The Problem of Meaning in AI and Robotics: Still with Us after All These Years
Abstract
:1. Introduction
2. The Problem of Meaning in AI and Robotics
3. Varieties of Naturalization
3.1. Nature++
3.2. Nature==
3.3. Nature--
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Dreyfus, H.L. What Computers Can’t Do: A Critique of Artificial Reason; Harper and Row: New York, NY, USA, 1972. [Google Scholar]
- Wheeler, M. Reconstructing the Cognitive World: The Next Step; The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Millikan, R.G. Beyond Concepts: Unicepts, Language, and Natural Information; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Husbands, P.; Holland, O.; Wheeler, M. (Eds.) The Mechanical Mind in History; The MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Hutto, D.D.; Myin, E. Radicalizing Enactivism: Basic Minds without Content; The MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Froese, T.; Ziemke, T. Enactive artificial intelligence: Investigating the systemic organization of life and mind. Artif. Intell. 2009, 173, 366–500. [Google Scholar] [CrossRef]
- Di Paolo, E.A.; Rohde, M.; De Jaegher, H. Horizons for the enactive mind: Values, social interaction, and play. In Enaction: Toward a New Paradigm for Cognitive Science; Stewart, J., Gapenne, O., Di Paolo, E.A., Eds.; MIT Press: Cambridge, MA, USA, 2010; pp. 33–87. [Google Scholar]
- Varela, F.J.; Thompson, E.; Rosch, E. The Embodied Mind: Cognitive Science and Human Experience; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegefy, C. Explaining and harnessing adversarial examples. arXiv, 2015; arXiv:1412.6572v1413. [Google Scholar]
- Yuille, A.L.; Liu, C. Deep nets: What have they ever done for vision? arXiv, 2019; arXiv:1805.04025v2. [Google Scholar]
- Harnad, S. The symbol grounding problem. Phys. D Nonlinear Phenom. 1990, 42, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Searle, J.R. Minds, brains, and programs. Behav. Brain Sci. 1980, 3, 417–424. [Google Scholar] [CrossRef]
- Dennett, D.C. Cognitive wheels: The frame problem of AI. In Minds, Machines and Evolution: Philosophical Studies; Hookway, C., Ed.; Cambridge University Press: Cambridge, MA, USA, 1984; pp. 129–152. [Google Scholar]
- Wheeler, M. Cognition in context: Phenomenology, situated robotics and the frame problem. Int. J. Philos. Stud. 2008, 16, 323–349. [Google Scholar] [CrossRef]
- Di Paolo, E.A. Organismically-inspired robotics: Homeostatic adaptation and teleology beyond the closed sensorimotor loop. In Dynamical Systems Approach to Embodiment and Sociality; Murase, K., Asakura, T., Eds.; Advanced Knowledge International: Adelaide, Australia, 2003; pp. 19–42. [Google Scholar]
- Boden, M.A. Is metabolism necessary? Br. J. Philos. Sci. 1999, 50, 231–248. [Google Scholar] [CrossRef]
- Ziemke, T. What’s life got to do with it? In Artificial Consciousness; Chella, A., Manzotti, R., Eds.; Imprint Academic: Exeter, UK, 2007; pp. 48–66. [Google Scholar]
- McMullin, B. Thirty years of computational autopoiesis: A review. Artif. Life 2004, 10, 277–295. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, H.; Ando, H.; Maeda, T. Extended homeostatic adaptation model with metabolic causation in plasticity mechanism–toward constructing a dynamic neural network model for mental imagery. Adapt. Behav. 2013, 21, 263–273. [Google Scholar] [CrossRef]
- Jonas, H. The Phenomenon of Life: Toward a Philosophical Biology; Northwestern University Press: Evanston, IL, USA, 2001. [Google Scholar]
- Weber, A.; Varela, F.J. Life after Kant: Natural purposes and the autopoietic foundations of biological individuality. Phenomenol. Cogn. Sci. 2002, 1, 97–125. [Google Scholar] [CrossRef]
- Di Paolo, E.A. Autopoiesis, adaptivity, teleology, agency. Phenomenol. Cogn. Sci. 2005, 4, 429–452. [Google Scholar] [CrossRef]
- Di Paolo, E.A.; Buhrmann, T.; Barandiaran, X. Sensorimotor Life: An Enactive Proposal; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Di Paolo, E.A. Robotics inspired in the organism. Intellectica 2010, 1–2, 129–162. [Google Scholar] [CrossRef]
- Barandiaran, X. Behavioral adaptive autonomy. A milestone on the Alife route to AI. In Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Artificial Life; Pollack, J., Bedau, M.A., Husbands, P., Ikegami, T., Watson, R.A., Eds.; MIT Press: Cambridge, MA, USA, 2004; pp. 514–521. [Google Scholar]
- Froese, T.; Virgo, N.; Ikegami, T. Motility at the origin of life: Its characterization and a model. Artif. Life 2014, 20, 55–76. [Google Scholar] [CrossRef]
- Virgo, N. Thermodynamics and the Structure of Living Systems. Ph.D. Thesis, University of Sussex, Brighton, UK, 2011. [Google Scholar]
- Agmon, E.; Gates, A.J.; Beer, R.D. Ontogeny and adaptivity in a model protocell. In Proceedings of the European Conference on Artificial Life 2015; Andrews, P., Caves, L., Doursat, R., Hickinbotham, S., Polack, F., Stepney, S., Taylor, T., Timmis, J., Eds.; MIT Press: Cambridge, MA, USA, 2015; pp. 216–223. [Google Scholar]
- Agmon, E.; Gates, A.J.; Beer, R.D. The structure of ontogenies in a model protocell. Artif. Life 2016, 22, 499–517. [Google Scholar] [CrossRef] [PubMed]
- Barandiaran, X.; Di Paolo, E.A.; Rohde, M. Defining agency: Individuality, normativity, asymmetry, and spatio-temporality in action. Adapt. Behav. 2009, 17, 367–386. [Google Scholar] [CrossRef]
- Barandiaran, X.; Egbert, M.D. Norm-establishing and norm-following in autonomous agency. Artif. Life 2014, 20, 5–28. [Google Scholar] [CrossRef]
- Egbert, M.D.; Barandiaran, X. Quantifying normative behaviour and precariousness in adaptive agency. In Advances in Artificial Life, ECAL 2011: Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems; Lenaerts, T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M., Doursat, R., Eds.; The MIT Press: Cambridge, MA, USA, 2011; pp. 210–217. [Google Scholar]
- Steels, L. The artificial life roots of artificial intelligence. Artif. Life 1994, 1, 89–125. [Google Scholar] [CrossRef]
- Froese, T. Life is precious because it is precarious: Individuality, mortality, and the problem of meaning. In Representation and Reality in Humans, Other Living Organisms and Intelligent Machines; Dodig-Crnkovic, G., Giovagnoli, R., Eds.; Springer: Basel, Switzerland, 2017; pp. 30–55. [Google Scholar]
- Jonas, H. Biological foundations of individuality. Int. Philos. Q. 1968, 8, 231–251. [Google Scholar] [CrossRef]
- Jonas, H. The burden and blessing of mortality. Hastings Cent. Rep. 1992, 22, 34–40. [Google Scholar] [CrossRef]
- Barbaras, R. Francisco Varela: A new idea of perception and life. Phenomenol. Cogn. Sci. 2002, 1, 127–132. [Google Scholar] [CrossRef]
- Barrett, N.F. The normative turn in enactive theory: An examination of its roots and implications. Topoi 2017, 36, 431–443. [Google Scholar] [CrossRef]
- Maturana, H.R. The biological foundations of self-consciousness and the physical domain of existence. In Physics of Cognitive Processes: Proceedings of the International Symposium; Caianiello, E., Ed.; World Scientific: Singapore, 1987; pp. 324–379. [Google Scholar]
- Abramova, K.; Villalobos, M. The apparent (Ur-)intentionality of living beings and the game of content. Philosophia 2015, 43, 651–668. [Google Scholar] [CrossRef]
- Husserl, E. Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Zweites Buch: Phänomenologische Untersuchungen zur Konstitution; Biemel, M., Ed.; Martinus Nijhoff: Haag, The Netherlands, 1952. [Google Scholar]
- Dennett, D.C. Elbow Room: The Varieties of Free Will Worth Wanting; MIT Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Varela, F.J.; Thompson, E.; Rosch, E. The Embodied Mind: Cognitive Science and Human Experience (Revised Edition); MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Fuchs, T. Ecology of the Brain: The Phenomenology and Biology of the Embodied Mind; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Clark, A. Mindware: An Introduction to the Philosophy of Cognitive Science, 2nd ed.; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Franklin, S. Artificial Minds; The MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Durt, C. From calculus to language game: The challenge of cognitive technology. Techné: Res. Philos. Technol. 2018, 22, 425–446. [Google Scholar] [CrossRef]
- Harnish, R.M. Minds, Brains, Computers: An Historical Introduction to the Foundations of Cognitive Science; Blackwell Publishers: Oxford, UK, 2002. [Google Scholar]
- Hutto, D.D.; Myin, E. Evolving Enactivism: Basic Minds Meet Content; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Brooks, R.A. Intelligence without representation. Artif. Intell. 1991, 47, 139–160. [Google Scholar] [CrossRef]
- Beer, R.D. The dynamics of active categorial perception in an evolved model agent. Adapt. Behav. 2003, 11, 209–243. [Google Scholar] [CrossRef]
- Harvey, I.; Di Paolo, E.A.; Wood, R.; Quinn, M.; Tuci, E.A. Evolutionary robotics: A new scientific tool for studying cognition. Artif. Life 2005, 11, 79–98. [Google Scholar] [CrossRef]
- Myin, E.; Zahnoun, F. Reincarnating the identity theory. Front. Psychol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Juarrero, A. Dynamics in Action: Intentional Behavior as a Complex System; The MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behavior; The MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Thompson, E.; Varela, F.J. Radical embodiment: Neural dynamics and consciousness. Trends Cogn. Sci. 2001, 5, 418–425. [Google Scholar] [CrossRef]
- Hanna, R.; Maiese, M. Embodied Minds in Action; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Kelso, J.A.S.; Engstrøm, D.A. The Complementary Nature; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Deacon, T.W. Incomplete Nature: How Mind Emerged from Matter; W. W. Norton & Company: New York, NY, USA, 2012. [Google Scholar]
- Froese, T. Book review: Ecology of the Brain: The Phenomenology and Biology of the Embodied Mind. Front. Psychol. 2018, 9, 2174. [Google Scholar] [CrossRef]
- Varela, F.J. The creative circle: Sketches on the natural history of circularity. In The Invented Reality; Watzlawick, P., Ed.; W. W. Norton & Company, Inc.: New York, NY, USA, 1984; pp. 309–324. [Google Scholar]
- Conway, J.H.; Kochen, S. The strong free will theorem. Not. Am. Math. Soc. 2009, 56, 226–232. [Google Scholar]
- Kauffman, S. Investigations; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Bitbol, M. Ontology, matter and emergence. Phenomenol. Cogn. Sci. 2007, 6, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Armour, A. Entangled vibrations in mechanical oscillators. Nature 2018, 556, 444–445. [Google Scholar] [CrossRef] [Green Version]
- Namikawa, J.; Nishimoto, R.; Tani, J. A neurodynamic account of spontaneous behaviour. PLoS Comput. Biol. 2011, 7, e1002221. [Google Scholar] [CrossRef]
- Tognoli, E.; Kelso, J.A.S. The metastable brain. Neuron 2014, 81, 35–48. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Leech, R.; Hellyer, P.J.; Shanahan, M.; Feilding, A.; Tagliazucchi, E.; Chialvo, D.R.; Nutt, D. The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 2014, 8. [Google Scholar] [CrossRef]
- Smolin, L. Time Reborn: From the Crisis in Physics to the Future of the Universe; Houghton Mifflin Harcourt: New York, NY, USA, 2013. [Google Scholar]
- Kauffman, S.A. Humanity in a Creative Universe; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Takahashi, H.; Horibe, N.; Shimada, M.; Ikegami, T. Analyzing the house fly’s exploratory behavior with autoregression methods. J. Phys. Soc. Jpn. 2008, 77, 084802. [Google Scholar] [CrossRef]
- Bruza, P.D.; Wang, Z.; Busemeyer, J.R. Quantum cognition: A new theoretical approach to psychology. Trends Cogn. Sci. 2015, 19, 383–393. [Google Scholar] [CrossRef]
- Jonas, H. Macht oder Ohnmacht der Subjektivität? Das Leib-Seele-Problem im Vorfeld des Prinzips Verantwortung; Insel Verlag: Frankfurt am Main, Germany, 1981. [Google Scholar]
- Herculano-Houzel, S. The Human Advantage: How Our Brains Became Remarkable; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Thompson, E. Waking, Dreaming, Being: Self and Consciousness in Neuroscience, Meditation, and Philosophy; Columbia University Press: New York, NY, USA, 2015. [Google Scholar]
- Zahavi, D. Husserl’s Legacy: Phenomenology, Metaphysics, and Transcendental Philosophy; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Vörös, S. The uroboros of consciousness: Between the naturalisation of phenomenology and the phenomenologisation of nature. Construct. Found. 2014, 10, 96–104. [Google Scholar]
- Rosenberg, G.H. A Place for Consciousness: Probing the Deep Structure of the Natural World; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Hutto, D.D.; Satne, G. Wittgenstein’s inspiring view of nature: On connecting philosophy and science aright. Philos. Investig. 2018, 41, 141–160. [Google Scholar] [CrossRef]
- Pineda, L.A. A distributed extension of the Turing machine. arXiv, 2018; arXiv:1803.10648v1. [Google Scholar]
- Alvarez-Rodriguez, U.; Sanz, M.; Lamata, L.; Solano, E. Quantum artificial life in an IBM quantum computer. Sci. Rep. 2018, 8, s41598-s018. [Google Scholar] [CrossRef]
- Webb, B. Can robots make good models of biological behaviour? Behav. Brain Sci. 2001, 24, 1033–1050. [Google Scholar] [CrossRef] [PubMed]
- Tani, J. Exploring Robotic Minds: Actions, Symbols, and Consciousness as Self-Organizing Dynamic Phenomena; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Beer, R.D. Toward the evolution of dynamical neural networks for minimally cognitive behavior. In From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior; Maes, P., Matarić, M.J., Meyer, J.-A., Pollack, J., Wilson, S.W., Eds.; The MIT Press: Cambridge, MA, USA, 1996; pp. 421–429. [Google Scholar]
- Ikegami, T. A design for living technology: Experiments with the Mind Time Machine. Artif. Life 2013, 19, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, T.; Hanczyc, M.M. The search for a first cell under the maximalism design principle. Technoetic Arts 2009, 7, 153–164. [Google Scholar] [CrossRef]
- Guttenberg, N.; Virgo, N.; Chandru, K.; Scharf, C.; Mamajanov, I. Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375. [Google Scholar] [CrossRef] [PubMed]
- Pickering, A. The Cybernetic Brain: Sketches of Another Future; The University of Chicago Press: Chicago, IL, USA, 2010. [Google Scholar]
- Ieropoulos, I.; Greenman, J.; Melhuish, C.; Horseld, I. EcoBot-III: A Robot with Guts. In Artificial Life XII: Proceedings of the Twelfth International Conference on the Synthesis and Simulation of Living Systems; Fellermann, H., Dörr, M., Hanczyc, M.M., Laursen, L.L., Maurer, S., Merkle, D., Monnard, P.-A., Støy, K., Rasmussen, S., Eds.; The MIT Press: Cambridge, MA, USA, 2010; pp. 733–741. [Google Scholar]
- Warwick, K.; Xydas, D.; Nasuto, S.J.; Becerra, V.M.; Hammond, M.W.; Downes, J.H.; Marshall, S.; Whalley, B.J. Controlling a Mobile Robot with a Biological Brain. Def. Sci. J. 2010, 60, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Sinapayen, L.; Masumori, A.; Ikegami, T. Learning by stimulation avoidance: A principle to control spiking neural network dynamics. PLoS ONE 2017, 12, e0170388. [Google Scholar] [CrossRef]
- Froese, T. Bio-machine hybrid technology: A theoretical assessment and some suggestions for improved future design. Philos. Technol. 2014, 27, 539–560. [Google Scholar] [CrossRef]
- Penn, A. Artificial life and society: Philosophies and tools for experiencing, interacting with and managing real world complex adaptive systems. In Proceedings of the Artificial Life Conference 2016; Gershenson, C., Froese, T., Siqueiros, J.M., Aguilar, W., Izquierdo, E., Sayama, H., Eds.; MIT Press: Cambridge, MA, USA, 2016; pp. 26–27. [Google Scholar]
1 | More specifically, we argue that this is a small conceptual step for a scientific perspective that is already used to dealing with complex phenomena that are inherently unpredictable. Nevertheless, we acknowledge that this step has profound implications for our understanding of reality that deserve to be more fully developed in future work, for instance by taking inspiration from related work in the philosophy of physics [69,70]. |
2 | We focus here on the contributions of phenomenological philosophy because we are most familiar with that tradition. Yet we certainly recognize that there are other traditions that have much to offer for the development of a suitably revised concept of nature, including the speculative naturalist philosophy going back to Peirce and Whitehead, as well as contemporary movements within analytic philosophy that argue for more “liberal” [78] and “relaxed” forms of naturalism [79]. Future work could compare and contrast these diverse proposals. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Froese, T.; Taguchi, S. The Problem of Meaning in AI and Robotics: Still with Us after All These Years. Philosophies 2019, 4, 14. https://doi.org/10.3390/philosophies4020014
Froese T, Taguchi S. The Problem of Meaning in AI and Robotics: Still with Us after All These Years. Philosophies. 2019; 4(2):14. https://doi.org/10.3390/philosophies4020014
Chicago/Turabian StyleFroese, Tom, and Shigeru Taguchi. 2019. "The Problem of Meaning in AI and Robotics: Still with Us after All These Years" Philosophies 4, no. 2: 14. https://doi.org/10.3390/philosophies4020014
APA StyleFroese, T., & Taguchi, S. (2019). The Problem of Meaning in AI and Robotics: Still with Us after All These Years. Philosophies, 4(2), 14. https://doi.org/10.3390/philosophies4020014