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Abstract: This article will examine the unnamed and potentially devastating constraining effect of
software on human autonomy. I call this concept residual causality, where software design decisions
made long ago in different circumstances for different reasons constrain human action in an unknown
future. The less aware the designers of software systems are of complexity in social systems, the
more likely they are to introduce residual causality. The introduction of intricate, ordered machines,
to a world largely defined by disorder and heuristics, has caused philosophical perturbations that
we have not fully dealt with. The machine in the ghost is the belief that machine thinking can be
applied to the environment in which the machine will operate. As hyperconnectivity increases, the
ghost becomes more unpredictable, unmanageable, and even less like the machine. If we continue
to indulge the machine view of the world, the design of software systems presents real dangers to
the autonomy of the individual and the functioning of our societies. The steadfastness of machine
ontologies in the philosophies of software architects risks creating increasing residual causality as
hyperconnectivity increases. Shifting the philosophical position of software architects opens up the
possibility of discovering new methods that make it easier to avoid these dangers.

Keywords: residuality; antifragility; complexity; hyperliminal systems; hyperliminal coupling

1. Introduction

Hyperconnectivity is something that has touched every aspect of modern life: “it has
transformed social interaction, culture, economics, politics, and the self.” [1]. Hyperconnec-
tivity introduces dependencies and risks for cascading errors that could potentially have
wide ranging consequences, described as extraordinary risk [2]. This article considers how
naively engineered software may contribute to that risk.

In June 2021, a ransomware attack on the COOP chain of grocery stores in Sweden [3]
closed 800 stores across the country. The entire payment process for consumers was
dependent on the single software component targeted by the attack. Whilst attention will
focus on how to avoid this happening again, the more interesting question is how a single
design decision could bring such an enormous system to a halt. Millions of people along
multiple supply chains had contributed to the consumer experience inside the stores—
and a single design decision was enough to disrupt this, resulting in enormous financial
consequences.

The COOP incident is not unique. As hyperconnectivity increases, the design decisions
of software engineers have the potential to cause cascading, unseen problems. A modern
city is expected to experience an increasing integration between technology and citizens.
Billions of sensors will direct decision making, AI software agents will make bureaucratic
decisions, medical software will make automated diagnoses, transport systems will be
automated by algorithm, and social media systems will provide communication and dis-
semination of information. The connections and dependencies between these technological
advancements and between the societal environment emerge invisibly as we deploy them.
Software architects are unaware of the unintended consequences of their designs in the
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context of the hyperconnected society. These unintended consequences are called residual
causality [4].

Unexpected events, such as accidents, flooding, fires, occupation, terrorist attacks, or
something as unthreatening as an election, or normal fluctuations in the business cycle,
may suddenly reveal the unseen interdependencies across these systems. Home security
systems, weather warning systems, medical devices, and automated cars could be thrown
into unseen patterns of behavior just when they are needed most. Recent years have also
highlighted how hyperconnectivity has led to amplified divisions, inflaming conflict and
making societal structures vulnerable. Our hyperconnected society is a deeply entangled
network of dependencies between people, organizations, and technologies too intricate and
dynamic to map. We are becoming ever more reliant on this network, and its connections,
relationships, intricacies and communications are dependent on software built using the
same decision making tools and frameworks as those used at COOP and everywhere else
in the industry.

The COVID-19 crisis has shown how vulnerable our supply chains are [5], how quickly
disinformation and panic can spread, and how difficult it can be when the expectation
of order is not met. As the pandemic nears its end, a new world will emerge. It will
involve disrupted supply chains being reconfigured, knowledge workers being reluctant to
travel, and demand fluctuations as we reassess what is important to us. This will translate
inevitably to a huge backlog of software changes at large companies. It will be first at
the point of design of these changes that we will see the impacts of residual causality.
The design decisions behind older software systems, built for a pre COVID world, may
well slow our progress to a new normal, and may even cause unforeseen difficulties of
their own. This has yet to happen, but similarities exist with Brexit, with concern that
software changes would be enormous and difficult [6]. Astoundingly there is no academic
literature on this situation for either Brexit or COVID. This lack of awareness of the problem
is described in later sections. Issues similar to the COOP problem will continue to be a
surprise every time it happens.

More sinisterly, the ability of residual causality to control and restrict human options
in the event of stress will not go unnoticed by those who actively seek to control or disrupt.
The ripple effects of these software design decisions could be leveraged to create problems,
and even become attack vectors against us.

Science fiction has described nightmare scenarios where malevolent, self-aware soft-
ware systems attack human society. Very few have imagined a future where the inability
of software to respond to its environment, poor quality, can present the biggest risk to
human autonomy.

As hyperconnectivity increases, it will be necessary for software developers to be
aware of these kinds of risks and to meaningfully engage with trying to prevent them. This
presents a number of challenges to the designers of software systems. In hyperconnected
systems, standard approaches to risk identification and requirements elicitation [7], become
subject to non-ergodicity [8], where prediction of the future events or future needs in the
system simply is not possible. This challenges software engineers to find a new basis on
which to make decisions in this kind of environment. This kind of environment is very
different than that of the universe imagined by mathematicians, and as such the tools
of software engineering reside within an entirely different paradigmatic basis than the
environment where software engineering is being carried out. The assumption of this
article is that residual causality can be reduced by reducing this mismatch.

This article identifies this theoretical gap in the software industry. Furthermore, it
makes the claim that in order to fill this gap, software engineering needs to become more
aware of the philosophical traditions underlying its practice, and be prepared to shift these
traditions to uncover new methods of developing software. The review of popular software
engineering strands of thinking shows that most approaches are trapped in a reductionist,
Newtonian way of seeing the world, described as the component metaphor [4], and this
restricts the ability of software designers to think in new ways. It is considered in this
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article that this way of thinking ensures that current methods of software engineering
cannot keep up with ever increasing hyperconnectivity and are unprepared to deal with
the risks presented.

The hypothesis is that philosophical investigation of the beliefs of software engineers
will produce new ways of developing software for a world that is constantly changing. The
article will discuss one particular approach that has been developed in this way, residuality
theory, and the implications of this for the future of software engineering.

2. Why Software Is Different: Hyperliminality

When we make software design decisions we couple components to each other. This
coupling introduces dependencies between those components, and this opens the door
for contagion. Contagion occurs when an issue affects a particular component, all those
components which are coupled to it are also affected. This opens the door for cascading
errors, poorly understood ripples that can have effects far beyond what we can imagine.

Software engineering has for decades focused on the coupling between these compo-
nents. However, there has been less focus on how they are also coupled to their environ-
ment, such as societal ideas, economic fluctuations, political movements, and competitor
behaviors. The lack of academic articles investigating the impacts of Brexit on software
structures, despite the urgency felt by industry and institutions, highlights this gap [6].

Software systems cannot therefore be approached as standalone entities with clear
boundaries like mechanical systems such as cars or aeroplanes. They are considered
hyperliminal [4]; with an ordered, highly constrained technical component in the software
and a disordered component in the organization, market, and society in which the software
will execute. In this hyperliminal environment, coupling can exist between software
components that is impossible for the designer to see at the outset of a project. This
coupling is related to the disordered environment, which at some point in the future will
make itself known through stress. I have named this invisible, unpredictable coupling
hyperliminal coupling [9].

The software that we need to navigate problems on a global scale will suffer from two
things—the ignorance of hyperliminal coupling and the rigidity of component based design.
These two things combine to limit our possible responses under stress or change—this is
residual causality [4].

In response to these issues, modern software engineering has abandoned the tra-
ditional systems engineering that saw planning and specification as key. Hyperliminal
coupling reveals itself so quickly that often software cannot be built according to a plan or
specification because the intended dependencies and relationships between components
and the environment are frequently knocked out of kilter before work is completed.. The
software industry ascribed these problems to the speed of change, and sought methodolo-
gies, loosely grouped together as agile, that focused on responding quickly to change whilst
keeping current design methodologies intact. The idea that we will be able to adapt does
not allow for the fact that residual causality is the thing that decides which avenues we have
for adaptation: that the paths forward can be extremely limited by earlier decision making,
and that the component metaphor is one of the most limiting factors. For these paths
forward, in every component metaphor decision, the designer of the system discounts a
huge number of future potential situations simply because the designer cannot imagine
them. Standard methods of developing software introduce the very problems that the
software industry suffers from: an inability to build the right system for the environment
that we expect it to operate in [7]. Thus current engineering techniques are not built to
work in hyperconnected environments, and new thinking will be necessary.

3. Software’s Philosophical Basis: The Component Metaphor

The hypothesis contests that the current ontological and epistemological positions of
software architects are too limited to cope with a hyperconnected world where uncertainty
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is increasing. In this section, the current philosophical position of software engineers
is discussed.

In the aftermath of the industrial revolution, it was easy to feel a sense of pride in the
achievements of enlightenment thinking, our mastery of the world around us. Every motor
car, with more than 30,000 separate parts, a collaboration of more than 10,000 people, that
rolled of the production line was a triumph over the complexity of our world. Scaling and
improving this process increased the sense of mastery.

Whilst the miracle of the modern car factory is to be lauded, using the lessons of
the industrial revolution to frame and develop the processes for software development
results in a component metaphor [4]. Here, the development of software is assumed to
involve the hunt for an optimum component breakdown. This breakdown is based on the
understanding of the organization or task as a number of fixed processes or use cases, often
seeing the organization using the software as a simple, mechanistic machine itself.

There is no literature on the philosophical position of the designers of software systems,
and as such, no data. This at once suggests a huge gap in the literature. However, analyzing
the popular literature paints a picture of the position of today’s software engineers. The
philosophy of software architecture can then be said to be accidental, inherited from its
mathematical roots and the question largely ignored [4]. Most academic articles within
computer science do not mention the paradigmatic basis of the researchers, since a straight
forward post-positivist approach is assumed. (However, articles where aspects of the
component metaphor are projected onto non software systems, such as organizational
design, are easy to find.).

Uncertainty in the Literature

Trying to understand the philosophical position of software architects in relation
to hyperconnectivity puts us at the intersection of three fields: the complexity sciences,
systems engineering, and software engineering. Whilst uncertainty is described across the
literature, most evidently in the complexity sciences and surrounding fields of systems
sciences [10–13], it seems to be less present in systems engineering and appears even less
present in the software engineering literature. It has long been argued that systems engi-
neering cannot answer the problems of complexity [14,15], although systems engineering
provides excellent tools for managing the software itself. When uncertainty is acknowl-
edged, the solutions are often described in terms of anticipation [16–18], the ability of the
architect to somehow sense the future. Taleb [11] presents a different way of dealing with
uncertainty, less about defining probabilities and more about survival, vulnerability, and
awareness of the limitations of prediction. Similar ideas from the field of safety are reflected
in works by Woods [17,18] and more relevant to software engineering by Hole [19]. Hole
however does not describe how these software systems were designed, merely that they
do exist. Much of the software literature also emphasizes the ability to anticipate unknown
futures through scenario analysis techniques like ATAM [20], experimentation [21] or
through outright prediction [22]. Uncertainty in the academic literature often falls back
on statistical techniques like Bayesian methods [23] and appears to have an underlying
assumption that eventually we will predict the future. Methods for reducing uncertainty
include sensemaking, anticipation [24], hazard analysis [16], classical risk management,
and in software, the analysis of language, either through requirements analysis or modeling
of stakeholder’s language [25,26].

The 2018 paper by Patriarca [27] details the gap in models that allow systems engineer-
ing approaches to model uncertainty, and it is this gap that this residuality theory attempts
to address.

The field of software engineering has since the late 60’s been concerned with boundary
decisions in software as the means to manage uncertainty in hyperliminal environments.
By setting appropriate component boundaries, software engineers believed that software
could be made more flexible and thus respond easier to changes in the environment. Many
methodologies prescribe pattern approaches such as Fowler [28] or Gang of Four [29] as
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a way to solve this problem. Other approaches, such as Domain Driven Design [25] and
requirements engineering [26] focus on language and clarity in order to improve quality.
Mnemonics like SOLID [30], GRASP [31], and DRY [32] provide hints as to how boundaries
should be set in any project, independent of context and represent pattern approaches.

However, despite this body of popular work being widely referenced and known,
most software developers will report that component boundary decisions are made based
on gut feeling, and experience, or some idea of what a best practice is [33]. Even when
trained in these methodologies the vast majority of software developers and architects
appear unsure of how to make boundary decisions [33].

“while code appears full of decisions, coders are often not conscious of their choices or
alternatives” (Ralph, 2016) [33].

One approach is simple prediction. The IDesign Method [22] uses the concept of
volatility based decomposition, leaning on the earlier work of Parnas [34] called non-
conventional decomposition. This, at least, provides some basis for decision making in
software engineering, but requires that the architect is able to predict what will change in
the future.

The limitations of software engineering, systems engineering, and the complexity
sciences mean that there is currently no recorded way to design software systems for
conditions of uncertainty. Current solutions describe how resilient or extensible systems
might look, but very little is new since the 1960s early exploration of modularity in software
engineering. Outside of Taleb’s work on uncertainty, there is nothing to suggest that this
will be met anytime soon. This situation is considered entirely acceptable because the
future is considered to be unknowable, and thus there is nothing to be done.

4. A Possible Solution: Residuality Theory

Residuality theory [35] may solve the problem of the elicitation of requirements and
the assessment of risk in uncertain environments. These methods indulge in a constant
reductionism, making the model of the environment smaller in order to easier make soft-
ware decisions. These reduced models become a Baudrillardian simulacra, and attention
is then focused on the model and the real world ignored. Residuality theory pushes back
in the opposite direction, exploring rather than reducing. It represents a huge shift and
transforms the “deep V” of systems engineering, allowing component design to emerge as
a result of the application of stress, rather than designing first and then applying stress.

Residuality theory states that the future of a complex system is a function of its
residues. A residue is what is left over when a stressor impacts the system. A residue
usually consists of software functions, infrastructure, people, and information flows be-
tween them. It is a deliberately open concept. In real world modelling it contains anything
relevant to the environment and the particular stressor. Residuality theory is concerned
with design decisions in hyperliminal systems. Residuality theory models the hyperliminal
system as a stack of interconnected residues. It applies random stressors during design to
identify residues, and to investigate a system’s ability to withstand unknown sources of
stress. This broadens the scope of the design effort far beyond the immediate functional
concerns of sponsors and engineers. Most modeling techniques require the software archi-
tect to already begin describing the use cases and solution in order to model. This causes
all kinds of confirmation biases to influence the design process. Residuality uses novel
techniques, such as playfulness in the stressor description, and requires no assessment
of probability or impact before a stressor is introduced. It borrows ideas from machine
learning such as bagging and boosting and training/testing sets. Instead of mitigating risks
one at a time, or identifying components immediately, residuality theory seeks instead to
identify common states, called attractors, in the hyperliminal environment, and find those
that show the greatest tendencies to withstand unknown forms of stress. Thus, residual-
ity theory implies a methodology which is an attractor search, rather than requirements
elicitation or risk management.
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There are three major ideas that support the use of residuality theory in software
systems:

(1) Exposure to stress is what makes systems stronger and more likely to survive un-
known stressors [11].

(2) Design in a hyperliminal environment should be performed as an attractor search
instead of the identification of individual requirements and risks, as these are forms
of reduction and prediction in an unpredictable, and therefore irreducible, space.

(3) The number of points of decoupling that an architect can impact in a software sys-
tem is significantly less than the number of potential stressors. Since many of the
coupling points are invisible, the application of longer lists of stressors reveals more
hyperliminal coupling.

Residual analysis is the process created by applying residuality theory to software
engineering. It consists of a stressor analysis and a contagion analysis. The stressor analysis
transforms the list of random stressors to a set of residues. The contagion analysis trans-
forms the set of residues to a set of coupling decisions, which we call the architecture of the
software system. By applying random sources of stress in the stressor analysis, the designer
is constantly forced to make changes to boundary decisions, redundancy, and diversity.
The set of stressors is made as large as possible by removing the probability/impact filters
usually employed in the component metaphor. By using one set of stressors to train the
architecture and arrive at an emerging component structure, a second set can be used to
test this architecture and confirm that the system shows signs of surviving unknown forms
of stress. Bagging and boosting means that we can reorder the stressor list and perform
this multiple times, each time finding attractors that will appear to perform better or worse
than others, and uncovering an enormous amount of hyperliminal coupling that would
otherwise remain unseen through traditional risk management approaches, or through the
component metaphor’s focus on requirements and functionality. Unlike other approaches,
this training/testing set technique provides an empirical means by which to show that the
design effort has been effective in producing more resilient designs.

Stuart Kauffman [36] showed via simulators that complex systems made up of in-
dividual, autonomous elements tended to arrive at a point of stability and equilibrium
over time. The interesting point was that these systems arrived at a much smaller number
of equilibrium states than that which was available to them. These states are described
as attractors—points of equilibrium to which the system repeatedly returns. Kauffman
interpreted this as a possible law, that order would emerge as movement toward a smaller
set of possibilities than that which actually existed in the system. If these attractors exist in
hyperliminal systems, then residuality theory provides a systematic means for uncovering
them. If they do not exist, then the design effort is destined to be incredibly turbulent and
residuality theory confers no disadvantages over the component metaphor.

Software systems also have a finite number of points of internal coupling which the
architect can actually impact. The number of potential stressors is infinite, and therefore a
random walk through potential stressors, free from the reductionist biases of enterprise
risk management, has a greater chance of revealing hidden hyperliminal coupling that can
then be addressed by the architecture.

By modeling a system as a series of interconnected residues, engineers can express
and investigate the behavior of a system outside immediate functional concerns, and thus
be better placed to make decisions about the interaction of the system and its environment.
Instead of trying to manage hazards and identify risks, as other methodologies do, such
as the Architecture Trade-off Analysis Method (ATAM) [20], System Theoretic Process
Analysis (STPA) [37], or Failure Mode Effects Analysis (FMEA) [38], residuality causes the
architect to perform a conscious search for attractors. System architectures that display
antifragile or resilient tendencies can be separated from those that are obviously fragile in a
systematic way more akin to the workings of engineering than the mysterious ‘anticipation’
or intuition that other methods rely on. These often vague techniques rely on our ability to
know the future and are often a stubborn reiteration of the belief in order and causality [13].
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Residuality allows engineers to leverage imprecision, rather than precision, to make design
decisions. This is a huge step forward for engineering in uncertainty. Removing the
reductionist filter of precision allows more exploratory work to be carried out. This work
with stressors and contagion eventually reveals component structures that are related to
the uncertainty in the environment, rather than a limited, prediction-based model of reality
that component decisions are based upon in the component metaphor.

Whilst concepts such as resilience and antifragility describe the behavior of natural
systems, they are less useful to engineers who have a limited scope, time pressures, and no
access to true evolutionary patterns. This causes system design to suffer from the projection
of the designer’s beliefs in certainty onto the uncertain environment. Residuality is a better
way to describe the tolerances for the unknown of hyperliminal systems, because it is
directly linked to the decisions a software architect can make. Resilience and antifragility
are therefore too aspirational and vague to apply to software engineering. Residuality
is instead a concrete aspect of any hyperliminal system and can be measured, changed,
and tested.

5. Reflexivity: Creating a New Software Engineering Theory with a Random Walk

Residuality theory is currently part of ongoing research to prove its ability to produce
software systems of higher quality that are more likely to survive unpredictable conditions
of stress. Anecdotally the application of the theory creates systems more likely to survive
these stressors, and at the very least raises the quality of software architecture work. What
is interesting is how the theory came to be created. Residuality theory is different from
other ideas within software engineering, in that it is based on a pragmatic approach very
far from the usual discourse within software or systems engineering. Without a push into
completely different areas of thinking, starting with the complexity sciences and ending in
the study of different ontologies and epistemologies, residuality theory could never have
been created or articulated.

With formal training in mathematics, computer science, and software engineering,
and a decades-long career designing software systems, I never once was exposed to
any paradigm outside of logical positivism. Most of the influences in my career simply
reiterated the component metaphor. As I began to research why it was seemingly easier for
some architects to continuously deliver quality software, it became apparent that successful
architects had an easier time with uncertainty, were more comfortable with missing details,
and better able to plan for multiple futures. It became apparent that I and they were using
techniques beyond the component metaphor, but we all struggled to articulate exactly
what we were doing. Just as described by Ralph [33], both successful and unsuccessful
architects struggled to explain exactly how they were making boundary decisions.

I began to understand the problem as being a limitation in the field of software
engineering in dealing with uncertainty. The expectation of order in the component
metaphor is caused by human understanding being thrown into flux by the introduction
of the machine. The distance between the order of the machine age and the experience
of everyday life was a shock, and led to a search for how to bring this kind of order to
everything. This expectation, the machine in the ghost, is the thing that has driven scientific
and engineering frustration, and led to the willful ignoring of hyperliminal coupling and
the refusal to abandon the component metaphor. In order to create residuality theory, it
was necessary to seek a view of the world that was somehow different.

Heidegger warned about the impact of technology [39]; that it could obscure our
understanding of the natural and hinder our ability to learn, cutting us off from our
environment. The spasms caused by the efficiency of the machines, their quick returns,
caused us to see the world through the lens of technology, and not through other lenses.
This obscures our understanding of our world and our ability to build software for it,
and the second order impact of residual causality is to obscure our paths to action and
understanding even more. A belief in an ordered universe akin to that of a machine
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prevents the designer of software systems from looking beyond, from listening to other
perspectives, and excludes the role of chance.

Recognizing that the component metaphor may be that which is holding us back, I
began to investigate other ways of looking at the world. At this stage the work of Nassim
Taleb was highly influential, bringing an accessible way to understand uncertainty and the
kind of ideas that could be used to deal with threats and events that could not be foreseen.
The Cynefin framework [12] helped to present ideas about complexity quickly and easily
to other architects as I began to look outward and describe my ideas. The ideas of Ralph
Stacey [13] were fundamental in building a basic understanding of causality, complexity,
and Stacey’s dominant discourse was the foundation for the explicit description of the
component metaphor.

Each of these readings was accidental and unplanned, a random walk through the
literature based on recommendations. As I progressed toward an academic investigation
of these ideas, I began to understand the need to formally begin investigations within
ontology and epistemology.

This led to a different set of literature being embraced. CS Pierce in 1891 defined
the idea of Tychism [40]—in which much of the workings of the universe are based on
chance. Pierce’s most important insight, however, was that a truly disordered universe
must necessarily have some aspects that are ordered—because the total avoidance of order
would require a form of order to enforce this. This sits well with Prigogine’s description
of ‘order floating on disorder’ [41] and provided the basis for the concept of hyperliminal
systems. Ordered systems floating on disorder is a good way to introduce the idea of
hyperliminality and the connections between these as hyperliminal coupling. By making
clear that the component metaphor can only apply in an ordered system, that disordered
systems are subject to absolute chance, and cannot be predicted, controlled, or intentionally
constrained by management until they become ordered, this ontology prevents the design-
ers of software systems from reverting to the component metaphor. Pierce saw evolution
as the combination of absolute chance and habit-taking. By accepting this absolute chance,
the ghost which we have mistaken for a machine, we may increase the chances of habit
taking that will allow us to build systems that are appropriate for the environments we
expect them to live in. Exposure to the ideas of Tychism and Prigogine made it possible
to express the idea of hyperliminality and thus have a model of reality that reconciled the
uncertainty seen in software engineering with the mathematical structures in computer
science.

Further reading led to a wider scope of investigation. Perhaps the attitude of Michel
Serres, never completely embracing enlightenment ideas about the superiority of science,
seeing a flow between the old and the new, the stories and the poems and the sciences,
hold some weight here. The gestalt switch [42] is the very essence of residuality theory. The
gestalt switch involves switching of background and foreground, the focus on fluctuation,
noise, and randomness. Looking to the disordered, difficult part of the hyperliminal system
rather than the easy, provable, predictable, ordered part. Serres states “When sciences
add variety to the world, they are to be used, when they subtract variety they are to be
rejected” [42]. The component metaphor is a concrete example of the reduction of variety.
The ideas of Latour [43] also help to shed some light on how the component metaphor
has come to be adopted, as black boxes, accepted uncritically, and passed down from
each generation of software engineers as received wisdom. Here, we employ ideas on
many ways of knowing from constructivism, and also employ post-structural thinking to
question and deconstruct the ideas in the component metaphor. In doing so, I see every
software project as a pragmatic, mixed methods adventure—a very different approach than
the component metaphor, with its roots firmly in positivism.

Pierce, Heidegger, and Serres all saw the problem of the machine in the ghost, re-
stricting and limiting our worldview, with the pretense of order at the root of the problem.
Nassim Taleb describes the same problems in a much more accessible way in ‘Fooled By
Randomness’ [10] and Ralph Stacey describes the dominant discourse of management as
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working in the same vein [13]. Exposure to the same idea over and over again gave me the
confidence to begin questioning the component metaphor.

Baudrillard [44] describes society as becoming detached from the natural world
and reality becoming blurred by a meaningless search for complete knowledge. In a
hyperconnected world, this search happens so fast that the constant stream of models makes
it hard to engage with reality and instead the model becomes a simulacra, a replacement
for reality. Software architecture has chosen to work with this simulacra—the component
metaphor—rather than the messy, underlying reality. In this world symbolic acts such
as the agile manifesto are given more meaning than they deserve. Software becomes
vulnerable to sudden trends with little evidence that they actually work, and the model
based detachment from reality makes it hard to argue against them. In order to avoid
becoming yet another part of the model, residuality theory has avoided clear definitions of
residues, encouraging exploration, questioning, and deconstruction of ideas.

This incomplete, shaky ontology, provides one platform from which software engi-
neers can begin to extract the machine from the ghost, reconnecting with the world outside
the machine in a way that is not reduced by the thinking of the component metaphor.
It is from these readings that residuality theory emerged and was clarified, and similar
approaches may eventually give rise to the next set of theories that give software engi-
neering more options to try and manage the challenges of building infrastructure for the
hyperconnected society.

The exploration represents an awkward stumble through the field of philosophy,
something to be expected from a software engineer, but it is important not to present this
as a difficult academic undertaking, or software architects will simply retract from the idea.
Actual research training may be another path to explore, training architects in the basic
ideas of paradigms and evidence.

Without this exploration of ideas, far outside of the realms of software engineering, it
would have been impossible for me to describe what it was that I was doing differently from
other architects. It is possible that many other architects are currently solving problems in
a way that they cannot articulate, due to the component metaphor, after all at least 17% of
enterprise software projects appear to be succeeding [45].

I noticed that there was a big difference where I chose to look at new ideas (new to me,
anyway) through the lens of old ideas, it was much more difficult to frame findings and
ideas from the complexity sciences in a way that was useful. Observing old ideas through
the lens of new thinking was key to arriving at conclusions that allowed me to generalize
enough to produce residuality theory. Instead of asking “Where are the requirements in
this new model?’ It was better to ask “What do requirements mean in this new model?
Are they still useful, or are they getting in the way?”.For a software engineer, used to
working with the idea of ideation, requirements, specification, design, and testing the idea
of starting with stress is like reverse engineering the process. The idea that stressors might
not even exist in reality or be at all probable is difficult to reconcile with the position of
efficient cause, ergodicity, or predictability. None of these positions are easy to take if the
architect has never been exposed to anything except determinism.

In the literature on the philosophy of computing, no one considers the philosophy
of the people making the decisions about how the software should be structured. As a
practicing architect, already using some of the techniques described in residuality theory
over a long and successful career, it was impossible for me to describe to other architects
how I was reaching these decisions because we were all trapped in the component metaphor.
By reading and widening the perspectives on the world, outside of that which an education
in mathematics, computer science and systems engineering had given me, I am able to
explain and articulate, and even improve the architectural process in a way that embraces
uncertainty and aids in reducing residual causality.

Residuality theory suggests randomly stressing designs leads to better decision mak-
ing in hyperliminal environments. In this article, the suggestion is that randomly stressing
the worldview of software architects with differing approaches to philosophy can help
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unlock new approaches to software engineering that are more in line with the hyperliminal
environments for which they must design software systems.

6. Conclusions

Giving software engineers the ability to interpret the complex world around them
outside of the component metaphor will allow them to better address the risks that software
poses to hyperconnected societies.

Residuality theory is one such idea which may help reduce residual causality by
helping the designers of software systems to easier identify hyperliminal coupling, by
shifting the worldview of the designer from the entrenched component metaphor. It
provides an approach that allows, or even forces, software architects to articulate how they
are dealing with uncertainty in the complex environments in which they are working.

Residuality theory and other ideas that might emerge from this approach can po-
tentially address the theoretical gap on software and uncertainty described in this paper.
This investigation could potentially open up a rich, new seam of ideas and methodologies
within the world of software engineering research. This may help software architects to
better question and critique passing trends and ideas in the software industry, as well as
the ability to more honestly talk in terms of uncertainty and what they do not know as they
make decisions. It may also improve the ability of software architects to communicate with
each other as a profession around the topic of uncertainty, and the role of the architect in
an increasingly uncertain world.

Further areas of research are the confirmation of residuality theory as a viable approach
to mitigating unknown sources of stress in software applications, as well as studying the
underlying paradigmatic assumptions of software engineers in relation to success and
failure in software engineering.
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