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Abstract: This paper briefly surveys several prominent modeling approaches to knowledge-based
intelligent systems (KBIS) design and, especially, expert systems and the breakthroughs that have
most broadened and improved their applications. We argue that the implementation of technology
that aims to emulate rudimentary aspects of human intelligence has enhanced KBIS design, but
that weaknesses remain that could be addressed with existing research in cognitive science. For
example, we propose that systems based on representational plasticity, functional dynamism, domain
specificity, creativity, and concept learning, with their theoretical and experimental rigor, can best
characterize the problem-solving capabilities of humans and can best overcome five key limitations
currently exhibited by knowledge-based intelligent systems. We begin with a brief survey of the
relevant work related to KBIS design and then discuss these five shortcomings with new suggestions
for how to integrate results from cognitive science to resolve each of them. Our ultimate goal is to
increase awareness and direct attention to areas of theoretical and experimental cognitive research
that are fundamentally relevant to the goals underlying KBISes.

Keywords: artificial intelligence; knowledge-based system; cognitive psychology; concepts; problem
solving

1. Introduction

We begin by distinguishing between the following three types of systems: (1) knowledge-
based systems (KBS), (2) knowledge-based intelligent systems (KBIS), and (3) expert systems
(ES). A knowledge-based system (KBS) is a program that solves problems by acting on a
database of “facts”, either explicitly provided by human experts or, via implicit patterns,
extractable from that database. If the focus of the KBS is on the process of extracting “hidden”
information in a way that may be construed as “intelligent”, then the KBS is referred to
as a “knowledge-based intelligent system” (KBIS). On the other hand, expert systems are
knowledge-based systems designed to operate on the knowledge provided by human experts
that neither inherently nor necessarily require any intelligent process but can incorporate
intelligence (particularly, human-like intelligence, which we will argue is ideal). KBISes
became prominent in the AI community after two great ideas in the history of AI research
seemed to have lost some of their original impetus. The first of these was an extension of the
early work on artificial neural networks (ANNs) of McCulloch and Pitts [1] who introduced a
simple model of a neuron. Rosenblatt [2] extended this model by showing how a learning
algorithm could adjust the connection strengths of a single three-layer neuron he called
a “perceptron”. However, this development was not sufficient to address the two main
objections to the ANNs approach: (1) it was only useful in solving toy problems (i.e., not
real-world problems; for more recent examples of ANN applications to expert systems design
and theory see [3–6]) and (2) its low-level nature would make it immensely complicated
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to obtain systems with the kind of robustness, flexibility, and generality displayed by the
human mind.

The second disappointment came from the work of Newell and Simon [7,8] who
attempted to build a generalized problem solver (GPS). Their technique was based on what
is known as the means–ends analysis. The basic idea was that problem solving could be
represented as a process involving states: the present state and the desirable state. At each
stage of the process, the difference between the present and the desirable states determined
the choice of an operator for minimizing the resulting difference. A description of the
problem-solving process was equivalent to a proof of the solution. However, because the
program was based on painstakingly difficult logical representations that also required
exorbitant memory resources and computing time resources, it proved to be intractable
and implausible for anything but the simplest of problems.

Both perceptrons and the GPS were attempts at general, domain-independent problem
solving. In other words, the idea behind these models was that a simple set of rules or
mechanisms could yield solutions to a wide variety of problems. As it turns out, given the
computational limitations of the time, this goal seemed ever more elusive. It was about
this time in the early 1970s that a new paradigm for artificial intelligence emerged. When
the general-purpose problem-solving approaches of the aforementioned researchers fell
short of expectations, researchers began to realize that by restricting problem solving to
specific domains of high-level knowledge, one may be able to achieve practical progress.
This paradigm shift which favored knowledge (or memory) intensive methods over the
algorithmic (computational) generality of earlier methods was first introduced in programs
such as DENDRAL [9,10] and MYCIN [11].

DENDRAL emulated the expertise of a chemist by implementing problem-solving
heuristics in the form of high-level rules (rules of the form “if x1 ∧ x2 ∧ . . . ∧ xn then
Y” called production rules, where xi and Y are statements) applied to a database of facts
elicited from an expert in chemistry. The purpose of DENDRAL was to identify chemical
compounds from their spectral signatures. Similarly, MYCIN emulated the expertise of
doctors in diagnosing blood diseases. In fact, the commercial success of these two programs
encouraged the development of a great number of expert systems that have gone far beyond
the simple production-rules paradigm.

In this paper, we discuss the major developments in KBIS design that have led to
the current generation of expert systems. An expert system is a knowledge-based system
that can be designed to emulate decisions of a human expert. This discussion is confined
to these types of intelligent expert systems because, when it comes to cognitive research
and the emulation of human intelligence (i.e., cognitive processes associated with problem
solving, decision-making, concept learning, perception, etc.), expert systems have, to date,
been the least effective among the various other knowledge representations (e.g., decision
trees and Bayesian belief networks). Furthermore, because the nature of these systems
is one that emphasizes symbolic processing, there is a natural connection to language as
the highest level of processing in the cognitive hierarchy where the lower-level cognitive
capacities shape or determine such symbolic constructs as facilitators of human commu-
nication. Admittedly, numerous AI techniques used to improve KBISes have been used
to improve expert systems [12]. In those situations, we briefly discussed those techniques.
Specifically, this paper examines the key techniques and approaches that have influenced
the development of intelligent expert systems and KBISes over the past four decades in an
attempt at revealing the various notions of intelligence on which they are based. We will
argue that although great progress has been made in the development of knowledge-based
intelligent systems, this progress has been hampered by neglecting some of the most fun-
damental and majestic facets of human intelligence. These aspects of intelligence, as we
discuss at greater length in the following sections, refer to the capacities of the human mind
studied extensively in cognitive science and psychology that are regarded as characteristic
of intelligence, specifically in relation to humans as opposed to other species of animals.
From a more functional and primitive perspective, intelligence, as a cognitive construct,
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has come to be understood as the suite of mental capacities that facilitate the survival of
individual human observers and the human species given the challenges they face in their
environment. Some examples of these capacities include the ability of the human perceptual
system to efficiently distribute attentional resources, the ability to collapse an immense
range of available perceptual information into generalized conceptual representations, the
ability to reason linguistically, the adaptive and creative capabilities of human problem
solvers, and the efficient heuristics that may guide human judgments and decision-making.
It should be noted that in cognitive science and psychology, decision-making and problem
solving (capacities often emphasized in AI research) are regarded as higher-order capacities
that are dependent upon lower-order capacities, namely, the other capacities mentioned
above [13–15]. By giving more attention to these uncharted aspects of intelligence and the
wealth of research dedicated to their study in cognitive science and psychology, KBIS de-
velopment may be enriched considerably and better approximate the complex capabilities
of human cognition.

2. Aspects of Intelligence

In knowledge-based AI, there are two fundamental assumptions about what makes
a system intelligent; the system must be able to solve nontrivial problems and, if the
goal is to emulate human intelligence, it must be able to solve these problems in ways
that are analogous to the ways humans solve them [16–18]. The fact that humans are
ill-equipped to solve certain types of problems (e.g., calculating

√
π to 100 figures) is not

significant under this view. Indeed, under this view, the focus is on handling complex
but generalizable problems with heuristic, efficient, and creative solutions. AI designed
in the inspiration of humanlike processes and the outputs of such designs may be more
appropriately interpreted by human agents and more effectively serve human needs when
comprehensive and perfect algorithmic solutions are impractical.

With these two assumptions in mind, gradual improvements are seen in the evolution
of expert systems design that have been fueled by disparities between the system’s per-
formance and human performance on the same problem-solving tasks. Each performance
disparity has been the result of some aspect of human intelligence being ignored. In some
cases, technology and a lack of know-how could be blamed for the omission. In other
cases, a system’s performance was good enough to merit no additional modifications. Since
many major developments in expert systems design were reactions to a notable discrepancy
between natural (human) intelligence and artificial intelligence, this analysis is organized
according to these discrepancies. We propose that these discrepancies fall along four lines,
henceforth referred to as the problems of (1) uncertainty, (2) disorganization, (3) ambiguity,
and (4) adaptability.

2.1. Production Rules and Inductive Inference Systems

Among the concerns of early expert systems designers was the ability to solve prob-
lems at a very high level. This meant an ability to solve problems using knowledge in the
form of natural language statements. This became a reality with the first generation of
rule-based intelligent expert systems. Intelligence in these early systems was construed as
a very high-level process associated with language and logical inference.

The first generation of knowledge-based systems was based on what is known as
production rules. These systems emerged around the 1970s when it became clear that for
an artificial system to solve problems in a human-like fashion, the system would have to be
constrained to a specific knowledge domain.

The presupposition was that since it would take much too long to discover how one
could represent the whole of mental processing in algorithmic terms, the next best thing
would be a very high-level representation of the thinking process and, by extension, the
process of making decisions. The design of these systems presumes that human experts
have specific knowledge or facts about their domain of expertise stored in memory, and
by applying inference rules to this storage source, humans can organize, identify, and
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generate new information to solve problems. Figure 1 displays a possible architecture of a
production rule-based expert system.
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Figure 1. Production-rules expert system architecture. Note. This graphic describes an expert system
according to the authors’ definition and visualization. See [19] for a similar depiction.

The system is comprised of a database of facts or clauses pertaining to a given domain,
a knowledge base of production inference rules that could be applied to those facts or
clauses, an inference engine that actually applies the rules to the facts, an explanation
engine that lets the user know how an answer was obtained, a user interface, and a
developer interface. The user interface allows the user to communicate with the system.
The developer interface allows the expert and the knowledge engineer to modify the
program, the database of facts, or the knowledge base as the need arises.

As mentioned, the production rules in the knowledge base are simple logical rules of
the form x1 ∧ x2 ∧ . . . ∧ xn ⇒ Y . One possible interpretation of this expression is that if
the subgoals x1, x2 , . . . , xn are met, then the goal Y is met. We distinguish these conjunctive
rules from disjunctive rules of the form x1 ∨ x2 ∨ . . . ∨ xn ⇒ Y . The first type of rules
shall be called deterministic and the second type shall be called indeterministic in that 2n

subsets of the set {x1, x2, . . . , xn} are all possible conditions for Y. This is an interesting
point for it seems to suggest that even a simple knowledge-constrained system can act both
probabilistically and deterministically with the right choice of rules.

As already suggested, production rules can take many specific forms. They may be
directives such as “if the program crashes and no error prompt shows up, then reboot the
computer” or plain relations: “if the program crashes then there is insufficient memory”.
Furthermore, they may be recommendations such as “if the program is expensive and the
computer is cheap, then the advice is to buy a new computer,” or even heuristics such as
“if the program requires at least 0.5 gigabytes of RAM, and the program runs on Windows,
and the program was developed by Microsoft, then the program is Microsoft Office”.

In addition to providing expert advice, one of the most attractive features of a
production-rules system is its ability to report how it came to a solution. This ability
suggests the ability humans have to report their own thought processes. Another powerful
feature of the first generation of expert systems is their ability to include metarules in their
knowledge base. Metarules are rules about rules supplied by the expert to the knowledge
base to add higher-order decision-making or problem-solving capabilities to the expert
system as does the following rule: “indeterministic rules have lower priority than deter-
ministic ones”. In the expert systems that use this approach, metarules are usually given a
higher priority by the inference engine [20].
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Over the last decade, researchers have attempted to integrate symbolic models based
on production rules with deep-learning neural networks (DNNs; see [21], for a review
pertaining to system health management). DNNs offer an extended capacity for feature
extraction given vast and complex datasets for which a large parameter space is needed
to generate accurate outputs. DNNs have been effectively applied to pattern, image, and
speech recognition as well as recommendation systems in a broad array of arenas (including
prominent companies such as Apple, Google, and Microsoft; also see [22], for a survey
of applications). However, given their complexity, scope, and potential to easily overfit
data, researchers may be challenged to implement the deep-learning approach. Similarly,
the computing demands of DNNs may be of concern as they grow in complexity. This
shortcoming is particularly glaring when considering the development of AI analogous to
human cognition, as the demands of DNNs would seem to far exceed the limitations of
what is tractable to the human mind. Reductive heuristic processes that guide cognition
(see [23], for an introductory overview) may be more closely approximated by simpler
production rules-based expert systems.

While a production-rules system operates upon a database of facts by way of a given set
of rules, others are designed with an alternative, inductive representation of the knowledge
base. The system seeks to infer general rules from the instances provided in the data,
often represented as attribute-value vectors and associated by classes [24]. Two prominent
examples are decision trees and Bayesian belief networks, and both parallel contemporary
cognitive research (e.g., rational agent decision making [25], and Bayesian analysis in
categorization [26]). However, these cognitively inspired approaches have not had the level
of success from an empirical and theoretical standpoint in research of human cognition as
the approaches that we discuss in this paper (e.g., [27–30]). Indeed, one of our objectives
in this paper is to draw attention toward the most robust cognitive empirical results,
theoretical constructs, and models that can provide greater promise toward effectively
emulating human intelligence.

Despite the successes of production-rules and inductive inference expert systems,
there are several notable limitations if one examines them from the point of view of
human intelligence. For one, human experts are not endowed with perfect information.
Memory store in humans can contain uncertain, incomplete, and ambiguous information
organized in idiosyncratic ways not mimicked by an expert system. These shortcomings
are discussed next.

2.2. Uncertainty

To mimic human intelligence, an expert system should be able to make inferences
about uncertain information and include such information in its database. To accomplish
this, expert systems can use rules of the form T(e)⇒ Tp(h) [31], meaning that if evidence
e has occurred (i.e., given the evidence that e is true), then hypothesis h has occurred with
probability p. According to the popular Bayesian approach to modeling decision making,
human experts can, in principle, estimate the prior probability that e has occurred given
that h has occurred. This is important since the user provides evidence e, and according to
that evidence, the expert system computes the posterior probability p(h|e) given by Bayes’
rule as

p(h|e) = p(e|h)·p(h)
p(e|h) · p(h) + p(e|¬h) · p(¬h)

(1)

Expert systems based on the Bayesian approach require as inputs probability estimates
for p(e|h), p(h), p(e|¬h), and p(¬h). Now, these estimates are often subjective, except
in rare situations (e.g., with respect to well-defined scenarios like those encountered in
casino gambling [32]) when the sample space of alternatives is abundantly clear. Indeed,
psychological research indicates that human probability judgments are not consistent with
the rules of probability [32,33] on which Bayesian analysis is based. This means that even
an expert’s assessment of conditional and posterior probabilities would not be consistent
with Bayes’ rule, and an expert system built around Bayesian statistical properties may not
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reflect authentic human cognitive processing. Thus, such systems may be limited by failing
to emulate the highly adaptable and dynamic processes by which humans contend with
uncertainty (we discuss both adaptability and functional dynamism further as aspects of
human intelligence in the following sections). One way of overcoming this shortcoming
is to adopt the approach of Shortliffe and Buchanan [34] in MYCIN; instead of using
probabilities, uncertainty is measured in terms of a subjective scale based on degree of
belief. The rules take the form T(e)⇒ Tcf(h) , which means that if evidence e occurs, then
hypothesis h follows with a certainty factor of cf.

On the other hand, several researchers have tried to address the shortcomings of
the Bayesian approach by employing more eclectic approaches. For example, Walley [35]
evaluated the Bayesian approach along with three other prominent models of uncertainty:
coherent lower and upper previsions, belief functions (from Dempster–Shafer theory), and
possibility measures (from fuzzy logic). These were evaluated along requisite criteria for a
comprehensive model of uncertainty. Although each measure proved useful for specific
types of problems, none of the measures proved adequate as a general model of uncertainty.
This lack of generality has led to recent advances in modeling uncertainty [36–41] and an
effort to incorporate human-simulating intelligence into the resolution of uncertainties [42];
however, the development of a general model remains an open problem. The resolution
of uncertain information within KBISes may relate to the means by which information is
represented and organized. Next, we discuss KBIS progressions in these arenas.

2.3. Organization

The way knowledge is organized determines ease of retrieval. For example, it is
a far easier task to search for a name in an alphabetized list than it is in a scrambled
list. Furthermore, the greater the amount of information to be searched through in an
identification or retrieval task, the more important it is that this information be organized
in an efficient manner. Marvin Minsky [43] proposed the idea of representing knowledge in
terms of frames. Frames are data structures containing most of the information needed to
know about an object in terms of slots or indexed characteristics or attributes. For instance,
a driver’s license is a type of frame: its slots are the name of the person, date of birth, hair
color, appearance (via a picture), and so on.

Object-oriented programming (OOP) is a paradigm for software development based
on the idea of a frame: in fact, the notions of “frame” and “object” share many similarities
in AI. An object in OOP is a data structure that contains the procedures (called methods)
that operate on the data structure [44]. This is a drastic departure from the typical paradigm
of program organization where a data structure and the program that operates on it are
separate entities. One could say that under OOP, objects are frames that contain behaviors
or operations that act on their slots once that behavior is elicited by an external signal called
a “message”.

A powerful feature of frames is that they can be organized in terms of the relation of
inheritance. Classes of frames in a class hierarchy inherit the behaviors and characteristics
of those classes above them in the hierarchy. This kind of arrangement has proven to be
extremely efficient for both developing code and conducting queries [45]. Furthermore,
there is empirical evidence which suggests that some cognitive systems such as semantic
memory organize conceptual information in a similar hierarchical fashion [24,46]. With an
object-oriented organization, production rules include the use of slot variables for inferring
particular attributes shared by slots across the frames of certain classes. For example, a
rule can take the form [[C(s1) = a ] ∧ [C(s2) = b]]⇒ P(C) , which means that if slot s1 of
class C has attribute value a and slot s2 of class C has attribute value b, then class C has
property P.

More recently, much attention has been given throughout the computer sciences to
the organization of knowledge by way of ontologies. In this context, an ontology serves
as an objective and explicit specification of abstract conceptualizations of objects and re-
lations with systems of axioms useful for drawing conclusions or solving problems [47].
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These ambitious ontologies may promote improved efficiency in certain specialized or
domain-specific KBISes where rigid programming operationalizations of a “concept” are ap-
propriate. This approach may also prove limiting for higher-order concept hierarchies [48]
wherein abstract relations cannot be readily represented at a granular level without a more
adaptable paradigm or a more human-like approach to concept formation. Likewise, the
advent of knowledge graphs as an extension of the ontological approach has aided the
efficiency of the process of exhaustive knowledge retrieval by filtering irrelevant informa-
tion [49], a process that may be further improved by incorporating deterministic models
of human category learning. We discuss possible solutions to these standing problems in
Section 3.5.

Although much attention has been given to the organizational structure of represen-
tations, the current approaches ignore the possibility that, at least in humans, different
types of representations may be organized in different ways. For example, low-level
information-processing subsystems, such as the human visual system, may convert and
organize environmental data in ways that are most efficient for the task of visual percep-
tion [13]. On the other hand, language-processing subsystems may reflect the kind of
abstract semantic or conceptual organization proposed above. Expert systems that inte-
grate different types of organization schemes as a function of the nature of the allowed
representations have not been developed.

2.4. Ambiguity

Experts often use ambiguous language. A biologist might say that a certain species
of animal is very fast or that a cell is highly segmented. The utility of imprecise terms
or terms that represent degrees of an attribute were not addressed efficiently in the first
generation of KBISes. This problem led to the application of interval arithmetic [50] and
a special case of interval arithmetic referred to as fuzzy logic [51,52] to the realm of expert
systems design resulting in what are known as fuzzy experts [53]. Fuzzy experts are expert
systems with rules involving linguistic-fuzzy terms such as “if the number of cylinders is
large then the car is fast.” To articulate such rules, fuzzy terms “large” and “fast” need to
be defined in terms of set membership functions. This is accomplished by, for example,
mapping the number of cylinders in cars to a degree of “largeness” or the top velocities
of cars to a degree of “fastness” [54]. From a practical standpoint, this suggests a drastic
reduction in the number of required production rules in a classical expert system [55].

The flexibility and efficiency permitted by using fuzzy logic has significantly improved
the effectiveness of expert systems in diagnostic and forecasting applications [56,57]. For
example, CADIAG-2, an internal medicine expert [58,59], and EMERGE, an expert system
for the analysis of chest pain, have fuzzy logic engines at their core. Moreover, in the travel
industry, Instant Traveling Expert Advice (ITEA) uses an input of fuzzy facts describing
weather conditions (e.g., “humidity is very high,” “wind is slightly breezy”). ITEA as-
signs a degree of certainty to each fact and returns a recommended activity for the user.
Fuzzy expert systems have also been developed to help managers (e.g., credit evaluators
and damage/risk assessors), educators, and Internet users interpret complex, and often
vague, information.

These developments have paved the way towards endowing KBISes with robust
natural language-processing capacities. Central to these capacities is the ability for a
program to realize the same input in multiple ways so as to choose an appropriate output
in context [60]. Indeed, the pragmatic nature of human communication poses a particularly
difficult challenge for KBISes in the way that a system must be able to recognize the goals
and expectations of the speaker in order to produce a correct output for the given context.
Nonetheless, newsworthy advances in natural language processing and KBISes have led to
renewed hope with respect to this challenge (for a review, see [61]). Advances in natural
language processing have also led to the personal assistant application Siri that has become
a huge commercial success for Apple’s iOS. Siri constantly uses what it knows about
someone (e.g., their prior search/call history) and their location (using the phone’s map
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application) to provide context for interpreting ambiguous speech input. Siri excels not only
in the processing of natural language, but also in its production of language. Contributing
to its commercial success is the way in which Siri engages in a conversation with the user
in a way that far outperforms previous generations of natural language processors (e.g., an
automatic bill collecting service at a local bank).

Accordingly, the last two decades have seen additional progress in the capacity for
fuzzy expert systems to reconcile linguistic ambiguities by the implementation of type 2
fuzzy expert systems [62,63]. The vast majority of the previous works on fuzzy expert
systems utilized deterministic membership functions (type 1 systems). These systems were
unable to directly model uncertainties stemming from ambiguous semantics in the linguistic
formations of rules as well as noise measurement and data [64]. Type 2 fuzzy expert systems
eschew this apparent conflict between the deterministic membership function and “fuzzy”
characterization as their membership functions are themselves fuzzy. They have generally
outperformed their type 1 counterparts. Zarandi et al. have produced numerous examples
of potentially promising type 2 fuzzy expert systems applied to a broad range of topics (e.g.,
the desulphurization of steel [65], stock price analysis [66], and image enhancement [67]).
Zadeh [68] originally introduced the type 2 option as a means of more intuitively addressing
problems associated with linguistic uncertainty. Its recent resurgence suggests a needed
focus on linguistic ambiguity across the literature as a progression from the older fuzzy
logic processes discussed previously, albeit not one based on human cognition.

Furthermore, KBISes that are better equipped to handle ambiguous inputs and prag-
matics in spoken language demonstrate actions that better emulate human intelligence in
the way ambiguity is highlighted as a constant aspect of real-time adaptation in a complex
and unpredictable environment. An example system that was designed with semantic
ambiguity in mind is ConceptNet [69], an ontology for language processing that seeks to
make contextual flexibility the central concern for textual reasoning, analogy-making, and
other functions. Moreover, flexibility in the face of complex and vague information is the
foundation for the next aspect of human intelligence in KBISes: adaptation.

2.5. Adaptation

In the first section of this paper, some of the initial failures of the artificial neural
networks approach to modeling expert systems were discussed. Some of these failures may
be traced to the oversimplified character of the early perceptron networks and their inability
to model complex adaptive behavior. However, after over forty years of improvements,
artificial neural networks are now a useful tool in fields where modeling dynamic and
adaptive learning is important [70]. For example, more expert systems are using neural
networks to generate adaptive rules (e.g., see [71] for an integrated ANN-expert system
designed for traffic control). These networks are simple three-layer networks that are fully
connected. Each input neuron represents an object’s attribute. When weights are assigned
to the input values (attributes) according to their importance, the second layer applies a
sign activation function such as

y =
1 i f

n
∑

i=1
xiwi ≥ 0

−1 i f
n
∑

i=1
xiwi < 0

(2)

The activation of neurons in the second layer determines the categories (in the output
layer) to which the objects belong and do not belong. Weighted rules that operate on
the knowledge base can then be represented by artificial neural networks which modify
their weights to achieve the correct decisions whenever new facts and rules are introduced
into the system. Note that we highlight a notion of adaptation specific to the integrated
ANN approach given its connection to cognitive research. Still, adaptation may take on a
different route for other knowledge-based systems; that is, the adaptation may be to the
knowledge base itself or to the ways it is organized within a single structure. However,
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as we discuss later in Section 3.1, expert systems that can reliably adapt across multiple
representational structures remain an open problem. Since one of the hallmarks of human
learning is its adaptive character, expert systems based on ANNs may be an appropriate
starting point toward more realistically capturing human intelligence. This is the case when
the connection between ANN integration in expert systems and human cognitive research
is given explicit attention by designers as a motivating factor.

This completes a brief tour of the four basic rule formation strategies overtly addressed
by the current generation of expert systems. These four strategies have given expert systems
the potential to resemble empirically-founded psychological notions of human intelligence.
In fact, recent attempts at improving KBISes have integrated all four strategies into a hybrid
system (e.g., [72–75], see [76], for a survey of earlier works). For example, neuro-fuzzy
expert systems bring together probabilistic inference, production rules, fuzzy logic, and
rule adaptation to try to fulfill the elusive goal of emulating human problem-solving
and decision-making intelligence. Despite this formidable blend, as shall be seen in the
following section, there are important aspects of human problem-solving and decision-
making intelligence that have not been considered by the current generation of expert
systems. Without implementing these aspects, it is unlikely that KBISes will reach their
full potential.

3. Five Missing Key Aspects of Intelligence in KBISes

We proposed that four key breakthroughs in KBIS design were motivated by the
inability of the first generation of KBISes to incorporate uncertain, organizing, ambiguous,
and adaptive rules. As mentioned, any system that propounds to solve complex decision-
making problems in a human-like intelligent fashion must be able to process, build, and
utilize these four types of rules. Accordingly, the implementation of such rules has led to
the highly publicized success of knowledge-based systems such as IBM’s Watson which
competed in the game show Jeopardy in February 2011. But as it was the case with the
success of IBM’s Deep Blue after defeating chess champion Gary Kasparov, Watson’s victory
raised new questions regarding the dubious claim of human-like intelligence in KBISes [77].

Accordingly, we propose five capacities of human cognition that have not yet been
effectively captured by the current generation of KBISes and intelligent expert systems,
preventing them from reaching their full potential. This potential may be realized both for
systems explicitly intended for emulating the decision-making and inferential capacities
of human experts and, eventually, in broader contexts for adaptive expert system perfor-
mance overall. Henceforth, when we refer to “expert systems”, we refer predominantly to
intelligent expert systems with similar design motivations to the broader array of KBISes for
which humanlike intelligence is most readily applicable. Each of the limitations we discuss
in this section was informed by empirical and theoretical research on human cognition.

3.1. Representational Plasticity

The first of these is the ability to solve problems using alternative representations. An
example of this capacity involves the four-cubes problem popularized under the name
“instant insanity”. In a version of the problem one is given four cubes. The faces of each
cube are one of four colors: R(ed), G(reen), Y(ellow), and B(lue). The objective is to pile
up the four cubes in such way that all four colors appear on each side of the 4 × 1 stack
of cubes. Although there are thousands of possible permutations for stacking up the
cubes, there is basically one way that gives a solution. One way of solving this problem
is by supplying the expert system with a representation of a cube as a Prolog (a logic
programming language) structure called a functor [78], and then by including rules for
combinatorially matching the edges of colors shared by the stacked-up cubes. The use of
the term “functor” in Prolog, and more generally in functional languages, comes from an
attempt to model these programming languages using Category Theory [79]. A category
in Category Theory is a directed graph with nodes (objects) and arrows (morphisms) that
define the basic rules. Functors provide structure-preserving maps between categories
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that allow for transformations between object domains. Accordingly, functors in Prolog
are primitive terms that map simple terms (their arguments) to compound terms or, in
other words, to different syntactic structures. Thus, the term is conceptually related to
the notion of a functor in Category Theory as a mapping between categories (or higher-
order structures). However, these would be relatively brute-force methods of solving this
problem and, hence, not the most “intelligent” approaches.

So how does a human expert solve this problem? The answer is found in the concept of
representation. The way a problem is represented often determines how easy it is to solve.
This, however, is not without a cost. French [80] argues that representing problems in overly
simplified ways can lead to situations where the insight necessary to make breakthrough
discoveries can be hindered. With this caveat in mind, by changing the problem space with
isomorphic or analogous spaces, a cognitive agent can make difficult problems much more
manageable. Thus, instant insanity may be regarded as a problem of insight where arriving
at the solution depends on representational plasticity.

In our example displayed in Figure 2, an expert recognizes that representing the
problem in terms of edges and nodes (where the edges stand for the relation “is adjacent
to”) transforms the problem into a considerably easier one. More specifically, the problem
is solved by representing each cube by a graph with four color nodes and by defining the
edges connecting these nodes as the relation of “adjacent to”. Color nodes are adjacent to
each other if and only if they are the colors of opposite faces in the cubes represented by
the graphs. The solution is obtained by superimposing these graphs and examining the
resulting subgraphs (for details, see [81]).
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How can intelligent expert systems emulate the capacity that human beings possess
for solving problems by using alternative problem spaces? Clearly, the structure of the rules
and the knowledge base itself would have to be transformed. This may seem at first as a
very difficult task, but it may be accomplished via metaprogramming. Metaprogramming
is the process of writing programs that write or manipulate other programs. The language
in which the metaprogram is written is called the metalanguage and the language of the
programs that are manipulated is called the object language. When the programming
language can be its own metalanguage, the language is said to be reflexive. Languages
like Lisp and Prolog, both typically used in the development of KBISes, are reflexive
languages [82].

With reflexive languages, it is a plausible but tedious task to add transformations
that change the nature of the problem space by changing the nature of the rules in the
knowledge base and the clauses in the database in such a way that they remain isomorphic
to the original knowledge base and database pair. Some similar approaches have been
attempted, albeit not within this precise framework of representational plasticity. For
example, Gay et al. [83,84] introduced a class-based modular concept applied to object-
oriented programming within which a nonuniform object (i.e., those that adapt the available
methods given the problem state) protocol within an object class may be partitioned in
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separately sequenced and callable methods. More progress is needed, however, to better
reflect the dynamic representational problem-solving capacities of humans. By switching
from one representation to another, as in the case of going from cubes to graphs above, an
expert can derive answers that would otherwise be difficult to derive by either problem
space alone.

It is worth noting that programming common sense representations about the world
is nontrivial, a difficulty often discussed in terms of the frame problem [85]. The frame
problem refers to the challenge of specifying exactly what is changed by performing an
action on the world as well as what remains unchanged. For example, when analyzing
instant insanity, a system may have difficulty determining and describing that the blocks
that are not touched remain unchanged or that the color of each side remains the same
when a block is rotated. Many frame axioms are, therefore, needed to define everything
that stays the same when an action is performed. The cumbersome and complex process of
using so many frame axioms is the crux of the frame problem [86]. Conversely, cognitive
evidence from perception and concept learning research suggests that people can detect
invariants in their environment rather efficiently (i.e., by exercising cognitive economy)
for the purpose of forming knowledge representations, including judgments [28,29]. This
incompatibility is a challenge for KBISes that hope to emulate human intelligence.

3.2. Functional Dynamism

Another limitation of the current generation of expert systems hinges on their inability
to emulate core-level cognitive processes that are essential to problem solving. Hence, this
section focuses on the process of selective attention. Selective attention has been studied by
numerous researchers empirically and theoretically (for a survey of key results on attention,
see [87]). One way of thinking about how attention influences problem solving is through
the problem of functional fixedness. As an example, examine a famous experiment by
Duncker [88]. Duncker presented subjects with a candle, matches, and a box of tacks.
Figure 3 shows a variant of his experiment.
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The task was to attach a candle to a door for a vision experiment. This problem was
difficult for subjects because they experienced difficulty thinking of the box of tacks as
a platform for the candle rather than as a container exclusively. This type of difficulty is
referred to as functional fixedness and, more colloquially, as mental inertia. How functional
fixedness and attention relate to each other has been studied by several researchers, most
notably Knoblich et al. [89]. Their research on eye movement during a problem-solving task
suggests a link between the two processes. Notably, there were longer fixation times and
few eye movements during an impasse (or functional fixedness) and increased attention to
relevant information toward the end of problem solving, but only for successful problem
solvers. Correspondingly, Kaplan and Simon [90] suggest that attention to additional
features assists problem-solving behavior. Particularly, after a representation is revised
with the addition of new information, individuals search for properties that are consistent in
both representations. Finding such invariant properties while encoding additional features
may overcome functional fixedness, expediting the problem-solving process.
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It seems that the more one fixates on particular representations of objects in a problem-
solving task, the less likely one is to find an insightful answer. However, how can insight of
the kind that it takes to solve the Duncker problem be incorporated within expert systems?
One possible approach would be to incorporate a mechanism of attention shifting for the
functional properties of the clausal relations in the knowledge base and the database. In
respect to the Duncker problem, this would mean that the various functional properties of
the box of tacks, such as its ability to act as a platform, a cup, a kite, and so on, would be
specified in functor structures. These would then be invoked to activate new goal queries
that would lead to multiple possible solutions, each rated by its degree of ease. Thus,
KBISes would benefit from implementing a low-level attentional mechanism that resembles
the intelligent attention-shifting strategies of human problem solvers.

3.3. Domain Specificity

The third human intelligence emulation failure of intelligent expert systems concerns
their specific nature. In this regard, one may argue that the strength of intelligent expert
systems can also be considered their weakness. To appreciate this statement, consider
that by narrowing the knowledge of KBISes to particular domains, one can never hope
to emulate the multidomain connectivity of the human mind. The type of domain inte-
gration envisioned here is of a much broader scale than the one seen in a few existing
expert systems.

The dangers associated with reducing connectivity in favor of narrow knowledge
domains have been elaborated by Forbus et al. [91]. They believe that through the use of
narrow knowledge domains, a model becomes susceptible to irrelevant constraints and
the researcher becomes incapable of analyzing why a particular model is successful. The
problem with domain integration is that unless one can find very general rules that can
make connections between multiple domains efficient, the creation of production rules and
a knowledge database capable of achieving such integration would be a task of insuperable
complexity. Nonetheless, by sorting out the general rules and clauses that can stretch across
domains of knowledge from the more domain-specific ones, one may be able to get a partial
handle on this problem.

High-level perception and analogical thought have been suggested as a possible
domain-general process allowing for the multidomain connectivity characteristic of human
thought [92]. Chalmers et al. argue that many models are flawed because of how they
downplay high-level perception. This is in accord with some of the points made previously
with respect to attention shifting. They present a model of high-level perception and
analogical thought that places emphasis on the integration of perceptual processing and
analogical mapping as well as accumulation of appropriate representations in a given
context. Additional accounts of analogical reasoning have been proposed to describe the
domain-general mechanistic underpinnings of analogical learning in human cognitive
development or otherwise highlight the role of domain-general processes (e.g., [93,94]).
Likewise, some recent steps have been taken toward developing a domain-general neural
network effective in solving analogy tasks [95]. This is, however, intended only as an
improvement over alternative neural networks for determining task solutions and not as
an accurate depiction of human knowledge interactions.

A possible direction that might provide a KBIS designer with a way forward toward
achieving greater domain generality lies with concept structures, described by the unique
relations of the dimensions within a category. Feldman [96] cataloged numerous Boolean
concept structures (in this case, a collection of structure families defined over strictly binary
dimensions) for study in relation to human category learning, drawing from the works of
Shepard et al. [6], Aiken [97], and others. Furthermore, Vigo [28] studied the largest set of
concept structures to date from different perspectives and suggests that concept structures
may be defined by any number of dimensions, dimensional values, and cardinality, and
that relationships between the dimensional values of any category of objects, regardless of
the domain of investigation, may be described in this framework [98]. As such, concept
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structures are domain-general, and their implementation into KBIS design should be
reasonably simple. For example, a class of facts within a knowledge base can be described
by its dimensions and their relations as a structure, and any other class, even if drawn from
an entirely different domain for which the same structure is applicable (at the least, any
class featuring as many facts and the same number or more dimensions to be related), can
be treated equivalently by the system acting upon those knowledge bases. Undoubtedly,
multidomain connectivity is a challenge that deserves consideration in KBIS design if
these systems are to resemble natural intelligence, and applicable research in cognitive
science abounds.

3.4. Creativity

Another human intelligence emulation failure of intelligent expert systems lies in
their inability to be creative. If one considers composing a beautiful melody a difficult
problem, an expert system can certainly not solve such a problem—at least not consistently.
Creativity is evident in countless human activities, although the cognitive mechanisms and
neural structures that support creativity have remained elusive. Thagard and Stewart [99]
proposed a computational account of the AHA! Experience accompanying creative thinking.
They suggest mental representations are patterns of neural activity and that combining
unconnected neural patterns may produce novel representations. Creativity as a combina-
tion of representations has also been suggested elsewhere [100–102]. Thagard and Stewart
describe computer simulations that produce new patterns of neural activity whereby con-
cepts combine to form a novel representation. Fauconnier and Turner [103] describe this
notion of conceptual blending as a synthesis of frame-like input spaces containing the
conceptual framework and semantic knowledge associated with each element combined
into a blended space (e.g., “house” and “boat” blended to a new notion of “houseboat”). In
addition, Eppe et al. [104] note challenges inherent to generating a computational account
for blending. Combining input spaces demands a preliminary generic space containing
the relational properties and similarities that may tie them together (such as “a person
lives in a house on ground,” “a person travels in a boat on water,” and “a person lives in a
houseboat on water”). Most present blending accounts cannot compute the generic space
on their own. Moreover, the number of possible combinations of inputs may be immense,
and the computational resolution of these combinations may be highly inefficient.

On the other hand, Hofstadter and the Fluid Analogies Research Group [105] suggest
that the answer to how expert systems can be made more creative lies with analogical
thinking. Through the process of analogy construction, one filters some information and
adds other information that makes concepts “fluid” rather than static (see [106] for a
discussion of concepts as analogies). Consequently, considerable attention has been given
to creativity as a process of analogical generalization, and it was described as heuristic-
driven theory projection (HDTP; [107]). HDTP is an algorithmic system that is meant
to generalize mappings between the source and target domains given their structural
commonalities. Guhe et al. [108] suggest, however, that this is merely a special case of
conceptual blending and may not always be sufficient to describe the generation of novel
concepts [109,110]. Besold and Robere [111] also provide thorough argumentation bringing
into question the computational tractability of HDTP as a general account for human
creativity. Accordingly, rather than incorporating an analogical engine in expert systems,
we take the parsimonious route and suggest that much of the required fluidity may be
achieved by following the suggestions discussed in previous sections for incorporating
domain integration, attention shifting, and representational plasticity in these systems. In
fact, these notions are roughly analogous to the underlying processes specified by Thagard
and Stewart [99] in their model of creativity: namely, the model’s reliance on malleable
mental representations (representational plasticity), combining neural patterns to produce
novel representations (domain integration), and changes in perceptual inputs (attention
shifting). Creative human cognition may be an emergent property of these fundamental
processes, and accordingly, the capacity of an expert system to emulate human creative
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behavior may be reliant upon each of these previously discussed shortcomings being
resolved. As such, KBIS designers seeking improved creativity ought to explore these
hypothesized sources of human creativity.

3.5. Concept Learning

Previously, we discussed the importance of organizing data in ways that facilitate their
retrieval and connection to other related data. We also argued that the way of organizing
data under the object-oriented programming paradigm is consistent with well-known
cognitive models of semantic memory [24,46]. Both approaches use the same simple
and intuitive core idea of arranging concepts or categories of entities in terms of a class
membership tree-like structure. However, although conceptual organization is important
in the efficient retrieval of information, it says little about one of the key capacities of an
intelligent human agent: namely, the ability to form concepts.

The concept learning and classification literature in the field of cognitive psychology is
quite extensive (for a gentle introduction to concepts, see [106]). However, this discussion
is confined to a particular result that may have a positive impact on expert systems design.
In a recent work, Vigo [28,29] proposed a mathematical theory of human conceptual
behavior whose models predict the degree of subjective difficulty experienced by humans
when learning different types of well-defined and ill-defined concepts. The core models
associated with generalized invariance structure theory, or GIST (e.g., the invariance law of
human conceptual behavior, or the GISTM), have made accurate predictions with respect
to very large classes of concepts that have been of great interest to researchers in the
past few decades. In GIST, a system for how structural precursors of concept formation
inform a rule formation system is proposed. Under the system, concepts are formed
by the detection of atomic patterns referred to as invariants. These patterns are then
stored as compound memory traces called ideotypes. Ideotypes facilitate the formation of
simple rules, prototypes, and holistic magnitude judgments used to classify objects in the
environment. Furthermore, a new theory of information derived from GIST and referred
to as GRIT (generalized representational information theory, see [112] for an extensive
investigation supporting GRIT’s efficacy) provides a way of measuring the information
carried by objects of a category about the category.

Thus, in short, GIST provides a framework for explaining and predicting how the
human conceptual system simplifies complex categories of datapoints into simpler ones
containing the essential information present in the larger sets—a key landmark of human
intelligence. As such, it provides a deterministic mechanism for human generalization and,
hence, can enrich the capabilities of modern expert systems in several ways. In particular,
we envision engines capable of capturing the essence of a database of facts in KBISes and
condensing them to essential facts in ways consistent with the way that human experts
would do it. A possible way of doing this was described in detail by Vigo [113]; however,
here, a simple sketch of the approach is given.

Figure 4 below illustrates the knowledge information compression module that may
be at the core of a conceptualizing engine. This module shall be referred to as the HIC
(human information compression module). Whenever new facts are added to the database
of facts, the combined facts are reduced by the conceptual engine. To do this, facts are
first represented as objects. Sets of these objects are used to build concepts. The num-
ber of nonessential objects in the database may be reduced by applying the conceptual
information measure developed by Vigo [114] that is derived in GIST and is referred to
as “representational information”. The reduced database consisting of these essential con-
cepts/facts is then used as a secondary database that better emulates the efficient derivation
of heuristic solutions whenever the inference engine acts on its content. Indeed, when the
inference engine operates on the HIC database, efficient and elegant advice of the type
often displayed by a human expert would be expected. Admittedly, such advice will not
be as precise as advice generated from the full database of facts, but it will be a good
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approximation based on the kind of generalization and, hence, information compression
that the process of concept formation facilitates.
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If future generations of KBISes are to attain a capacity for emulating the decisional
and inferential capacities of human experts, they will need to account for these limitations
to the current systems. Cognitive scientific empirical and theoretical research abounds with
potential directions that can inform future KBIS design. Designers should pay attention
to the need for problem-solving engines that can incorporate alternative representations,
that is, representational plasticity; overcome the limitations of functional fixedness to
become more functionally dynamic and narrow knowledge domains for greater generality
and integration; pursue novel creative solutions; and compress information efficiently by
processes analogous to human conceptual representation. These adaptations will follow in
an established tradition for KBIS improvement driven by more human-like processes and
the inspiration of human cognitive research.

4. Conclusions

KBISes as engines truly capable of emulating human intelligence have not yet been
realized. To alleviate this gap, in addition to summarizing the problems of uncertainty,
organization, ambiguity, and adaptability—recognized as important factors in the develop-
ment of expert systems—we proposed five additional unresolved discrepancies in KBIS
design. Incorporating the capacities of representational plasticity, attention shifting, do-
main integration, creativity, and concept formation in the new generation of expert systems
will result in systems that fare the best chance at embodying truly intelligent behavior.
While presenting these novel approaches, this paper has also offered brief suggestions
as to how they may be implemented. Thus, this article has shown how theoretical and
empirical developments in the field of cognitive psychology may inform and fortify future
generations of knowledge-based intelligent systems.
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