How Do Living Systems Create Meaning?
Abstract
:1. Introduction
- How do living systems distinguish between components of their environments, considering some to be “objects” worthy of attention and others to be “background” that is safely ignored?
- How do living systems switch their attentional focus from one object to another?
- How do living systems create and maintain memories of past events, including past perceptions and actions?
- 4.
- How do living systems reference their perceptions, actions, and memories to themselves?
2. Meanings Require Reference Frames
2.1. System—Environment Interaction as Information Exchange
2.2. Meaning for Escherichia coli: Chemotaxis
2.3. Implementing RFs Requires Energy
2.4. RFs Are State-Space Attractors
2.5. RFs Set Bayesian Expectations
2.6. Only Meaningful Differences Are Detectable
- Detecting differences with respect to internal RFs is energetically expensive.
- A difference is detected when at least one bit flips—at least one component of a pointer state changes.
2.7. The Evolution of Meaning Is the Evolution of RFs
3. How Are Objects Segregated and Identified?
3.1. From Multi-Component States to Objects
3.2. Objects as Reference Frames
3.3. Embedding Objects in Space
3.4. Embedding Objects in Time
4. How Is Attention Switched between Objects?
4.1. Active Inference Requires Attention
4.2. What Is the RF for Salience?
- Some states or objects are salient by default, e.g., threats, food sources, or mating opportunities.
- Salience is inducible. Antigens induce antibody production, amplifying their salience. Removal of a sensory capability, e.g., sight, enhances the salience of phenomena detected by surviving senses, e.g., audition or touch.
- Control of salience is distributed over multicomponent regulatory networks, e.g., GRNs or functional neural networks.
4.3. Salience Allocation Differences Self-Amplify
5. How Are Memories Stored and Accessed?
5.1. Heritable Memories Encode Morphology and Function
The biological memory implemented by the genome, Jacob and Monod discovered, encodes structure and function. Evolutionary change, even when restricted to the level of the genome, can affect not only components, but how, when, where, and in response to what they are made. The increased efficiency with which evolution can explore morphological and functional space by copying and modifying genetic regulatory systems is the key insight of evo-devo [163,164]. It can be generalized to evolution at all scales [35,36,37].The discovery of regulator and operator genes, and of repressive regulation of the activity of structural genes, reveals that the genome contains not only a series of blue-prints, but a coordinated program of protein synthesis and the means of controlling its execution.
5.2. Experiential Memories and Learning
5.3. Reporting, Reconsolidation, and Error Correction
5.4. Reconsidering the Cognitive Role of Grammatical Language
6. How Do Living Systems Represent Themselves?
7. Conclusion: Meaning as a Multi-Scale Phenomenon
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
GNW | Global Neuronal Workspace |
GOFAI | Good Old-Fashioned AI |
GRN | Gene Regulation Network |
LGT | Lateral Gene Transfer |
MY | Million Year |
ps | picosecond ( second) |
RF | Reference Frame |
VFE | Variational Free Energy |
References
- Fodor, J.A. The Language of Thought; Harvard University Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Hinzen, W. What is un-Cartesian linguistics? Biolinguistics 2014, 8, 226–257. [Google Scholar]
- Evans, J.B.T. Dual processing accounts of reasoning, judgement and social cognition. Annu. Rev. Psychol. 2008, 59, 255–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentner, D. Why we’re so smart. In Language and Mind: Advances in the Study of Language and Thought; Gentner, D., Goldin-Meadow, S., Eds.; MIT Press: Cambridge, MA, USA, 2003; pp. 195–235. [Google Scholar]
- Suddendorf, T.; Corballis, M.C. The evolution of foresight: What is mental time travel, and is it unique to humans? Behav. Brain Sci. 2007, 30, 299–351. [Google Scholar] [CrossRef] [PubMed]
- Hauser, M.D.; Chomsky, N.; Fitch, W.T. The faculty of language: What is it, who has it, and how did it evolve? Science 2002, 298, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Dorado, J.; Marcos-Torres, F.J.; García-Bravo, E.; Moraleda-Muxnxoz, A.; Pérez, J. Myxobacteria: Moving, killing, feeding, and surviving together. Front. Microbiol. 2016, 7, 781. [Google Scholar] [CrossRef] [Green Version]
- Calvo, P.; Kiejzer, F. Plant Cognition. In Plant-Environment Interactions, Signaling and Communication in Plants; Baluška, Ed.; Springer: Berlin, Germany, 2009; pp. 247–266. [Google Scholar]
- Dreyfus, H.L. What Computers Can’t Do: A Critique of Artificial Reason; Harper and Row: New York, NY, USA, 1972. [Google Scholar]
- Searle, J.R. Minds, brains, and programs. Behav. Brain Sci. 1980, 3, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Fodor, J.A. The Mind Doesn’t Work That Way: The Scope and Limits of Computational Psychology; MIT Press: Cambride, MA, USA, 2000. [Google Scholar]
- Froese, T.; Taguchi, S. The problem of meaning in AI and robotics: Still with us after all these years. Philosophies 2019, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Gagliano, M.; Grimonprez, M. Breaking the silence—Language and the making of meaning in plants. Ecopsychology 2015, 7, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Lyon, P. The cognitive cell: Bacterial behavior reconsidered. Front. Microbiol. 2015, 6, 264. [Google Scholar] [CrossRef]
- Baluška, F.; Levin, M. On having no head: Cognition throughout biological systems. Front. Psychol. 2016, 7, 902. [Google Scholar] [CrossRef] [Green Version]
- Newen, A.; De Bruin, B.; Gallagher, S. 4E cognition: Historical roots, key concepts, and central issues. In The Oxford Handbook of 4E Cognition; Newen, A., De Bruin, B., Gallagher, S., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 3–15. [Google Scholar]
- Kull, K.; Deacon, T.; Emmeche, C.; Hoffmeyer, J.; Stjernfelt, F. Theses on biosemiotics: Prolegomena to a theoretical biology. In Towards a Semiotic Biology: Life Is the Action of Signs; Emmeche, C., Kull, K., Eds.; Imperial College Press: London, UK, 2011; pp. 25–41. [Google Scholar]
- Maturana, H.R.; Varela, F.J. Autopoesis and Cognition: The Realization of the Living; D. Reidel: Dordrecht, The Netherlands, 1980. [Google Scholar]
- Varela, F.J.; Thompson, E.; Rosch, E. The Embodied Mind; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Pattee, H.H. Cell psychology. Cogn. Brain Theory 1982, 5, 325–341. [Google Scholar]
- Stewart, J. Cognition = Life: Implications for higher-level cognition. Behav. Process. 1996, 35, 311–326. [Google Scholar] [CrossRef]
- di Primio, F.; Müller, B.F.; Lengeler, J.W. Minimal cognition in unicellular organisms. In From Animals to Animats; Meyer, J.A., Berthoz, A., Floreano, D., Roitblat, H.L., Wilson, S.W., Eds.; International Society For Adaptive Behavior: Honolulu, HI, USA, 2000; pp. 3–12. [Google Scholar]
- Miller, W.B.; Torday, J.S. Four domains: The fundamental unicell and post-Darwinian cognition-based evolution. Prog. Biophys. Mol. Biol. 2018, 140, 49–73. [Google Scholar] [CrossRef] [PubMed]
- Levin, M. The computational boundary of a ‘self’: Developmental bioelectricity drives multicellularity and scale-free cognition. Front. Psychol. 2019, 10, 2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, J.J. The Ecological Approach to Visual Perception; Houghton Mifflin: Boston, MA, USA, 1979. [Google Scholar]
- Turvey, M.T.; Shaw, R.E.; Reed, E.S.; Mace, M.W. Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition 1981, 9, 237–304. [Google Scholar] [CrossRef]
- Michaels, C.F.; Carello, C. Direct Perception; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981. [Google Scholar]
- Chemero, A. Radical embodied cognitive science. Rev. Gen. Psychol. 2013, 17, 145–150. [Google Scholar] [CrossRef]
- Di Paolo, E.; Thompson, E. The enactive approach. In The Routledge Handbook of Embodied Cognition; Shapiro, L., Ed.; Routledge: London, UK, 2014; pp. 68–78. [Google Scholar]
- Anderson, M.L. Embodied cognition: A field guide. Artif. Intell. 2003, 149, 91–130. [Google Scholar] [CrossRef] [Green Version]
- Froese, T.; Ziemke, T. Enactive artificial intelligence: Investigating the systemic organization of life and mind. Artif. Intell. 2009, 173, 466–500. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.P.; Perone, S.; Johnson, J.S. Dynamic field theory and embodied cognitive dynamics. In Toward a Unified Theory of Development Connectionism and Dynamic System Theory Reconsidered; Spencer, J.P., Ed.; Oxford University Press: Oxford, UK, 2009; pp. 86–118. [Google Scholar]
- Clark, A. How to knit your own Markov blanket: Resisting the Second Law with metamorphic minds. In Philosophy and Predictive Processing: 3; Metzinger, T., Wiese, W., Eds.; MIND Group: Frankfurt am Main, Germany, 2017. [Google Scholar] [CrossRef]
- Bbichakjian, B.H. Language: From sensory mapping to cognitive construct. Biolinguistics 2012, 6, 247–258. [Google Scholar]
- Fields, C.; Levin, M. Multiscale memory and bioelectric error correction in the cytoplasm-cytoskeleton- membrane system. WIRES Syst. Biol. Med. 2018, 10, e1410. [Google Scholar] [CrossRef]
- Fields, C.; Levin, M. Integrating evolutionary and developmental thinking into a scale-free biology. BioEssays 2020, 42, 1900228. [Google Scholar] [CrossRef] [PubMed]
- Fields, C.; Levin, M. Does evolution have a target morphology? Organisms 2020, 4, 57–76. [Google Scholar]
- Bartlett, S.D.; Rudolph, T.; Spekkens, R.W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 2007, 79, 555–609. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.P.; Ballard, D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999, 2, 79–87. [Google Scholar] [CrossRef]
- Knill, D.C.; Pouget, A. The Bayesian brain: The role of uncertainty in neural coding and computation. Trends Neurosci. 2004, 27, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Life as we know it. J. R. Soc. Interface 2013, 10, 20130475. [Google Scholar] [CrossRef] [Green Version]
- Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 2013, 36, 181–204. [Google Scholar] [CrossRef]
- Hohwy, J. The Predictive Mind; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Spratling, M.W. Predictive coding as a model of cognition. Cogn. Process. 2016, 17, 279–305. [Google Scholar] [CrossRef] [Green Version]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Vossel, S.; Geng, J.J.; Fink, G.R. Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neurosci. 2014, 20, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Eichenbaum, H. Still searching for the engram. Learn. Behav. 2016, 44, 209–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josselyn, S.A.; Tonegawa, S. Memory engrams: Recalling the past and imagining the future. Science 2020, 367, eaaw4325. [Google Scholar] [CrossRef] [PubMed]
- Nadel, L.; Hupbach, A.; Gomez, R.; Newman-Smith, K. Memory formation, consolidation and transformation. Neurosci. Biobehav. Rev. 2012, 36, 1640–1645. [Google Scholar] [CrossRef]
- Schwabe, L.; Nader, K.; Pruessner, J.C. Reconsolidation of human memory: Brain mechanisms and clinical relevance. Biol. Psychiatry 2014, 76, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.D. The sentient self. Brain Struct. Funct. 2010, 214, 563–577. [Google Scholar] [CrossRef]
- Northoff, G. Brain and self—A neurophilosophical account. Child Adolesc. Psychiatry Ment. Health 2013, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 2013, 17, 565–573. [Google Scholar] [CrossRef]
- Seth, A.K.; Tsakiris, M. Being a beast machine: The somatic basis of selfhood. Trends Cogn. Sci. 2018, 22, 969–981. [Google Scholar] [CrossRef] [Green Version]
- Bateson, G. Steps to an Ecology of Mind: Collected Essays in Anthropology, Psychiatry, Evolution, and Epistemology; Jason Aronson: Northvale, NJ, USA, 1972. [Google Scholar]
- Roederer, J. Information and Its Role in Nature; Springer: Berlin, Germany, 2005. [Google Scholar]
- Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life; Murray: London, UK, 1859; Available online: http://darwin-online.org.uk/Variorum/1859 (accessed on 9 November 2020).
- Schrodinger, E. What is Life? Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Lovelock, J.E.; Margulis, L. Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus 1974, 26, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, S.A. The Origins of Order: Self Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Bartlett, S.; Wong, M.L. Defining Lyfe in the Universe: From three privileged functions to four pillars. Life 2020, 10, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermida, M. Life on Earth is an individual. Theory Biosci. 2016, 135, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Mariscal, C.; Doolittle, W.F. Life and life only: A radical alternative to life definitionism. Synthese 2020, 197, 2975–2989. [Google Scholar] [CrossRef]
- Fields, C.; Marcianò, A. Markov blankets are general physical interaction surfaces. Phys. Life Rev. 2020, 33, 109–111. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. Representing measurement as a thermodynamic symmetry breaking. Symmetry 2019, 12, 810. [Google Scholar] [CrossRef]
- Fields, C.; Marcianò, A. Holographic screens are classical information channels. Quantum Rep. 2020, 2, 22. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Devel. 1961, 5, 183–195. [Google Scholar] [CrossRef]
- Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Moore, E.F. Gedankenexperiments on sequential machines. In Autonoma Studies; Shannon, C.W., McCarthy, J., Eds.; Princeton University Press: Princeton, NJ, USA, 1956; pp. 129–155. [Google Scholar]
- Fields, C. Some consequences of the thermodynamic cost of system identification. Entropy 2018, 20, 797. [Google Scholar] [CrossRef] [Green Version]
- Fields, C. Building the observer into the system: Toward a realistic description of human interaction with the world. Systems 2016, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Fields, C. Sciences of observation. Philosophies 2018, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.; Levin, M.; Sengupta, B.; Pezzulo, G. Knowing one’s place: A free-energy approach to pattern regulation. J. R. Soc. Interface 2015, 12, 20141383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchling, F.; Friston, K.; Georgiev, G.; Levin, M. Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems. Phys. Life Rev. 2020, 33, 88–108. [Google Scholar] [CrossRef] [PubMed]
- Hume, D. An Enquiry Concerning Human Understanding; A. Millar: London, UK, 1748; Available online: http://www.gutenberg.org/ebooks/9662 (accessed on 9 November 2020).
- Pattee, H.H. The physics of symbols: Bridging the epistemic cut. Biosystems 2001, 60, 5–21. [Google Scholar] [CrossRef]
- Micali, G.; Endres, R.G. Bacterial chemotaxis: Information processing, thermodynamics, and behavior. Curr. Opin. Microbiol. 2016, 30, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tweedy, L.; Thomason, P.A.; Paschke, P.I.; Martin, K.; Machesky, L.M.; Zagnoni, M.; Insall, R.H. Seeing around corners: Cells solve mazes and respond at a distance using attractant breakdown. Science 2020, 369, eaay9792. [Google Scholar] [CrossRef]
- Baron, S.; Eisenbach, M. CheY acetylation is required for ordinary adaptation time in Escherichia coli chemotaxis. FEBS Lett. 2017, 591, 1958–1965. [Google Scholar] [CrossRef]
- Fields, C.; Marcianò, A. Sharing nonfungible information requires shared nonfungible information. Quant. Rep. 2019, 1, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Herculano-Houzel, S. Scaling of brain metabolism with a fixed energy budget per neuron: Implications for neuronal activity, plasticity and evolution. PLoS ONE 2011, 6, e17514. [Google Scholar] [CrossRef] [Green Version]
- Robbins, R.J.; Krishtalka, L.; Wooley, J.C. Advances in biodiversity: Metagenomics and the unveiling of biological dark matter. Stand. Genom. Sci. 2016, 11, 69. [Google Scholar] [CrossRef] [Green Version]
- Cabezón, E.; Ripoll-Rozada, J.; Peña, A.; de la Cruz, F.; Arechaga, I. Towards an integrated model of bacterial conjugation. FEMS Microbiol. Rev. 2015, 39, 81–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.H.; Lubkowicz, D.; Yeong, V.; Chang, R.L.; Silver, P.A. Transplantability of a circadian clock to a noncircadian organism. Sci. Adv. 2015, 1, e1500358. [Google Scholar] [CrossRef] [PubMed]
- Barkow, J.; Cosmides, L.; Tooby, J. The Adapted Mind: Evolutionary Psychology and the Generation of Culture; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Buss, D.M. (Ed.) The Handbook of Evolutionary Psychology; John Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Cook, N.D.; Carvalho, G.B.; Damasio, A. From membrane excitability to metazoan psychology. Trends Neurosci. 2014, 37, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Capra, E.J.; Laub, M.T. Evolution of two-component signal transduction systems. Annu. Rev. Microbiol. 2012, 66, 325–347. [Google Scholar] [CrossRef] [Green Version]
- Loh, K.M.; van Amerongen, R.; Nusse, R. Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev. Cell 2016, 38, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, J.; Zhang, C. Evolutionary history of the vertebrate mitogen activated protein kinases family. PLoS ONE 2011, 6, e26999. [Google Scholar] [CrossRef]
- Fischer, A.H.L.; Smith, J. Evo–Devo in the era of gene regulatory networks. Integr. Comp. Biol. 2012, 52, 842–849. [Google Scholar] [CrossRef] [Green Version]
- Nickel, M. Evolutionary emergence of synaptic nervous systems: What can we learn from the non-synaptic, nerveless Porifera? Invertebr. Biol. 2010, 129, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Roshchina, V.V. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells. In Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health; Lyte, M., Ed.; Springer: Cham, Switzerland, 2016; pp. 25–77. [Google Scholar]
- Csaba, G. The hormonal system of the unicellular Tetrahymena: A review with evolutionary aspects. Acta Microbiol. Immunol. Hungarica 2012, 59, 131–156. [Google Scholar] [CrossRef] [Green Version]
- Campbell, R.K.; Satoh, N.; Degnan, B.M. Piecing together evolution of the vertebrate endocrine system. Trends Genet. 2004, 20, 359–366. [Google Scholar] [CrossRef]
- Levin, M. Morphogenetic fields in embryogenesis, regeneration, and cancer: Non-local control of complex patterning. Biosystems 2012, 109, 243–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, M. Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol. Biol. Cell. 2014, 25, 3835–3850. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.; Martyniuk, C.J. The bioelectric code: An ancient computational medium for dynamic control of growth and form. BioSystems 2018, 164, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Arendt, D.; Tosches, M.A.; Marlow, H. From nerve net to nerve ring, nerve cord and brain—Evolution of the nervous system. Nat. Rev. Neurosci. 2016, 17, 61–72. [Google Scholar] [CrossRef]
- Varoqueaux, F.; Fasshauer, D. Getting nervous: An evolutionary overhaul for communication. Annu. Rev. Genet. 2017, 51, 455–476. [Google Scholar] [CrossRef]
- Fields, C.; Bischof, J.; Levin, M. Morphological coordination: A common ancestral function unifying neural and non-neural signaling. Physiology 2020, 35, 16–30. [Google Scholar] [CrossRef]
- Guerrero, R.; Margulis, L.; Berlanga, M. Symbiogenesis: The holobiont as a unit of evolution. Int. Microbiol. 2013, 16, 133–143. [Google Scholar]
- Gilbert, S.F. Symbiosis as the way of eukaryotic life: The dependent co-origination of the body. J. Biosci. 2014, 39, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Thiery, S.; Kaimer, C. The predation strategy of Myxococcus Xanthus. Front. Microbiol. 2020, 11, 2. [Google Scholar] [CrossRef]
- Turner, J.S. Extended phenotypes and extended organisms. Biol. Philos. 2004, 19, 327–352. [Google Scholar] [CrossRef]
- Schultz, T.R.; Brady, S.G. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. USA 2008, 105, 5435–5440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakison, D.H.; Yermolayeva, Y. Infant categorization. WIRES Cogn. Sci. 2010, 1, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Baillargeon, R.; Stavans, M.; Wu, D.; Gertner, Y.; Setoh, P.; Kittredge, A.K.; Bernard, A. Object individuation and physical reasoning in infancy: An integrative account. Lang. Learn. Dev. 2012, 8, 4–46. [Google Scholar] [CrossRef]
- Yan, D.; Lin, X. Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol. 2009, 1, a002493. [Google Scholar] [CrossRef] [PubMed]
- Clause, K.C.; Barker, T.H. Extracellular matrix signaling in morphogenesis and repair. Curr. Opin. Biotechnol. 2013, 24, 830–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogna, R.; Shee, K.; Moreno, E. Cell competition during growth and regeneration. Annu. Rev. Genet. 2015, 49, 697–718. [Google Scholar] [CrossRef] [PubMed]
- Madan, E.; Gogna, R.; Moreno, E. Cell competition in development: Information from flies and vertebrates. Curr. Opin. Cell Biol. 2018, 55, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Martin, A. The representation of object concepts in the brain. Annu. Rev. Psychol. 2007, 58, 25–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, H.D.; Ecker, U.K.H. Remembering perceptual features unequally bound in object and episodic tokens: Neural mechanisms and their electrophysiological correlates. Neurosci. Biobehav. Rev. 2010, 34, 1066–1079. [Google Scholar] [CrossRef]
- Keifer, M.; Pulvermüller, F. Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex 2012, 7, 805–825. [Google Scholar] [CrossRef]
- Clarke, A.; Tyler, L.K. Understanding what we see: How we derive meaning from vision. Trends Cogn. Sci. 2015, 19, 677–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, C. Visual re-identification of individual objects: A core problem for organisms and AI. Cogn. Process. 2016, 17, 1–13. [Google Scholar] [CrossRef]
- Yau, J.M.; Kim, S.S.; Thakur, P.H.; Bensmaia, S.J. Feeling form: The neural basis of haptic shape perception. J. Neurophysiol. 2016, 115, 631–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, C. Object Permanence. In Encyclopedia of Evolutionary Psychological Science; Shackelford, T.K., Weekes-Shackelford, V.A., Eds.; Springer: New York, NY, USA, 2017; Chapter 2373. [Google Scholar]
- Eichenbaum, H.; Yonelinas, A.R.; Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 2007, 30, 123–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, C. The very same thing: Extending the object token concept to incorporate causal constraints on individual identity. Adv. Cogn. Psychol. 2012, 8, 234–247. [Google Scholar] [CrossRef]
- Pitts, W.; McCulloch, W.S. How we know universals: The perception of auditory and visual forms. Bull. Math. Biophys. 1947, 9, 127–147. [Google Scholar] [CrossRef]
- Sasaki, Y.; Vuffel, W.; Knutsen, T.; Tyler, C.; Tootell, R. Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proc. Natl. Acad. Sci. USA 2005, 102, 3159–3163. [Google Scholar] [CrossRef] [Green Version]
- Fields, C. How humans solve the frame problem. J. Expt. Theor. Artif. Intell. 2013, 25, 441–456. [Google Scholar] [CrossRef]
- Dietrich, E.; Fields, C. Equivalence of the Frame and Halting problems. Algorithms 2020, 13, 175. [Google Scholar] [CrossRef]
- Wigner, E.P. Remarks on the mind-body question. In The Scientist Speculates; Good, I.J., Ed.; Heinemann: London, UK, 1961; pp. 284–302. [Google Scholar]
- Schwartz, J.M.; Stapp, H.P.; Beauregard, M. Quantum physics in neuroscience and psychology: A neurophysical model of mind-brain interaction. Philos. Trans. R. Soc. B 2005, 360, 1309–1327. [Google Scholar] [CrossRef] [Green Version]
- Hameroff, S.; Penrose, R. Consciousness in the universe: A review of the ‘OrchOR’ theory. Phys. Life Rev. 2014, 11, 39–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, C. If physics is an information science, what is an observer? Information 2012, 3, 92–123. [Google Scholar] [CrossRef] [Green Version]
- Niehrs, C. On growth and form: A Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 2010, 137, 845–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chichili, G.R.; Rodgers, W. Cytoskeleton-membrane interactions in membrane raft structure. Cell. Mol. Life Sci. 2009, 66, 2319–2328. [Google Scholar] [CrossRef] [Green Version]
- Gidon, A.; Zolnik, T.A.; Fidzinski, P.; Bolduan, F.; Papoutsi, A.; Panaylota, P.; Holtkamp, M.; Vida, I.; Larkum, M.E. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 2020, 367, 83–87. [Google Scholar] [CrossRef]
- Penfield, W.; Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937, 60, 389–443. [Google Scholar] [CrossRef]
- Gardner, J.L.; Merriam, E.P.; Movshon, J.A.; Heeger, D.J. Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J. Neurosci. 2008, 28, 3988–3999. [Google Scholar] [CrossRef] [Green Version]
- Moser, E.I.; Kropff, E.; Moser, M.-B. Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 2008, 31, 31–89. [Google Scholar] [CrossRef] [Green Version]
- Abrams, N.E.; Primack, J.R. Cosmology and 21st century culture. Science 2001, 293, 1769–1770. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.H. Precise circadian clocks in prokaryotic cyanobacteria. Curr. Issues Mol. Biol. 2004, 6, 103–110. [Google Scholar]
- Doherty, C.J.; Kay, S.A. Circadian control of global gene expression patterns. Annu. Rev. Genet. 2010, 44, 419–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarti, S.; Michor, F. Circadian clock effects on cellular proliferation: Insights from theory and experiments. Curr. Opin. Cell Biol. 2020, 67, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Kuchen, E.E.; Becker, N.B.; Claudino, N.; Höfer, T. Hidden long-range memories of growth and cycle speed correlate cell cycles in lineage trees. eLife 2020, 9, e51002. [Google Scholar] [CrossRef] [PubMed]
- Beck, C.W.; Izpisúa Belmonte, J.C.I.; Christen, B. Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev. Dyn. 2009, 238, 1226–1248. [Google Scholar] [CrossRef]
- Friston, K.; Rigoli, F.; Ognibene, D.; Mathys, C.; FitzGerald, T.; Pezzulo, G. Active inference and epistemic value. Cogn. Neurosci. 2015, 6, 187–214. [Google Scholar] [CrossRef]
- Godfrey-Smith, P. Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness; Farrar, Straus and Giroux: New York, NY, USA, 2016. [Google Scholar]
- Wang, D.; Jin, S.; Zou, X. Crosstalk between pathways enhances the controllability of signalling networks. IET Syst. Biol. 2016, 10, 2–9. [Google Scholar] [CrossRef]
- Brodskiy, P.A.; Zartmann, J.J. Calcium as a signal integrator in developing epithelial tissues. Phys. Biol. 2018, 15, 051001. [Google Scholar] [CrossRef]
- Niss, K.; Gomez-Casado, C.; Hjaltelin, J.X.; Joeris, T.; Agace, W.W.; Belling, K.G.; Brunak, S. Complete topological mapping of a cellular protein interactome reveals bow-tie motifs as ubiquitous connectors of protein complexes. Cell Rep. 2020, 31, 107763. [Google Scholar] [CrossRef]
- Dehaene, S.; Naccache, L. Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition 2001, 79, 1–37. [Google Scholar] [CrossRef]
- Baars, B.J.; Franklin, S. How conscious experience and working memory interact. Trends Cogn. Sci. 2003, 7, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Baars, B.J.; Franklin, S.; Ramsoy, T.Z. Global workspace dynamics: Cortical “binding and propagation” enables conscious contents. Front. Psychol. 2013, 4, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehaene, S.; Charles, L.; King, J.-R.; Marti, S. Toward a computational theory of conscious processing. Curr. Opin. Neurobiol. 2014, 25, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashour, G.A.; Roelfsema, P.; Changeux, J.-P.; Dehaene, S. Conscious processing and the Global Neuronal Workspace hypothesis. Neuron 2020, 105, 776–798. [Google Scholar] [CrossRef] [PubMed]
- Jacob, F.; Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 1961, 3, 318–356. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Kujala, J.V.; Cervantes, V.H. Contextuality-by-default: A brief overview of concepts and terminology. In Lecture Notes in Computer Science 9525; Atmanspacher, H., Filik, T., Pothos, E., Eds.; Springer: Berlin, Germeny, 2016; pp. 12–23. [Google Scholar]
- Dzhafarov, E.N.; Cervantes, V.H.; Kujala, J.V. Contextuality in canonical systems of random variables. Philos. Trans. R. Soc. A 2017, 375, 20160389. [Google Scholar] [CrossRef]
- Dzharfarov, E.N.; Kon, M. On universality of classical probability with contextually labeled random variables. J. Math. Psych. 2018, 85, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Mermin, N.D. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 1993, 65, 803–815. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. Information flow in context-dependent hierarchical Bayesian inference. J. Expt. Theor. Artif. Intell. 2020. [Google Scholar] [CrossRef]
- Pietsch, T.W.; Grobecker, D.B. The compleat angler: Aggressive mimicry in an Antennariid anglerfish. Science 1978, 201, 369–370. [Google Scholar] [CrossRef]
- Sowa, J.F. (Ed.) Principles of Semantic Networks: Explorations in the Representation of Knowledge; Morgan Kauffman: San Mateo, CA, USA, 2014. [Google Scholar]
- Uddin, L.Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 2015, 16, 55–61. [Google Scholar] [CrossRef]
- Schaefer, H.M.; Ruxton, G.D. Signal diversity, sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 573–592. [Google Scholar] [CrossRef]
- Müller, G.B. Evo-devo: Extending the evolutionary synthesis. Nat. Rev. Genet. 2007, 8, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.B. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 2008, 134, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardet, C.; Paix, A.; Prodon, F.; Dru, P.; Chenevert, J. From oocyte to 16-cell stage: Cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev. Dyn. 2007, 36, 1716–1731. [Google Scholar] [CrossRef] [PubMed]
- Durant, F.; Morokuma, J.; Fields, C.; Williams, K.; Adams, D.S.; Levin, M. Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients. Biophys. J. 2017, 112, 2231–2243. [Google Scholar] [CrossRef] [Green Version]
- Durant, F.; Bischof, J.; Fields, C.; Morokuma, J.; LaPalme, J.; Hoi, A.; Levin, M. The role of early bioelectric signals in the regeneration of planarian anterior-posterior polarity. Biophys. J. 2019, 116, 948–961. [Google Scholar] [CrossRef] [Green Version]
- Pietak, A.; Bischof, J.; LaPalme, J.; Morokuma, J.; Levin, M. Neural control of body-plan axis in regenerating planaria. PLoS Comput. Biol. 2019, 15, e1006904. [Google Scholar] [CrossRef]
- Armus, H.L.; Montgomery, A.R.; Jellison, J.L. Discrimination learning in paramecia (P. caudatum). Psychol. Rec. 2006, 56, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Shirakawa, T.; Gunji, Y.-P.; Miyake, Y. An associative learning experiment using the plasmodium of Physarum polycephalum. Nano Commun. Net. 2011, 2, 99–105. [Google Scholar] [CrossRef]
- Karpiński, S.; Szechyxnxska-Hebda, M. Secret life of plants: From memory to intelligence. Plant Signal Behav. 2010, 5, 1391–1394. [Google Scholar] [CrossRef] [Green Version]
- Abramson, C.I.; Chicas-Mosier, A.M. Learning in plants: Lessons from Mimosa pudica. Front. Psychol. 2016, 7, 417. [Google Scholar] [CrossRef] [Green Version]
- Gagliano, M.; Vyazovskiy, V.V.; Borbély, A.A.; Grimonprez, M.; Depczynski, M. Learning by association in plants. Sci. Rep. 2016, 6, 38427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.W.; O’Doherty, J.P.; Shimojo, S. Neural computations mediating one-shot learning in the human brain. PLoS Biol. 2015, 13, e1002137. [Google Scholar] [CrossRef] [PubMed]
- Major, G.; Larkum, M.E.; Schiller, J. Active properties of neocortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 2013, 36, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyal, G.; Verhoog, M.B.; Test-Silva, G.; Deitcher, Y.; Benavides-Piccione, R.; DeFelipe, J.; de Kock, C.P.J.; Mansvelder, H.D.; Segev, I. Human cortical pyramidal neurons: From spines to spikes via models. Front. Cell. Neurosci. 2018, 12, 181. [Google Scholar] [CrossRef] [PubMed]
- Day, J.J.; Sweatt, J.D. Cognitive neuroepigenetics: A role for epigenetic mechanisms in learning and memory. Neurobiol. Learn. Mem. 2011, 96, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, P.; Bredy, T.W. Cognitive neuroepigenetics: The next evolution in our understanding of the molecular mechanisms underlying learning and memory? NPJ Sci. Learn. 2016, 16014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuman, C.D.; Potok, T.E.; Patton, R.M.; Birdwell, D.; Dean, M.E.; Rose, G.S.; Plank, J.S. A survey of neuromorphic computing and neural networks in hardware. arXiv 2017, arXiv:1705.06963v1. [Google Scholar]
- Foster, P.L. Adaptive mutation: Implications for evolution. BioEssays 2000, 22, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.; Romano, G.H.; Groisman, B.; Yona, A.; EDekel, E.; Kupiec, M.; Dahan, O.; Pilpel, Y. Adaptive prediction of environmental changes by microorganisms. Nature 2009, 460, 220–224. [Google Scholar] [CrossRef]
- Corballis, M.C. The evolution of language. Proc. N. Y. Acad. Sci. 2009, 1156, 19–43. [Google Scholar] [CrossRef] [PubMed]
- Bro-Jorgensen, J. Dynamics of multiple signalling systems: Animal communication in a world in flux. Trends Ecol. Evol. 2010, 25, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Hebets, E.A.; Barron, A.B.; Balakrishnan, C.N.; Hauber, M.E.; Mason, P.H.; Hoke, K.L. A systems approach to animal communication. Proc. R. Soc. B 2016, 283, 20152889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwaniuk, A.N.; Lefebvre, L.; Wylie, D.R. The comparative approach and brain-behaviour relationships: A tool for understanding tool use. Can. J. Exp. Psychol. 2009, 63, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, L. Brains, innovations, tools and cultural transmission in birds, non-human primates, and fossil hominins. Front. Hum. Neurosci. 2013, 7, 245. [Google Scholar] [CrossRef] [Green Version]
- McGrew, W.C. Is primate tool use special? Chimpanzee and New Caledonian crow compared. Philos. Trans. R. Soc. B 2013, 368, 20120422. [Google Scholar] [CrossRef] [Green Version]
- Navarrete, A.F.; Reader, S.M.; Street, S.E.; Whalen, A.; Lal, K.N. The coevolution of innovation and technical intelligence in primates. Philos. Trans. R. Soc. B 2016, 371, 20150186. [Google Scholar] [CrossRef] [Green Version]
- Fisher, S.E.; Scharff, C. FOXP2 as a molecular window into speech and language. Trends Genet. 2009, 25, 166–177. [Google Scholar] [CrossRef]
- Adolphs, R. The social brain: Neural basis of social knowledge. Annu. Rev. Psychol. 2009, 60, 693–716. [Google Scholar] [CrossRef] [Green Version]
- Blackiston, D.J.; Shomrat, T.; Levin, M. The stability of memories during brain remodeling: A perspective. Commun. Integr. Biol. 2015, 8, e1073424. [Google Scholar] [CrossRef] [Green Version]
- Henriques, G. The Tree of Knowledge system and the theoretical unification of psychology. Rev. Gen. Psychol. 2003, 7, 150–182. [Google Scholar] [CrossRef]
- Mercier, H.; Sperber, D. Why do humans reason? Arguments for an argumentative theory. Behav. Brain Sci. 2011, 34, 57–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trivers, R.L. The Folly of Fools: The Logic of Deceit and Self-Deception in Human Life; Basic Books: New York, NY, USA, 2011. [Google Scholar]
- Cushman, F. Rationalization is rational. Behav. Brain Sci. 2020, 43, e28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bargh, J.A.; Ferguson, M.J. Beyond behaviorism: On the automaticity of higher mental processes. Psychol. Bull. 2000, 126, 925–945. [Google Scholar] [CrossRef] [PubMed]
- Bargh, J.A.; Schwader, K.L.; Hailey, S.E.; Dyer, R.L.; Boothby, E.J. Automaticity in social-cognitive processes. Trends Cogn. Sci. 2012, 16, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Csikszentmihályi, M. Flow: The Psychology of Optimal Experience; Harper and Row: New York, NY, USA, 1990. [Google Scholar]
- Melnikoff, D.E.; Bargh, J.A. The mythical number two. Trends Cogn. Sci. 2018, 22, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Chater, N. The Mind is Flat. The Remarkable Shallowness of the Improvising Brain; Allen Lane: London, UK, 2018. [Google Scholar]
- Hoffman, D.D.; Singh, M.; Prakash, C. The interface theory of perception. Psychon. Bull. Rev. 2015, 22, 1480–1506. [Google Scholar] [CrossRef] [Green Version]
- Fields, C.; Glazebrook, J.F. Do Process-1 simulations generate the epistemic feelings that drive Process-2 decision-making? Cogn. Process. 2020. [Google Scholar] [CrossRef]
- Gallistel, C.R. The neurobiological bases for the computational theory of mind. In On Concepts, Modules, and Language; de Almeida, R.G., Gleitman, L., Eds.; Oxford University Press: New York, NY, USA, 2017; pp. 275–296. [Google Scholar]
- Chomsky, N. Review of B. F. Skinner, Verbal Behavior. Language 1959, 35, 26–58. [Google Scholar] [CrossRef]
- Martins, M.J.D.; Muršič, Z.; Oh, J.; Fitch, W.T. Representing visual recursion does not require verbal or motor resources. Cogn. Psych. 2015, 77, 20–41. [Google Scholar] [CrossRef]
- Vicari, G.; Adenzato, M. Is recursion language-specific? Evidence of recursive mechanisms in the structure of intentional action. Conscious. Cogn. 2014, 26, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.J.D.; Blanco, R.; Sammler, D.; Villringer, A. Recursion in action: An fMRI study on the generation of new hierarchical levels in motor sequences. Hum. Barin Mapp. 2019, 40, 2623–2638. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, M.H.; Chater, N. The language faculty that wasn’t: A usage-based account of natural language recursion. Front. Psych. 2015, 6, 1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bubic, A.; von Cramon, D.Y.; Schubotz, R. Prediction, cognition and the brain. Front. Hum. Neurosci. 2010, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Shipp, S.; Adams, R.A.; Friston, K.J. Reflections on agranular architecture: Predictive coding in the motor cortex. Trends Neurosci. 2013, 36, 706–716. [Google Scholar] [CrossRef] [Green Version]
- Fields, C. Metaphorical motion in mathematical reasoning: Further evidence for pre-motor implementation of structure mapping in abstract domains. Cogn. Process. 2013, 14, 217–229. [Google Scholar] [CrossRef]
- Amalric, M.; Dehaene, S. Origins of the brain networks for advanced mathematics in expert mathematicians. Proc. Natl. Acad. Sci. USA 2016, 113, 4909–4917. [Google Scholar] [CrossRef] [Green Version]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Kallio-Tamminen, T. Selfhood triumvirate: From phenomenology to brain activity and back again. Conscious. Cogn. 2020, 86, 103031. [Google Scholar]
- Metzinger, T. Being No One: The Self-Model Theory of Subjectivity; MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Graziano, M.S.A.; Webb, T.W. A mechanistic theory of consciousness. Int. J. Mach. Conscious. 2014, 6, 163–176. [Google Scholar] [CrossRef]
- Levin, M. Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochem. Biophys. Res. Commun. 2020. [Google Scholar] [CrossRef]
- Barabási, A.-L. Scale-free networks: A decade and beyond. Science 2009, 325, 412–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solé, R.V.; Macia, J. Expanding the landscape of biological computation with synthetic multicellular consortia. Nat. Comput. 2013, 12, 485–497. [Google Scholar] [CrossRef]
- Kamm, R.D.; Bashir, R. Creating living cellular machines. Ann. Biomed. Eng. 2014, 42, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Kriegman, S.; Cheney, N.; Bongard, J. How morphological development can guide evolution. Sci. Rep. 2018, 8, 13934. [Google Scholar] [CrossRef]
- Kriegman, S.; Blackiston, D.; Levin, M.; Bongard, J. A scalable pipeline for designing reconfigurable organisms. Proc. Natl. Acad. Sci. USA 2020, 117, 1853–1859. [Google Scholar] [CrossRef] [Green Version]
- Way, M. What I cannot create, I do not understand. J. Cell Sci. 2017, 130, 2941–2942. [Google Scholar] [CrossRef] [Green Version]
- Fodor, J.A. Why paramecia don’t have mental representations. Midwest Stud. Philos. 1986, 10, 3–23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fields, C.; Levin, M. How Do Living Systems Create Meaning? Philosophies 2020, 5, 36. https://doi.org/10.3390/philosophies5040036
Fields C, Levin M. How Do Living Systems Create Meaning? Philosophies. 2020; 5(4):36. https://doi.org/10.3390/philosophies5040036
Chicago/Turabian StyleFields, Chris, and Michael Levin. 2020. "How Do Living Systems Create Meaning?" Philosophies 5, no. 4: 36. https://doi.org/10.3390/philosophies5040036
APA StyleFields, C., & Levin, M. (2020). How Do Living Systems Create Meaning? Philosophies, 5(4), 36. https://doi.org/10.3390/philosophies5040036