interactions between Turing machines such that the interactions can be
expressed in a sufficiently complex classical Turing machine. However, it is a well-justified
claim that some interactions cannot be expressed.

Finally, we can consider some similarities between s-machines and computing systems
for so-called physical reservoir computing. This is a subject of the recent extensive research
in the context of neural networks and a variety of learning systems [12], but the interest in
the idea of the involvement of a physical component in a computing system working as a
black box making one or more steps of computation dates back further in time [13].

Actually, we can find the idea of using physical components (not yet called reservoirs)
in the folklore of computing studies from the earliest time before the development of
neural network theory, for instance, as a solution to the problem of the non-computability
of randomness. If, in the process of computing, we need a truly random sequence of
characters (which is not computable), we can delegate it to a physical system such as
the process of tossing a die (which we now know is non-random but in the past, it was
considered a paradigm of randomness). In cryptography, the use of physical external
reservoirs allowed cryptographers to avoid the back door for decryption through the bias
of pseudo-randomness. For us, in this paper, it is relevant that physical interactions are
considered as a tool for computing; however, here too, such physical reservoirs are external
resources. They are not essential for the work of the computing system and are only tools
that can enhance computing.

3. Symmetric Instruction Machines (The Original Content of the Draft of
This Paper Proposed by Mark Burgin with the Statements, Theorems,
and Examples Marked with Asterisks Challenged by the Second Author
in Section 4)

Algorithms and abstract automata (abstract machines) are used to describe and model
computers, cell phones, computer networks, such as the Internet, and the processes in
them. There are different forms of process descriptions: systems of instructions, functions,
relations, or logical formulas. These forms determine the different types of programming
languages, algorithms, and abstract automata. Here, we formalize classes of algorithms
and abstract automata based on instructions, introduce new categories of these algo-
rithms and abstract automata, such as instruction machines, finite automata, pushdown
automata, register machines, Kolmogorov algorithms, random access machines (RAMs),
and Turing machines.
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All these automata satisfy the conditions of the Church–Turing Thesis, which asserts
that Turing machines are the most powerful class of algorithms. Several researchers chal-
lenged this Thesis. For instance, in his talk at the International Congress of Mathematicians
in 1958, Kleene formulated a conjecture that it might be possible that algorithms that change
their programs while computing would be more powerful than Turing machines [4]. The
first theoretical model of algorithms that changed their programs while computing was
reflexive Turing machines [3]. However, it was proved that the class of reflexive Turing
machines is equivalent to the class of Turing machines, i.e., these machines have the same
computing power. In such a way, Kleene’s conjecture was disproved but it was proved
that reflexive Turing machines are more efficient than Turing machines. Namely, a relevant
reflexive Turing machine can outperform any Turing machine that computes the same
function [3].

Reflexive Turing machines are important special cases of symmetric Turing machines
introduced by Schroeder as a tool for decreasing the complexity of information process-
ing [5]. In this paper, we extend the concepts of machine symmetry and reflexivity in
building symmetric instruction machines, which include, as special cases, symmetric Tur-
ing machines*, symmetric finite automata, inductive symmetric Turing machines, and
inductive symmetric instruction machines, and we study their properties.

3.1. Instruction Machines

Many kinds of algorithms and abstract automata, such as finite automata, pushdown
automata, register machines, Kolmogorov algorithms, random access machines (RAMs),
and Turing machines, use instructions, for example, in the form of transition rules, to
determine computational processes. All these classes of algorithms and abstract automata
are unified by the comprehensive concept of an instruction machine.

Definition 3.1. An instruction machine or instruction automaton M has three components:

• A control device CM which is a finite automaton and represents the states of a machine
(automaton) M;

• A memory WM which stores data;
• A processor PM which transforms (processes) information (data) from memory WM.

Memory WM consists of cells and the connections between them. Each cell can be
empty or contain a symbol from alphabet AM of machine (automaton) M.

At each step of the computation, processor PM observes one cell from memory WM at
a time and can change the symbol in this cell and go to another cell using connections in
memory WM. These operations are performed according to instructions RM for processor
PM. Instructions RM can be stored in processor PM or in memory WM.

Example 3.1. A finite automaton G is an instruction machine in the following representation.

Example 3.2. A Turing machine T.

Example 3.3 ([14,15]). An inductive Turing machine K.

There are three classes of instructions:

• Straightforward or prescriptive instructions directly state what the necessary action is.
• Descriptive instructions describe what result must be obtained.
• Implicit instructions have a form of data that can be interpreted as instructions.

Example 3.4. The transition function of a finite automaton G is a straightforward instruction.
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Example 3.5. A function in functional programming is a descriptive instruction.

Example 3.6. The weights of artificial neurons in artificial neural networks are implicit instructions.

Symmetric instruction machines have a more advanced computational architecture
than instruction machines.

Definition 3.2. A symmetric instruction machine or symmetric instruction automaton H has
five components:

• A control device CH that is a finite automaton and represents the states of machine
(automaton) H;

• A data memory WH that stores data;
• An instruction memory VH that stores instructions;
• A data processor PM that transforms (processes) information (data) from memory WM;
• An instruction processor DM that transforms (processes) information (instructions) from

memory VM.

Memory WM consists of cells and the connections between them. Each cell can be
empty or contain a symbol from alphabet AM of machine (automaton) M.

At each step of the computation, processor PM can observe one cell from memory WM

at a time, change the symbol in this cell, and go to another cell using the connections in
memory WM. The performed operation is defined by the instruction observed by processor
DM or in memory VM.

At each step of the computation, processor DM can observe one cell from memory VM

at a time, change the instruction in this cell, and go to another cell using the connections in
memory VM.

Example 3.7 * ([5]). Symmetric Turing machine*
The transition function depends on two parameters—the data symbols and instruc-

tions. It is possible to interpret such transitions as caused by interactions between data
and instructions.

There are two memory devices:

• A tape for data that keeps the processed data;
• A tape for instructions that keeps the instruction list.

Theorem 3.1. * The functioning of a symmetric Turing machine can be simulated by a conventional
Turing machine with two tapes and two heads.*

Corollary 3.1. * Symmetric Turing machines are functionally equivalent to Turing machines.*

Corollary 3.2. * Symmetric Turing machines are linguistically equivalent to Turing machines.*

Example 3.8. Symmetric finite automaton.

Example 3.9. An inductive symmetric Turing machine K.

Theorem 3.2. * The functioning of a symmetric Turing machine can be simulated by a conventional
Turing machine with three tapes and three heads.*

Theorem 3.3. * There is a universal symmetric Turing machine.*
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Theorem 3.4. The functioning of an inductive symmetric Turing machine can be simulated by an
inductive Turing machine with additional tapes and heads.

Theorem 3.5. There is a universal inductive symmetric Turing machine.

3.2. Modes of Functioning and Results of Computation of Instruction Machines

There are various modes of information processing in abstract automata, material com-
puters, and networks. For instance, there can be eight internal modes of abstract automata,
computer, and network functioning [16]. Computational and networking practice shows
that taking into account modes of information processing is important for the efficient
design of distributed systems.

Here, we consider basic internal modes of automaton functioning.

• The reactive mode is when an automaton given some input directly gives the corre-
sponding output;

• The recursive mode is built on recursion in processing input and giving the corre-
sponding output;

• The inductive mode is built on induction in processing input and giving the corre-
sponding output.

Examples of automata working in the inductive mode are deterministic finite automata,
logical gates, and nondeterministic finite automata.

Examples of automata and algorithms working in the recursive mode are Tur-
ing machines, Kolmogorov algorithms, Minsky machines, Storage Modification Ma-
chines, Random Access Machines (RAMs), Petri nets, cellular automata, and partial
recursive functions.

Examples of automata working in the inductive mode are inductive Turing ma-
chines [3], evolutionary inductive Turing machines [17], evolutionary finite automata
working in the inductive mode [17], inductive cellular automata [15], and inductive
register machines.

There are different techniques to organize the program formation in symmetric in-
struction machines. The basic types of them are as follows:

• Prior program formation (ppf) implies that the program, i.e., a set of instructions, is
prepared before the main computation;

• Continuous program formation (cpf) implies that the program, i.e., a set of instructions,
changes at each step of the main computation;

• Interval program formation (ipf) implies that the program, i.e., a set of instructions, does
not change during definite intervals in the main computation.

There are three sorts of continuous program formation (cpf):

• Formation parallel to the main computation is when instructions are formed and per-
formed at the same step of the computation;

• Formation a priori concurrent to the main computation is when instructions are formed
and then performed after some time spent performing the computation, while the
machine can wait until the necessary instruction is formed;

• Formation precedes the main computation: instructions are formed and then performed
at the next step of the computation.

There are three sorts of interval program formation (cpf):

• Formation parallel to the main computation (data processing) is when instructions are
formed and performed at the same time in a parallel way—two operations at each
step—one with data and another with instructions;



Philosophies 2025, 10, 16 13 of 16

• Concurrent formation means that at each interval, instructions are formed at the same
time but independently of the main computation (data processing);

• Separate formation means that at each interval, either instructions are formed or data
are processed.

Example 3.10 ([3]). Depending on the organization of their functions, reflexive Turing machines
perform either continuous or interval program formation.

Example 3.11. Computers perform prior program formation when they use compilers.

Example 3.12. Computers perform continuous program formation when they use interpreters.

4. Interactive Processing of Information in Symmetric Turing Machines
This section is intended as a clarification of the reasons why the statements in the

original draft of the paper written by Mark Burgin and sent to the second author, presented
here as Section 3, were challenged by the second author and what revisions were suggested
by the second author.

4.1. Reasons for Challenging the Statements in the Preceding Section Marked with Asterisks

The main reason for the need for revisions was the misstatement of the description
of symmetric Turing machines from the earlier publications of the second author [5–8].
The most important feature of this model is a more general dynamic of information in the
process of computation. In Turing machines, this dynamic of information is only in the
form of one-way action of the head on tape, which is separate from the one-way action of
the combined information of the content of a cell with information in the present instruction
controlling the position of the head; in symmetric Turing machines, in the general case,
it is a mutual interaction that characterizes all the physical processes, where the term
“physical” is understood not just in epistemic way of the methodology of physics but in
ontological way as a characteristic of reality or nature. Of course, two one-way actions can
be reinterpreted as interactions in some circumstances, but the distinction is non-trivial.
Thus, in Turing machines, we have an action as the most fundamental concept which allows
for a combination of actions into a secondary concept of interaction. In natural phenomena,
in many cases, interactions cannot be reduced to disentangled independent actions.

Here, we arrive at the key difference between symmetric Turing machines with their in-
teractive dynamic and symmetric instruction machines. By definition, instruction machines
are based on the dynamic of action. Any system in which change is based on the realization
of instructions (i.e., prescription of action) has an action dynamic. Of course, this is also the
case with symmetric instruction machines in which we have more than one action. Since, in
some specific cases (e.g., in technological compound systems in which multiple interactions
are designed to simulate one-way actions), we have instances of interactions that can be
considered paired actions, symmetric instruction machines can be considered special cases
of symmetric Turing machines, but not the other way around as is claimed in Section 3.

Theorem 3.1 stating that the functioning of a symmetric instruction machine can be
simulated by a conventional Turing machine with two tapes and two heads, and is therefore
equivalent to a Turing machine, is not a surprise. However, it is not true (i.e., not a theorem)
for general symmetric Turing machines, unless we have a very special case of such a
machine with functions Φloc and Φm that are computable, which is not required.

In our discussions with Mark, he expressed doubt about the existence of such functions.
However, we have examples of such dynamical systems, and some of them are very simple,
for instance, many-body mechanical systems.
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Even the simple dynamics of the interaction of three identical colliding balls with
trajectories crossing under equal angles is nondeterministic. Another example could be
in chaotic dynamical systems that are strongly dependent on the initial conditions, which,
although deterministic, may be considered non-computable. In this case, we may have
systems in which the differences between the initial states of the system always produces
much larger and growing differences in the final states. No matter how high the precision
level used in the detection of the differences between the states is, the differences between
the final ones is greater than the initial ones. This means that for any discretization of the
states of the system, there will be more than one interval of the final states corresponding
to one interval of the initial states. Thus, such physically deterministic systems will appear
as non-deterministic after arbitrarily fine discretization. This justifies the claim that non-
computability at a discrete level is not a practical effect that can be eliminated by increased
precision but that it is inherent in discrete description.

More generally, any multicomponent system characterized by an emergent dynamic
understood as irreducibility to the dynamics of components could serve as a potential
implementation of non-computability. The fact that such systems are non-computable
comes not from the way computability is understood, but from the very idea of emergence.
The identification of multiple emergent phenomena in physics and biology recently led
to the redirection towards non-reductionist scientific methodologies. Without referring to
physics or biology, we can easily provide examples of non-computable functions defined
by characteristic functions of non-computable sets. This does not mean that the choice
of such non-computable sets can be easily justified by any practical reasons or be given
any specific meaning. They may be considered as counterexamples to the claim that non-
computable dynamics are theoretically impossible. Thus, the condition that the dynamic of
a symmetric Turing machine may be described by non-computable functions Φloc and/or
Φm is not speculative at all. This opens the possibility that such functions may have (in
some cases) a computational power higher than that of Turing machines. The possibility of
a non-computable dynamic for general symmetric machines is the main objective for the
distinction between them and symmetric instruction machines. This section does not claim
that symmetric Turing machines can implement more powerful computing than Turing
machines but that Mark Burgin’s claim in Section 3 that they cannot do it and that having
efficient computing is the only advantage (true for symmetric instruction machines) is
not justified.

4.2. Proposed Revisions

Now, we can proceed to the proposed revisions by the second author of the statements
in Section 3 that are marked with asterisks.

The first one changes the last sentence before Sub-Section 3.1 to the following: “In this
paper, we extend the concepts of machine symmetry and reflexivity in building machines
based on the principles of symmetry, which include, as special cases, symmetric instruction
machines, symmetric finite automata, inductive symmetric Turing machines, and inductive
symmetric instruction machines, and we study their properties.”

The next revision is in the example which refers to the symmetric Turing machine
from an earlier publication of the second author [5]; its description is inconsistent with the
original model since it changes it to a much more limited case in which the dynamic of
computation is based on the traditional model of Turing machines. The example can be
revised as follows.

Example 3.7. Symmetric instruction machine.
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The transition function depends on two parameters—data symbols and instructions.
It is possible to interpret such transitions as special cases of interactions of data with
instructions, as is the case in a symmetric Turing machine [5].

There are two memory devices:

• A tape for data that keeps the processed data;
• A tape for instructions that keeps the instruction list.

The important restriction is that in this case, the term “instruction” has the same
meaning as it does in usual Turing machines, while in symmetric Turing machines, this
term is retained exclusively for illustrative purposes.

Due to the revision of the definition in Example 3.7, the series of theorems that
follow have to be revised by replacing the expression “symmetric Turing machine” with
“symmetric instruction machine”.

Theorem 3.1. The functioning of a symmetric instruction machine can be simulated by a conven-
tional Turing machine with two tapes and two heads.

Corollary 3.1. Symmetric instruction machines are functionally equivalent to Turing machines.

Corollary 3.2. Symmetric instruction machines are linguistically equivalent to Turing machines.

Theorem 3.2. The functioning of a symmetric instruction machine can be simulated by a conven-
tional Turing machine with three tapes and three heads.

Theorem 3.3. There is a universal symmetric instruction machine.

Theorem 3.4. The functioning of an inductive symmetric Turing machine can be simulated by an
inductive Turing machine with additional tapes and heads.

Theorem 3.5. There is a universal inductive symmetric Turing machine.

With these revisions, the content of Section 3 becomes true and fully consistent with
the earlier publications of Mark Burgin and the second author. The revisions are placed in
a separate section as the second author cannot be sure that Mark Burgin’s short response to
them (“It looks reasonable”) can be interpreted as an endorsement of all of them, and if not
all, it is not clear which ones.

Author Contributions: Writing—original draft, M.B.; Writing—review & editing, M.J.S. This paper
was written in unusual circumstances. The first author, M.B., passed away before the work on the
paper was finished. M.B. proposed a preliminary version of the paper based on the earlier discussions,
which was reproduced in the final version as the section “Symmetric Instruction Machines” without
any changes (except for editing references and eliminating typos). He asked the second author for
revisions, corrections, or comments, which indicates his openness to the further evolution of the paper.
Since the second author had objections to the preliminary version, he communicated his suggestions
for changes, particularly some additions. M.B. responded with the short acknowledgment “It looks
reasonable”. No other response arrived and after some time, there was an announcement about his
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