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Abstract: Verbs and nouns gear θ-dependencies, Case, agreement, or construal relations. Building
on Chomsky’s 1974 decomposition of such categories into ±N, ±V features, by translating said
features into ±1, ±i scalars that allow for the construction of a vector space, this paper studies the
possibility of organizing said features into 2 × 2 square matrices. In the system proposed to ex-
plore “head-complement” relations, operating on nouns yields a measurable/observable (Hermitian
matrix), which in turn limits other potential combinations with abstract lexical categories. Func-
tional/grammatical categories in the system deploy the same features, albeit organized differently in
the matrix diagonal and off-diagonal. The algebraic result is a group with well-defined mathematical
properties, which properly includes the Pauli group of standard use in quantum computation. In
the system, the presumed difference between categories and interactions—here, in a context of the
head-complement sort—reduces to whether the magnitude of the matrix eigenvalue is 1 or not, in the
latter instance inducing asymmetric interactions.

Keywords: lexical categories; functional categories; (external) merge; matrix syntax; Pauli group

1. Featural Specifications as Categorial Dimensions

Let us examine the head-complement relation, which presupposes an understanding
of categories that can be heads and what we presume to be their complements.1 In current
parlance, we take those to be instances of External Merge (EM), of the 1st-Merge type: this
is inasmuch as the process is presumed to take an item from the lexicon (the head) and
asymmetrically associate it to a projection, its complement. Evidently, that presupposes
understanding what is meant by “head” and “projection”, or the presumed “endocentricity”
of phrases. Bear in mind that a Chomsky grammar is a 4-tuple [Σ, T, N, P], specifying rules
over arbitrary vocabularies of “non-terminals” N and “terminals” T, thus allowing a set of
productions P starting on initial axiom Σ. Rules of the sort X→ ψ, where X ∈ N and ψ is
some arbitrary string of terminals in T*,2 do not guarantee the endocentricity of phrases,
since (by that formalism) one could rewrite a VP, say, as a noun followed by a prepositional
phrase only (or any other string of terminals, but no verb). If these constructions do not
exist in natural language, the formalism is inadequate [1].

The problem of endocentricity is intimately related to the problem of selection
(e.g., that intransitive, transitive, or ditransitive verb takes different dependents). It is
because a transitive verb takes a complement that it is immediately dominated by a VP of a
(transitive) kind, and similarly with other such dependencies. That is the essence of the
“lexicalist” idea behind bottom-up projections, sketched in Chomsky [2] and then pursued
from Jackendoff [3] to Speas [4], the bases (together with Muysken [5] and Kayne [6])
for Chomsky’s Bare Phrase Structure (BPS) [7]. To capture such syntagmatic interactions,
linguists had to consider systematicities implied not just in the terminal vocabulary (nouns
as opposed to verbs, marked vs. default exemplars, etc.), but also the generalizations within
the non-terminals (subcategorization restrictions among the former, label endocentricity).
The standard treatment of these ideas presumed “distinctive features” of some sort [8,9].

Chomsky [2] extended distinctive phonological features to the noun vs. verb dis-
tinction. Just as consonants are taken to be maximally distinct from vowels (which the
orthogonality of features [+consonantal,−syllabic] vs. [−consonantal, +syllabic] expresses),
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so too verbs are seen, in demonstrable senses, as maximally distinct from nouns, as reflected
in Chomsky’s equally orthogonal categorial features [−N, +V] vs. [+N, −V]. In fact, Chom-
sky seems to have been concerned with orthogonality between syntactic “dimensions” of
some sort; just as the “vowel dimension” is as different to the “consonant dimension” as can
be, so too can nominal expressions in syntax be seen as orthogonal to verbal expressions.
This has (arguable) consequences that Varro already emphasized in De Lingua Latina, Vol 2:
Book IX, XXIV-31, when dividing “speech into four parts, one in which the words have
cases, a second in which they have indications of time, a third in which they have neither, a
fourth in which they have both” (translated by Kent [10]). It is actually remarkable how
similar this is to Chomsky’s categorization for the X’-schema:

As far as the categorial component is concerned, it seems to me plausible to suggest that
it is a kind of projection from basic lexical features through a certain system of schemata
as roughly indicated in (1) and (2):

(1) [±N, ±V]: [+N, −V] = N[oun]; [+N, +V] = A[djective]; [−N, +V] = V[erb],
[−N, −V] = everything else;

(2) Xn → . . . Xn−1 . . . , where xi = [α = ±N, β = ±V]i and X1 = X

Let us assume that there are two basic lexical features N and V (±N, ±V). Where the
language has rules that refer to the categories nouns and adjectives . . . they will be
framed in terms of the feature +N. and where there are rules that apply to the category
nouns and adjectives, they will be framed in terms of the feature +V. [2] (Lecture 3, p. 2)

What is the nature of those “dimensions”? One possibility is to liken them to the
underlying “vision maps” that stem from cones and rods (see [11]). In this view, what-
ever the nature of features may ultimately be, it is mediated by brain physiology. This
approach is promising, for instance, for voice onset time (VOT), associated by Poeppel [12]
to specific “brain events”. That seems just as reasonable for activating vocal folds, upon
the appropriate motor commands, as the response of cones of different types is for light of
diverse frequencies—if presuming efference vs. afference. For that approach, the project is
empirical in a classical sense, and perhaps harder for linguistic features (if not present in
other animals we allow ourselves to experiment with) than for vision features one detects
even in insects. Much as I respect that line of reasoning, I have little to contribute to it in the
present context. But there is a different, though compatible, approach to feature dimensions:
that their nature is algebraic and, hence, arguably prior to any substantive feature system.
In phonology, the ± consonantal or ± syllabic dimensions seem more fundamental than,
for example, ±continuant or ±labial features, in terms (at least) of universal relevance in
articulating morpho-phonemics and the orthogonality conditions presumed for the deeper
type. The issue I want to explore here is whether similar fundamental dimensions exist
in syntax.

Note that Chomsky could have chosen attributes A or P (for adjectives and preposi-
tions) instead of N or V, since any two binary features obviously yield four distinctions.
But he assumed, instead, “that there are two lexical features N and V”, which accords with
traditional intuitions: in some sense, nominal and verbal dimensions are more essential
than adjectival or prepositional ones.3 Chomsky [2] (lecture 3, p. 3) also asserts that the
initial phrase-marker, prior to any transformations modifying it, is “projected from the
lexical categories uniformally”. He then clarifies his hypothesis that: “in a fundamental
way the expansion of major categories like NP, VP, AP is independent of categorial choice
of the head . . . [as] instantiations of the same general schemata.” This presupposes an
understanding that syntax is somehow articulated around N and V dimensions. The sug-
gestion I will be pursuing here is that the N vs. V distinction reflects algebraic conditions
that also underlie our number system. This is for reasons Chomsky often emphasizes, going
back to Alfred Wallace (see [13]): that mathematical knowledge could not have served any
obvious evolutionary purpose—and, thus, is seen as an outgrowth of language. But before
developing that point, I would like to reflect on the topological nature of phrases.
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2. Lindenmayer Systems in Matrix Representation

A standard Chomsky-grammar involves rewriting mechanisms applying one-at-a time
(Chomsky’s [14] “Traffic Convention”). While rewrite rules were abandoned half a century
ago (see [15,16]), actually projecting systems still preserve the fundamental properties of
a Chomsky-grammar. This is demonstrably the case for string-based systems like those
in [17], but it can also be argued for the BPS system in [7] or current extensions. A relation
like (3a) is equivalent, at the relevant level of abstraction, to one as in (3b):

(3) a. The merge of α and β results in {α, β}
b. {α, β}→ α, β

Needless to say, it makes good sense to project (whatever that ultimately means) α or β as
in (3a), the relation being “bottom-up”, whereas the same is not true about the “top-down”
(3b). As will be clear immediately, however, this is immaterial to the topology of the
resulting phrasal objects. To see that, we need to consider a phrasal entity that boils down
to the maximal expansion of procedures as in (3), literally to infinity because they are (in
principle) recursive on all branches.

Lindenmayer [18] explored the elimination of Chomsky’s Traffic Convention, so that
in Lindenmayer (L-)systems each rewritable symbol must rewrite, at whatever derivational
line the system is running. This is the reason L-systems, while good at modeling some
fractal structures, do not generate formal languages, even though they describe the overall
topological space of a certain natural language expansion. For instance, Boeckx, Carnie,
& Medeiros [19] show how the customary syntactic X’-theory, presumed by Speas [4], yields
maximally expanding structures as in (26) (where the “slash” notation is meant to represent
an unbounded expansion):
(4)
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a constant): 

(5)  

 

More importantly for our purposes, in this Lindenmayer (maximally expanded) fash-
ion, there is a useful matrix representation for the ensuing phrasal object and its corre-
sponding topology.

Medeiros [20] expands on an idea dating back to King [21], for an L-system like (5),
over n specific symbols (here three: +, −, and k). The idea is to associate these symbols
to entries in square matrix columns 1 to n, next to represent each rule expansion as corre-
sponding square matrix rows, utilizing a zero for whichever symbol a rule expansion lacks.
Uriagereka [22] represents constants as their own column, albeit with a corresponding row
of only zeroes. For (5):
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All that (6) encodes is that process (5a) (merging + and −, projecting +) is presented as
one token + and one token − in the “+ row” (with zero ks in that row); and process (5b)
(merging k and +, projecting −) is coded as 1 token + and one token k in the “− row” (with
zero − s in that row); while the k row is all zeroes because k doesn’t expand, as it is “its
own projection”. As such, this is just a compact way to pack the relevant information
into a square matrix. One such matrix is a particularly elegant mathematical object, with
an associated characteristic polynomial calculated from scalars associated to the matrix
diagonal (it’s so-called trace and determinant).

While readers can find details about matrices in any standard introduction to linear
algebra (even in the Wikipedia entry for “square matrix”), it is worth bearing in mind
that the characteristic polynomial for a square matrix is a fundamental invariant across
different bases (which keep relations unchanged) for the matrix. Recall that a polynomial
is a collection of monomial terms Kx, where constant K is the term’s coefficient and a root
of the polynomial turns it to an equation; the root of polynomial P(z) is the number zj
such that P(z)j = 0. P(z) is of degree n if it has n roots, its degrees of freedom. Thus, the
characteristic polynomial of a matrix can be thought of as its numerical description. The
polynomial roots (solutions to the polynomial when construed as equating zero) constitute
fundamental elements in the matrix diagonal, its eigenvalues. From those, one can compute
the matrix eigenvectors, or characteristic vectors of the linear transformation the matrix
represents, which changes by a scalar factor when the linear transformation is applied—the
factor in point being the eigenvalue. Aside from having the eigenvalues as roots, among
the polynomial coefficients are the matrix trace (sum of the elements in the diagonal) and
determinant (here, a product of the elements in the diagonal minus the product of those
in the off-diagonal, with further caveats for higher-dimensional matrices). It is interesting
to note for our purposes that, with Medeiros’s method in place, we can compute how
an L-system grows as it expands. The degree n of the characteristic polynomial tells us
the dimension n x n of its corresponding square matrix and, therefore, the number of
rewrite or Merge type applications that correspond to it in an L-system. In turn, one matrix
eigenvalue, often called its spectral radius, can be defined as in (7a), a quantity related to the
topological derivational entropy hT of a matrix A, (7b):

(7) Derivational entropy
a. For spectral radius ρ(A), square matrix A’s largest absolute value λmax of A’s eigenvalues,
b. A’s topological derivational entropy hT = log2 λmax

So relevant to this calculation of “how the system grows” is the magnitude of the
highest eigenvalue of its associated matrix. The systems that interest us are “fractal” in that
the recursive application of their constituent rules, when maximally applied, correspond
to square matrices whose repetitive effect on the system is tracked by self-multiplication
(a matrix power), as shown for related systems in Ott [23]. We can see this idea at work by
simply running the successive powers of an L-system interpreted through its Medeiros-
matrix (henceforth M-matrix) as in (6):

(8)

1 1 0
1 0 1
0 0 0

 1 =

1 1 0
1 0 1
0 0 0

;

1 1 0
1 0 1
0 0 0

2 =

2 1 1
1 1 0
0 0 0

;

1 1 0
1 0 1
0 0 0

3 =

3 2 1
2 1 1
0 0 0

; . . .

With each successive power we obtain, in the matrix top row, the number of symbols of a
given kind in a new derivational line in the L-tree, as readers can check by simply counting
them in (5) (one can also try as an exercise the next power, to see how the next top row will
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be 5, 3, 2, etc.).4 Slightly more technically, for any two successive matrix powers An and
An+1, the ratio between the spectral radiuses ρ(An+1)/ρ(An) is the initial spectral radius
ρ(A1) for the seed matrix.5

Note: the claim is not that an object like (4), its abstract version in (5), or its square
matrix representation in (6), are anything like “syntactic trees” that users parse in the
performance of their grammatical knowledge. It is, instead, that the underlying topological
representation of the (X’-theoretic) phrasal scheme has the “shape” implied in (6), whose
derivational entropy, in the sense in (7), can be simply calculated—this quantity, again,
telling us “how the system grows”. Here is not the place to demonstrate this, but actually the
X’-theoretic representation in (4) is one among infinitely many that branch, albeit in binary
fashion (or presuming binary Merge) and involving “self-projecting” constants (or absolute
terminals) like k there. Indeed, among such binary structures, it is provably the most
elegant in terms of its potential to pack the largest amount of structure (see Uriagereka [24]).
One can think of the general topology of a phrasal system as the equivalent of a terrain over
which to ride a bike. Thus, Tour de France stages are characterized by a “profile”, which
can be “flat”, “mountainous”, “hilly”, “potentially windy”, and so on—characteristics that
obviously affect how fast and safely cyclist ride, in a peloton or otherwise, with likely
breakaways or a final sprint, etc. So too, the phrasal topology is basically determining
what sorts of parse-trees are possible within a given (grammatical) system, at this point
merely worrying about constituency conditions (note also that the matrix representation
ignores linear order). In the present paper, I will be concentrating on only head-complement
relations (see Note 1).

3. The Fundamental Assumption and its Fundamental Corollary

After having completed that excursus into phrasal topologies represented as M-
matrices, we can now return to the issue of Chomsky’s 1974 system as presented in (1)
and (2) above. One could soundly express the substantive intuitions we discussed in the
following formal fashion:

(9) Fundamental Assumption
The V dimension is a (mathematical) transformation over an orthogonal N dimension.

If we instantiate (5) in the complex plane, we could conclude:

(10) Fundamental Corollary
The N dimension has unit value 1; the V dimension, unit value i; [±N, ±V] = [±1, ±i].

Before being tempted to ask “what that even means”, in substantive terms, note
an immediate consequence of the Fundamental Corollary: it allows us to operate with
Chomsky’s matrices. Clearly, [±N, ±V] makes no claim different from [±V, ±N], in that
alternative order, whereas [±1, ±i] can be entirely different from [±i, ±1]. That may matter
much, formally, which we need to delve into, so as to seriously (attempt to) answer what
(10) might imply, entail, and in the end mean.

Chomsky [2], in the same section quoted in Section 1 above, raised the following issue:

There will also be subsidiary features, that are necessary to distinguish auxiliaries
from main verbs and adverbials from adjectives for example. So there will be a
hierarchy of categories, super-lexical categories, super-super-lexical categories
. . . In other words it ought to be in essence the case that the structure of NP’s,
S’s, and AP’s should be about the same . . . and this will be true of higher order
endocentric categories.

Now: in what sense are lexical projections, like noun phrases, and grammatical projections,
like sentences, “about the same”? And what are “higher order endocentric categories”?
One can always introduce more dimensions, for instance calling A/P dimensions ±A
and ±P, playing the substantive game already alluded to for color and cones, VOT, and
so on. But a direct alternative is to argue that further formal conditions emerge by alge-
braically operating with the fundamental ones in (10)/(11) only—that is, by taking our
formalism seriously.
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Once again, on p. 2 (his number (38)), Chomsky orders his features in the familiar
fashion of [±N,±V]. This, as such, may be quite different from expressing the mere presence
of ±N and ±V features, if the brackets imply order—one different from that in [±V, ±N].
The theorist needs then to decide whether that is a notational variant, a matter that arises
with ±1 and ±i, as well as expressions combining these: [±1, ±i] and [±i, ±1] could be
equivalent ways of expressing a complex number, indicating some value in the x axis
(for ±1) and the y axis (for ±i); but these two could also be different vectors. Indeed,
Orús et al. [25], presuming (5)/(6), argue for the relevance of representing these notions in
terms of the diagonal of 2 × 2 square matrices as follows:

(11) a.
[
±1 0
0 ±i

]
b.
[
±i 0
0 ±1

]
It is entirely possible that these square matrices have little to do with the Medeiros

square matrices discussed in Section 2 to represent L-trees. But because one should try bold
hypotheses to test their validity, I will be working towards a system in which, in the end,
the ontology of the objects in (11) is actually the same one as the ones for L-trees already
discussed. I will not argue that point, however, until Section 7 of this paper.

Once again, the advantage of matrices is that we can treat them as linear operators
with standard properties,6 for traces and determinants, characteristic polynomials, or
eigenvalues:7

(12)

a.
[

1 0
0 −i

]
b.
[
−1 0
0 i

]
c.
[

1 0
0 i

]
d.
[
−1 0
0 −i

]
tr. 1 − i tr. −1 + i tr. 1 + i tr. −1 − i
det. −i det. −i det. i det. i
λ2 − (1 − i)λ − i λ2 + (1 − i)λ − i λ2 − (1 + i)λ + i λ2 + (1 + i)λ + i
λ1 = −i; λ2 = 1 λ1 = −1; λ2 = i λ1 = i; λ2 = 1 λ1 = −1; λ2 = −i

(13)

a.
[
−i 0
0 1

]
b.
[

i 0
0 −1

]
c.
[

i 0
0 1

]
d.
[
−i 0
0 −1

]
tr. 1 − i tr. −1 + i tr. 1 + i tr. −1 − i
det. −i det. −i det. i det. i
λ2 − (1 − i)λ − i λ2 + (1 − i)λ − i λ2 − (1 + i)λ + i λ2 + (1 + i)λ + i
λ1 = −i; λ2 = 1 λ1 = −1; λ2 = i λ1 = i; λ2 = 1 λ1 = −1; λ2= −i

Just by examining the algebraic characteristics of these Chomsky objects (through the
lens of (10)), we know the categories stand in specific formal relations with regards to one
another. In fact—because multiplying matrices with identical real or inverse complex entries

result in the identity matrix
[

1 0
0 1

]
, and multiplying any of the objects in (8)/(9) among

themselves, or among the eight possible results of multiplication among the combinations
as in Table 1—one can prove that the Chomsky matrices align into an Abelian (commutative)
group for matrix multiplication (see Note 7).

Table 1. Chomsky group.

Inverse,
Adjoint

[
1 0
0 −i

]
←→

[
1 0
0 i

] [
−1 0
0 i

]
←→

[
−1 0
0 −i

] [
−i 0
0 1

]
←→

[
i 0
0 1

] [
i 0
0 −1

]
←→

[
−i 0
0 −1

]
Multiplication

within (13)

[
±1 0
0 +i

][
±1 0
0 +i

]
=
[
±1 0
0 +1

]
Multiplication within (14)

[
±i 0
0 +1

][
±i 0
0 +1

]
=
[
±1 0
0 +1

]
Multiplication from

(13) to (14)

[
±1 0
0 +i

][
±i 0
0 +1

]
=
[
±i 0
0 +i

] Multiplication from
(14) to (13)

[
±i 0
0 +1

][
±1 0
0 +i

]
=
[
±i 0
0 +i

]



Philosophies 2022, 7, 102 7 of 22

That basically means the multiplication in point is a very stable scaling, always staying
within the algebraic space that could be characterized as involving objects of the following form:

(14)
[
±1, ±i 0

0 ±1, ±i

]
One way to interpret such matrices as linear operators (see Note 6) is through column vectors:

(15) a.
∣∣∣∣±1

0

∣∣∣∣, b.
∣∣∣∣ 0
±1

∣∣∣∣
Matrix (14) operates on whatever vector space it transforms by carrying its “horizontal”
or x unit vector to (15a) and its “vertical” or y unit vector to (15b), to scale that space from
those initial conditions. This may be harder to visualize for the complex entries, with these
column vectors:

(16)
∣∣∣∣±i

0

∣∣∣∣, b.
∣∣∣∣ 0
±i

∣∣∣∣
But we just have to imagine a “rotation” of the plane where the x and y unit vectors exist
onto a more abstract hyper-plane, as it were “popping out of the page”, to intuit further
dimensions of transformation that we allow ourselves to contemplate, when considering
the effect of operating by way of the combinations that (16) implies. To be sure, not having
given any “meaning” (of any kind) to these numbers, such considerations are purely
abstract—but I return to that shortly.

4. The Jarret Graph

To relate those abstract ideas to grammaticality, consider self-products in the Chomsky
group (Table 2):

Table 2. Self-products for the Chomsky group.[
±1 0
0 +i

]
2 =
[

1 0
0 −1

] [
±1 0
0 +1

]
2 =
[

1 0
0 1

] [
±i 0
0 +1

]
2 =
[
−1 0
0 1

] [
±i 0
0 +i

]
2 =
[
−1 0
0 −1

]

For matrices with just real entries, the result is the identity matrix, while for those

with complex entries only, the result is its negative counterpart,
[
−1 0
0 −1

]
, also in the

group. The result of self-multiplying matrices with mixed entries is
[

1 0
0 −1

]
and

[
−1 0
0 1

]
,

depending on whether the complex entries are. This is a well-known matrix, called ±σZ,
first systematically studied by Wolfgang Pauli while analyzing electron spin, around 1924
(see https://en.wikipedia.org/wiki/Pauli_matrices (accessed on 28 August 2022)). This
matrix is remarkably elegant, as shown through relevant formal characteristics:
(17)

a.
[

1 0
0 1

]
b.
[
−1 0
0 −1

]
c.
[

1 0
0 −1

]
d.
[
−1 0
0 1

]
tr. 2 tr. −2 tr. 0 tr. 0
det. 1 det. 1 det. −1 det. −1
λ2 − 2λ +1 λ2 + 2λ + 1 λ2 − 1 λ2 − 1
λ1 = 1; λ2 = 1 λ1 = −1; λ2 = −1 λ1 = −1; λ2 = 1 λ1 = −1; λ2 = 1

Note how the matrix trace (sum of entries in the matrix diagonal) is zero for both (17c)
and (17d) (the negative counterpart of (17c)), as a consequence of which the characteristic
polynomial results in the elimination of the λ term and, therefore, an identical polynomial
for σZ and -σZ. This is unlike what we see for the identity (17a) and its negative counterpart
(17b), each with its characteristic polynomial. Consequently, the eigenvalues (roots of the
polynomial) are the same for σZ and -σZ (again, unlike for the identity and its negative).
There is no other pair of matrices in the Chomsky group for which this is true; so suppose
we build on this elegant formal fact.

https://en.wikipedia.org/wiki/Pauli_matrices
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The reason for that is not algebraic but informational, since what we should be seeking,
in any linguistic organization, is a formal system for which syntactic computations can be
grounded with reasonable priors—then to build semantic and phonological nuances “on
top”. If nature’s job is to decide on initial conditions for a computational system deploying
the Chomsky matrices, there is no better formal solution, in terms of matrix elegance, than
to have the base step in the system land on “the most elegant” (symmetric, orthonormal)
matrix. Curiously, as we see from Table 2, precisely all the original Chomsky matrices (in
the sense of literally interpreting his 1974 [±N, ±V] as in (1), with the items listed, in that
order, in the matrix diagonal) land on Pauli’s σZ after squaring them. This is arguably
significant too, under certain assumptions about Merge.

As mentioned already in Section 1, (external 1st) Merge, EM, is inherently asymmetrical
for a head and the projection of its complement. That works directly for the operation
after it has started. But it is computationally impossible to merge a head to a projection if
we do not have, yet, any projection formed in a given derivation—in the pristine moment
in which just two heads are selected for assembly. A natural way to address this is the
idea in Guimarães [26] of allowing the self-merger of heads, at the base of a derivation.
Then we can characterize EM as an operation resulting in an anti-symmetrical relation
(i.e.: asymmetrical in all instances but the relation of an element to itself). But once again
note that the results in Table 3 obtain for all Chomsky matrices:

Table 3. Self-products for the original (reinterpreted) Chomsky matrices.[
1 0
0 −i

]
2 =
[

1 0
0 −1

] [
−1 0
0 i

]
2 =
[

1 0
0 −1

] [
1 0
0 i

]
2 =
[

1 0
0 −1

] [
−1 0
0 −i

]
2 =
[

1 0
0 −1

]

In other words, self-merging (here understood as self-multiplication) of the nouns, verbs,
adjectives, and prepositional representations results in σZ, obviously collapsing the formal
results into identical representations. While algebraically this is entirely fine, for a symbolic
system it is the equivalent of Paul Revere’s famous code having been the senseless “One
if by land, one if by sea!”8 The whole point of a simple code is to have different signals
representing different events, which is precisely what the self-multiplication in Table 3
denies, since matrix multiplication is not a structure-preserving operation. Is there a
solution to this information impasse?

Actually, there is a simple one: phrasal axioms. We routinely take syntactic representa-
tions to map to some meaning, which we customarily do by axioms to establish relevant
representations; e.g., mapping noun phrases to entities or sentences to truth values. So
suppose we assume this:

(18) Anchoring Axiom

Only nouns self-merge.
While obviously (18) is not algebraic, it is as straightforward, as such, as stipulating that NPs
map to entities. It is, of course, cognitively interesting why (18) should be, and one could
imagine that the alien heptapodes in the movie Arrival, let’s say, had a different anchoring
axiom in their cyclic view of time—perhaps for them only verbs self-merge. The point is
that any information system with associated meaning must presume axioms of this sort,
and this, as we see shortly, does work.

For initiating the computation in the self-merger of nouns—as the first product in
Table 3, in Chomsky’s terms—limits the next steps in direct ways. This is best seen by
considering the following graph, helpfully proposed to me by physicist Michael Jarret.
In (19), the notation is algebraic, linguistic codes tracking the presumed substance. The
Chomsky matrices come with a “hat” ˆ, indicating their being taken as operators on the
vector space of the Chomsky group. By the Anchoring axiom, this means a self-merging

noun
[

1 0
0 −i

]
(boldfaced in (19)) plays a dual role: as an operator on itself, with an

argument of identical formal characteristics.
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even if other mappings are algebraically viable, they lead to disconnected graphs, or 
graphs without the recursive condition that (19) presupposes. 
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(20)  

 

The original Chomsky matrices can be seen as operators on “projections” within the 
Chomsky group, whose “labels” are the determinants listed in (20) (there are no other 
possible determinants for objects in the Chomsky group). I am using those words in 
quotes because, algebraically, the “projections” are simply matrices within the group that 
are not being treated as operators, while their “label” is nothing but their determinant 
(which is equivalent for “twin” matrices with the same trace and eigenvalues). The graph 
makes the following categorial generalization: 
(21) “Selection” conditions for operators in the Jarret Graph: 

a. Nouns may either self-merge or take PPs to NPs 
b. Verbs take NPs to VPs 
c. Prepositions take NPs to PPs 
d. Adjectives take PPs to APs 

Note, also, how the Jarret graph only relates the categories within the Chomsky group
that involve real entries in the top row, and how the Chomsky operators take one of two
“twin” matrices—in the sense that they (NP, VP, PP, AP) share the same eigenvalues and
determinant (−1 for NP, i for VP, −i for PP, 1 for AP projections). This is a consequence of
the Anchoring axiom and “semiotic” assumptions: the idea that the computational system
seeks to maximize the connections among categories in the Chomsky group, and thus even
if other mappings are algebraically viable, they lead to disconnected graphs, or graphs
without the recursive condition that (19) presupposes.
(20)
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The original Chomsky matrices can be seen as operators on “projections” within the
Chomsky group, whose “labels” are the determinants listed in (20) (there are no other
possible determinants for objects in the Chomsky group). I am using those words in quotes
because, algebraically, the “projections” are simply matrices within the group that are not
being treated as operators, while their “label” is nothing but their determinant (which is
equivalent for “twin” matrices with the same trace and eigenvalues). The graph makes the
following categorial generalization:

(21) “Selection” conditions for operators in the Jarret Graph:

a. Nouns may either self-merge or take PPs to NPs
b. Verbs take NPs to VPs
c. Prepositions take NPs to PPs
d. Adjectives take PPs to APs

What is remarkable about (19) is that the statements in (21), substantive though
they may seem, have no semantic cause to them: they follow from the algebra, once
the Anchoring Axiom is established and “semiotic” conditions (e.g., about involving
all categories into a connected, recursive, graph) are presumed. These may map to the
semantics, but not because of meaning.9

5. Non-Algebraic Assumptions in the Jarret Graph

To see the basic algebraic possibilities presumed in the Jarret Graph, consider the
determinant products in Figure 1, where the graph, expressed in terms of the matrix
determinants as in (20), correspond to the highlighted possibilities to the right of the table.
Of course, one needs to consider why the other algebraic possibilities in Figure 1 (covering
the entire space of combinations) do not result in a graph equivalent to the Jarret Graph,
with grammatical reality.
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Figure 1. Determinant products for the matrices in the Chomsky group.

The answer is substantive: the Anchoring Axiom—plus semiotic/information assumptions
about to be specified—yields the Jarret Graph as what the language faculty found within
this algebraic space. A different species (anchoring the system on verbs, prepositions, or
adjectives) would yield a different solution, as could a system that is not meant to be used
to encode and share information.

To ponder why other possibilities do not arise, consider (22),10 which would wreak
havoc on the “selection” generalizations in (21) (vis-à-vis the descriptively adequate graph
in (19)):
(22)

Philosophies 2022, 7, x FOR PEER REVIEW 10 of 22 
 

 

What is remarkable about (19) is that the statements in (21), substantive though they 
may seem, have no semantic cause to them: they follow from the algebra, once the 
Anchoring Axiom is established and “semiotic” conditions (e.g., about involving all 
categories into a connected, recursive, graph) are presumed. These may map to the 
semantics, but not because of meaning.9 

5. Non-Algebraic Assumptions in the Jarret Graph 
To see the basic algebraic possibilities presumed in the Jarret Graph, consider the 

determinant products in Figure 1, where the graph, expressed in terms of the matrix 
determinants as in (20), correspond to the highlighted possibilities to the right of the table. 
Of course, one needs to consider why the other algebraic possibilities in Figure 1 (covering 
the entire space of combinations) do not result in a graph equivalent to the Jarret Graph, 
with grammatical reality.  

  
Figure 1. Determinant products for the matrices in the Chomsky group. 

The answer is substantive: the Anchoring Axiom—plus semiotic/information 
assumptions about to be specified—yield the Jarret Graph as what the language faculty 
found within this algebraic space. A different species (anchoring the system on verbs, 
prepositions, or adjectives) would yield a different solution, as could a system that is not 
meant to be used to encode and share information. 

To ponder why other possibilities do not arise, consider (22),10 which would wreak 
havoc on the “selection” generalizations in (21) (vis-à-vis the descriptively adequate graph 
in (19)): 

(22)  

 

Here we have swapped the A in the Jarret Graph for the P element, preserving the rest. 
Note, however, that (22) cannot be obtained under the assumption of the Anchoring 
Axiom and the fact that the Chomsky category for nouns is ቂ1 00 − 𝑖ቃ. What we obtain 
under those presuppositions is (23):  

Here we have swapped the A in the Jarret Graph for the P element, preserving the rest.
Note, however, that (22) cannot be obtained under the assumption of the Anchoring Axiom

and the fact that the Chomsky category for nouns is
[

1 0
0 −i

]
. What we obtain under those

presuppositions is (23):
(23)
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This is because, after Chomsky’s
[

1 0
0 −i

]
self-merges, it yields Pauli’s

[
1 0
0 −1

]
. In the

present exercise, we are swapping the next operator (using an A
[

1 0
0 i

]
, instead of a P[

−1 0
0 −i

]
); then the ensuing product is not the “twin” category

[
−1 0
0 i

]
but, rather, again

the initial
[

1 0
0 −i

]
. This graph is as algebraically fine as the Jarret Graph, but it does not

cover all eight categories in the Abelian subset of the Chomsky group: only six of them are
involved. If the point of these combinatorics is to find ways to maximally involve them all,
then (23) is simply invalid.

One could also consider a related problem as in (24), where we swap the V and the
N in the Jarret graph. Although algebraically there is nothing wrong with this either,
(24) directly violates the Anchoring Axiom, for the only way in which the system could
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start by assuming the highlighted matrix as an initial operator if Chomsky verbs,
[
−1 0
0 i

]
,

not nouns,
[

1 0
0 −i

]
, self-merge.

(24)
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To be explicit about our non-algebraic, information-driven, assumptions, we stipulate:

(25) Semiotic assumptions for algebraic syntactic matrices:
An information-based algebraic system of syntactic matrices must be:

(i) Univocal.
(ii) Complete.
(iii) Recursive.
(iv) Fully connected.

For the relevant portion of the Chomsky group (with real entries in the top row), and pre-
suming an Anchoring Axiom as in (18), this results in the Jarret Graph, whose consequence
is to indirectly describe (many) “selection” restrictions we find across languages (and see
Note 9).

Although the empiricist may find nitpickings about (21), this is the empirical payoff:

(26) Exemplars covered by the Jarret Graph:

a. [NP pictures [PP of [NP war]]]
b. [VP hate [NP war]]]
c. [PP of [NP war]]]
d. [NP proud [PP of [NP science]]]

And, obviously, some recursiveness (involving the core of the graph) is directly expressible,
as a consequence yielding so-called tail-recursion:

(27) a. [VP hear [NP stories [PP about [NP pictures [PP of [NP students [PP of . . . ]]]]]]]
b. [AP proud [PP of [NP stories [PP about [NP pictures [PP of [NP students [PP of . . . ]]]]]]]]]

I hasten to add the hopefully evident: that (21)/(26) is not meant to cover all selection
restrictions in natural language (more on this shortly) and one can certainly raise issues
about various nuances. Here are some, beyond covering further territory. Note that the
Jarret graph forces adjectives to emerge only via taking a PP argument, which poses the
issue of what to do with isolated adjectives (not proud of science, but proud period). Although
I will not pursue this now, it is clear that classes of adjectives can be easily specified this
way, since all adjectives can be (often redundantly) expressed in terms of a complement
realizing the adjectival dimension:

(28) a. red (in/of color) b. tall (in/of stature) c. large (in/of size) d. pitiful (in/?of nature)

The graph fares well for both bare (self-merged) nouns and relational nouns, and
directly describes simple PPs (more generally adpositions, although it is a delicate issue
whether postpositional phrases involve displacement). On the matter of (syntactic) “lin-
earization”, the graph takes no stand as to whether complements precede their head, but
contentious disputes in that regard (involving the order of complements across languages)
would have to be resolved to determine whether, in particular, complement-head orders
directly accord with the graph or need to be resolved involving displacement and, as
discussed below, further structure. One thing is overwhelmingly clear even for VPs across
language, though: the vast majority are not just transitive, but indeed they normally first
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involve NP direct objects—all of which the graph covers. Evidently, the issue is to ponder
in/di-transitives or clausal dependents, which is not a matter of the graph overgenerating.11

Ultimately, more important than such considerations are further consequences the
present approach affords. Note that only two matrix pairs in the Jarret Graph involve
only real entries: those corresponding to ±σZ and ±I. Matrices of that kind—with real
values in the diagonal and also real or conjugate symmetrical values elsewhere, here zero—
are called Hermitian and present particularly elegant properties, vis-à-vis non-Hermitian
counterparts. In comparable situations in particle physics, these same operators, equipped
with positive inner products (the central metric in a vector space), have real eigenvalues.
This is key to representing physical quantities, since measurements correspond to real
quantities. Interestingly, this separates what “exists” (is mathematically necessary for a
system to work) from what is “observable” (definitely identified for measurement). If we
suppose the way for the abstract syntax in that mathematical existence to interface with
concrete external systems, or definite internal thought, is through equal certainty, then only
Hermitian points in the Jarret Graph yield “interpretations”:

(29) Interpretive Axiom

Only Hermitian matrices are legible at the interfaces.
While not (logically) necessary, (29) makes sense and has architectural consequences:

primitive semantic types—like “entity” or “predicate”—correspond to the “legible” (read:
real) matrix projections.12 None of the Chomsky matrices (lexical operators) are “legible”
in that sense, so their meaning is entirely contextual: it becomes viable in the domain of
sentence grammar. Interpretive Axiom (29) should be seen in the same light as Anchoring
Axiom (18): neither is a piecemeal statement about the syntax/semantics interface, though
they both have radical consequences.

6. Beyond the Jarret Graph

The discussion in the previous section pertains only to the four Chomsky matrices
and their “projections” via matrix multiplication, yielding the Abelian group that the Jarret
Graph lives on. As noted, we also have a larger group, involving extensions of the Chomsky
matrices, obtained by flipping around the attributes. Indeed, once Pauli’s σZ is invoked, it

is natural to ask whether the other Pauli matrices (σX =
[

0 1
1 0

]
and σY =

[
0 −i
i 0

]
) should

also play a role in the system. Multiplication by either one of those yields an interesting
group of 32 matrices, 16 positive and their negative counterparts, that Orús et al. [25]
dubbed the Chomsky-Pauli group GCP. Readers will be easily able to spot here the Abelian
group arrayed into the Jarret Graph, as well as the entire Chomsky group (all of them
using diagonal matrices only; Z and I, the identity, are two of Pauli’s matrices and the
mnemonic C is a shorthand for the Chomsky objects). In addition to that, the GCP contains
also non-diagonal matrices; inasmuch as these are symmetrical with the Chomsky objects,
they are notated in (30) with an S, and they align with Pauli’s X and Y.
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(30) Chomsky-Pauli Group GCP

I =
[

1 0
0 1

]
; −I =

[
−1 0
0 −1

]
; iI =

[
i 0
0 i

]
; −iI =

[
−i 0
0 −i

]
X =

[
0 1
1 0

]
; −X =

[
0 −1
−1 0

]
. ; iX =

[
0 i
i 0

]
; −iX =

[
0 −i
−i 0

]
Y =

[
0 −i
i 0

]
; − Y =

[
0 i
−i 0

]
; iY =

[
0 1
−1 0

]
; − iY =

[
0 −1
1 0

]
Z =

[
1 0
0 −1

]
; − Z =

[
−1 0
0 1

]
; iZ =

[
i 0
0 −i

]
; − iZ =

[
−i 0
0 i

]
C1 =

[
1 0
0 −i

]
; − C1 =

[
−1 0
0 i

]
; iC1 =

[
i 0
0 1

]
; − iC1 =

[
−i 0
0 −1

]
C2 =

[
1 0
0 i

]
; − C2 =

[
−1 0
0 −i

]
; iC2 =

[
i 0
0 −1

]
; − iC2 =

[
−i 0
0 1

]
S1 =

[
0 1
−i 0

]
; − S1 =

[
0 −1
i 0

]
; iS1 =

[
0 i
1 0

]
; − iS1 =

[
0 −i
−1 0

]
S2 =

[
0 1
i 0

]
; − S2 =

[
0 −1
−i 0

]
; iS2 =

[
0 i
−1 0

]
; − iS2 =

[
0 −i
1 0

]
What I am calling “the Chomsky group” contains only diagonal matrices with mixed

(real and complex) entries (the portion arrayed into the Jarret graph also being a group,
indeed an Abelian one); the entire set of matrices with mixed entries is actually not a group.
However, readers can check (see Note 7) how the extension of the vector space in (14) as in
(31) does yield a multiplicative group:

(31) a.
[
±1, ±i 0

0 ±1, ±i

]
b.
[

0 ±1, ±i
±1, ±i 0

]
Although the present exercise is not the place to try this, one needs to determine

how, by the same methods and results, we can use the matrices in the GCP as operators to
cover some “grammatical category” space (for T, Det, C, and so on). Bear in mind that the
“grammatical structure” never starts a derivation, it is presumed to be added on “lexical
structure”—which the Jarret graph grounds. Ideally, the way to connect the Jarret graph
to a Super Jarret Graph is by applying the extended-Chomsky categories (“grammatical”
elements) to the Jarret Graph, in the process yielding a related object with “more structure”,
targeting each of the projections in (16). We should not need more than that, the super-graph
preserving the basic symmetries of the Jarret Graph, including the determinats/labels we
have established for basic “projection”—which, in this sense, could be seen as an “extended
projection” into a layer of functional structure. One should also not need further phrasal
axioms beyond the already stipulated Anchoring and Interpretive axioms, so that whatever
semantics ensues follows from, rather than determine, the algebraic fate of the graph.
Figure 2 shows a cartoon version of the SJG from work in progress.
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Figure 2. A (tentative) version of the SJG.

The Super Jarret Graph contains the Jarret Graph as a sub-graph (in the lower tier), so
that the information flow can start in the emphasized node and go from any of the nodes
in the more basic “lexical” graph to this extension, where the observable/interpretable
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categories (all Hermitian) are highlighted. Bear in mind that the super-graph contains only
sixteen of the categories in the GCP, presupposing further nuances if the entire group has
grammatical significance. The super-graph should be seen as an empirical claim based on
the formalism deployed, presuming the Jarret graph with all the implications above. The
goal, as a result of the various dynamics, should be to obtain a “periodic table” of categorial
elements of this elementary sort, ideally without having to invoke new dimensions or
higher orders. Figure 3 below is based on the Jarret Graph as already discussed, as well as
Table 3 and extensions from the presuppositions behind it: semiotic and phrasal axioms,
together with “churning calculations” in the way any “categorial grammar” of this sort
may function, applying “type changing” rules—here, matrix multiplication. The question
marks in the table are meant to suggest that we haven’t discussed here any specificities for
those categories or associated projections. In general, with any “periodic table” of this sort,
one either needs to predict why a given gap exists in the paradigm or otherwise argue for a
given underlying category “fitting the bill”.
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Note that superposing objects in the GCP and normalizing the results (to entries ±1,
±i) has a consequence for what one may think of as “phrasalization” of the categories
under discussion:

(32)
[

1 0
0 1

]
+

[
0 1
1 0

]
=

[
1 1
1 1

]
If this sort of matrix-superposition is grammatically relevant (through the M-matrices in
Section 2), it may have a dramatic effect on the interactions of the ensuing system.

Let’s start by recalling the self-products in Table 3, generalizing them for the matrices
in (32), as follows:
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(33) a.
[

1 0
0 1

]
2 =
[

1 0
0 1

]
3 =
[

1 0
0 1

]
4 = . . . =

[
1 0
0 1

]
n =

[
1 0
0 1

]
b.
[

0 1
1 0

]
2 =
[

1 0
0 1

]
;
[

0 1
1 0

]
3 =
[

0 1
1 0

]
;
[

0 1
1 0

]
4 =
[

1 0
0 1

]
;
[

0 1
1 0

]
5 =
[

0 1
1 0

]
; . . .

c.
[

1 1
1 1

]
2 =
[

2 2
2 2

]
;
[

0 1
1 0

]
3 =
[

4 4
4 4

]
;
[

0 1
1 0

]
4 =
[

8 8
8 8

]
;
[

0 1
1 0

]
5 =
[

16 16
16 16

]
; . . .

Observe how only the successive powers for matrices as in (33c) “grow”, not those as
in either (33a) or (33b). The difference between each condition is easy to state through
the spectral radius ρ(A) defined in (7a), from which the system’s derivational entropy is
calculated, as repeated now:

(34.) Derivational entropy
a. For spectral radius ρ(A), square matrix A’s largest absolute value λmax of A’s eigenvalues,
b. A’s topological derivational entropy hT = log2 λmax.

For either (33a), (33b)—or any of the matrices in the GCP—for A matrix in the sequence
of powers, ρ(A) is always 1. In contrast, some of the superposed matrices (arising from
summing matrices within GCP) have ρ(A) larger than 1.13 Consequently, the topological
derivational entropy hT of the matrices in (33a) or (33b) is log2 λmax = log2 1 = 0; in contrast,
for hT of the matrices in (33c) log2 λmax = log2 2 = 1. This topological entropy matters for
interpreting systems’ growth as they (try to) expand in L-system fashion, via rewrite or EM
merge processes.

7. Categories & Interactions Redux

At the end of Section 3 I promised to consider the bold hypothesis that the ontology of
the Chomsky/Pauli 2 × 2 objects is ultimately related, if not equatable, to the Medeiros
interpretation of L-trees topologies in square matrix fashion. Intuitively, just as it is ob-
viously relevant for a power sequence of the sort in (33c) to grow, one may take it to be
equally relevant for the power sequence of a related matrix to stay “cyclic”, as in (33a)
or (33b). The latter condition arises for a matrix A with spectral radius ρ(A) = 1, whose
topological derivational entropy is zero and, thus, the subsequent powers of A fall into a
multiplicative group. Computationally, the group in point could be seen as Markovian,
“stable” in that very repetition, perhaps like “earworms” in the stuck song syndrome
(https://en.wikipedia.org/wiki/Earworm (accessed on 28 August 2022)). While this is
meant just as a metaphor for now, the idea is that the formal representation of certain ma-
trices arising from multiplication of a computational seed disallows growth into a phrasal
topology that could permit an associated phrasing. Again, all matrices within the GCP
have the formal condition of their power sequences being “cyclic” in this sense, while
some of their (normalized) superpositions can be shown to allow for the fractal growth the
standard L-systems imply—starting with the simple (33c), which corresponds to a trivial
Lindenmayer expansion as in (35):
(35)
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For concreteness, consider the sum of three Pauli matrices in (36a), normalized
to (36b):14
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(36) a.
[

1 0
0 1

]
+

[
1 0
0 −1

]
+

[
0 1
1 0

]
=

[
2 1
1 0

]
b.
[

1 1
1 0

]
The first two of these are part of the Jarret Graph, and the third is in the Super Jarret Graph,
so it is easy, both algebraically and computationally, to see how to obtain a result that can
be normalized to the matrix in (36b) (though see Note 14). In turn, (36b) is at the core of the
X’-theoretic 3 × 3 matrix in (28), representing the variable elements in the L-system, per the
Medeiros method “in reverse”:
(37)
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Ordered context-sensitive manipulations (expressed in rewrite fashion for concrete-
ness) turn objects that (38a)/(38b) describes into the familiar X’-theoretic object in (5),
repeated below. (38a) makes a chunk of structure [ . . . ]+ in (37) that happens to be sister
to and daughter to a “-” into a constant k that does not rewrite any further; while subse-
quently (38b) prunes the “-” (whose “purpose” is only to contextualize the atomization)
out of existence:

(38) a. [ . . . ]+ → k/[ . . . __− . . . ] −
b. −→ Ø

(39)
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This is to say that well-known computational methods yield the observables, although
how to go from (37) to (39) in algebraic fashion, no matter how indirectly, is a more
interesting question.15

Differently put: the distinction between categories and interactions may actually
be algebraically subtler than anticipated. The Jarret Graph or its super-graph extension
are meant as involving matrices whose corresponding power sequences are cyclic, as
“earworms” of the grammar. Being stuck in one’s mind would allow these objects—and
corresponding vector specifications that linguistic experience may associate to their various
phonological and semantic nuances—to be identifiable in a mental lexicon. A superposition
in the algebraic bedrock, however, yields a fractal topology of the phrasal sort, in ways we
cannot explore here. This is in part because there are 232 ways of superposing (summing)
the categories in the GCP, and if the empirically observed X’-schema in (39) is any indication,
we need a further dimension for the system’s constants. That presupposes, together with
the phrasalization (via superposition), some mechanism like (38a) for the atomization of
phrasal chunks into lexical idioms, perhaps akin to whatever goes on in idiomatization
more generally, as discussed in Lasnik & Uriagereka [27].

To visualize these algebraic gymnastics, readers may imagine a lexicon as a network of
relations built on what objects in the GCP operate on: its own formal scaffolding “rotating”
in four dimensions.16 Those should express the categorial distinctions Chomsky [2] was
after: nouns, verbs, and so on, all the way “up” to determiners, inflectional categories,
or wherever else may be syntactically needed. The (ultimately mental) states this allows
ought to be the support for the lexical and grammatical categories we have been using
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in a text like this (and see Note 16). To be sure, that alone will not distinguish, let’s say,
write from read, page from noun, or any of the thousands of instantiations one carries in
one’s head—worse: anyone could carry in one’s head, in principle, and for any language
in the past or the future. But just as assigning categorial features [+N, -V] does not, in
itself, distinguish all possible nouns there could be, so too the implied algebra is meant to
combine with whatever system may be in place for the further nuances one may want to
add to the relevant vector space.17 Once we establish the vectorial units of said space as
priors, whatever substantive dimensions are added to the foundations are as immaterial
(to the structure itself) as the notes of a melody one can deploy within a given harmony.
Importantly—while there are grammatical processes that depend on the implementation
of the features this system presupposes (by changing values and attributes as relevant, to
distinguish nouns from verbs, etc.)—there is no syntactic process that depends on the exact
implementation of the relevant vector spaces. Thus, there are syntactic operations that
target nouns or verbs, but none that target the noun page as opposed to any other or the
verb write, but not the verb read, etc.18 What we are attempting to establish now is just the
algebraic foundation of the vector space where syntax lives.19

8. Conclusions

Verbs and, especially, nouns are fundamental. These elements are not just the cognitive
back-bone of the grammatical system, they also feature prominently in the main processes
the grammar instantiates: θ-dependencies, Case, agreement, or construal relations. Here I
have made nouns axiomatically start a derivational system based on matrix multiplication,
instantiating a reflexive base condition. That algebraic system can be accessed by formally
pursuing an intuition dating back to antiquity, which has an abstract “nominal” dimension
“at right angles” to a maximally distinct “verbal” dimension. In the system proposed,
operating on nouns yields a measurable/observable (Hermitian matrix), which in turn
limits other potential combinations with abstract lexical categories; this is what I have
been calling the Jarret Graph, which was argued to underlie complement interactions for
lexical heads.

There are two ways in which that decision is not enough. First, there are obvious
categories in grammar that do not reduce to the basic lexical four; second, equally obviously,
there are relations beyond head-complement dependencies. The first issue can be dealt
with within our formalism by exploring it to its fullest: literally turning entries around; this
is how we went from the Abelian group of categories within the Jarret Graph, first, into
the Chomsky group (flipping the entries in the diagonal) and, next, into the GCP, which
includes all of the Pauli group and extends it (by mixing real and complex entities, or
vertically flipping the elements in the Chomsky group into their symmetrical counterparts).
Although this short paper cannot fulfill the promise of distributing the formal entities in that
group into a full-fledged “periodic table” of grammatical categories, mapping them within
the formal system amounts to a dissertation exercise, with familiar categorial-grammar
methods (we know the input, suspect the output, have an excellent sense of the phonetics
and an informed idea of the semantics, so it is all a matter of “aligning the Rubik cube”). A
harder—more interesting—question is how to go beyond head-complement relations, in
particular into head-specifier relations and the long-range correlations they afford.

That one shouldn’t trivially align head-complement and head-specifier relations ought
to need not argument, in syntactic, semantic, and phonological terms. In minimalist par-
lance, head-complement relations define the so-called domain D of a phase, the rest being
its edge E. As emphasized in Uriagereka [30] (chapter 5), there are several grammatical
conditions taking place within Ds, from theme selection with projection consequences
to agreement probing, including partitive case and head-to-head dependencies (incorpo-
ration, affixation, light verbs, etc.). In contrast, Es determine everything from external
argument taking to structural Case, together with all sorts of (successive) displacements
and entanglements (see [27]). Such E-related super-configurational conditions are decidedly
more complex than the corresponding D ones, of a (phrasal) configurational sort. These
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distinctions have dramatic consequences, also, for the mapping to the interfaces, from
intonational units to event-participation and the convoluted gymnastics of generalized
quantification, or intertwined construals and ellipses too numerous to mention here, with
consequences for pragmatic conditions and the articulation of Familiar/Novel information.
In this exercise, we just looked at the configurational relations, which is only a stepping
stone towards understanding the more elaborate ones that presuppose them.

A novel idea explored here is that the presumed difference between categories and
interactions—in a context of the head-complement sort—are less dramatic than it may
seem, before analyzing the matter algebraically. The formal intuition is no different from
why the powers for any number kn growing exponentially with the size of n do not for
the subcase k = 1. We are dealing with matrices, but they too have powers, and their
effect on their spectral radius (per (7)) does depend on whether it is 1 or more, thereby
affecting the system’s topological derivational entropy. In the former instance the power
sequence “cycles back” to the origin, after hitting the identity matrix, while in the latter
the power series yields fractal growth instead.20 We have capitalized on that distinction
to separate “cyclic/Markovian” categories from derivational topologies that may carry
phrasal combinations. To go on with the Tour metaphor in Section 2, the “earworm” stages
would have to be designed by M.C. Escher, to cycle back after a topological trick involving
a Möbius Strip! In contrast, all other stages would shoot out to infinitude, creating a
space for exploration of the relevant terrain that can take arbitrarily many twists and turns,
within the restricted topology. Algebraically, the difference is small: mere symmetry within
the underlying square matrices vs. breaking that symmetry into some result that could
be chaotic.

Although I have not sketched the idea beyond the programmatic, it reduces to linguis-
tic knowledge being accumulated in a (mental?) lexicon by way of the presuppositional
effect of depleting words. Although this has a Hebbian ring to it, which connectionist
networks have taken to new depths through state-of-the-art algorithms, the issue is what
could the complex entries be that I have crucially introduced. These cannot relate to
“neurons that fire together wiring together”, if that is being presupposed as some sort of
(distant) underlying brain physiology to carry some version of the system . . . That said,
by now there are non-obvious conditions neurons are known to perform, which have
little to do with the usual firing in the direction of the axon. Neurons, for instance, “fire
backwards” while mammals sleep (for reasons that might relate to the consolidation of
memories—see [31]). Also, there appear to be physiological dependencies “at right angles”
with standard neuronal firing. At a neuronal level, one can imagine modeling the balance
between excitatory postsynaptic potentials vs. inhibitory postsynaptic potentials in terms
of negative vs. positive scalars in a network; at the same time, Hebbian plasticity is known
to amplify correlations in neural circuits, creating a positive feedback loop that renders cir-
cuits unstable, which needs to be constrained. Heterosynaptic plasticity apparently serves
a central homeostatic role to cause pathway unspecific synaptic changes in the opposite
direction as Hebbian plasticity (see, e.g., [32]).21 The scope of these changes appear to be
global in the dendrites, suggesting that, aside from positive/negative interactions among
neurons, to yield standard Hebbian learning and some inhibitory correlate, something else
entirely, and orthogonal to such interactions (though still numerical in their own right) may
also be at play.

Those comments are meant within the relatively new, but entirely classical, domain
of neuroscience. Even more radically, Fisher [33], Straub et al. [34], speculate with quan-
tum processing with nuclear spins in the brain, identifying phosphorus as “the unique
biological element with a nuclear spin that can serve as a qubit for such putative quantum
processing—a neural qubit—while the phosphate ion is the only possible qubit-transporter.”
This is presupposing that central quantum-processing requires quantum entanglement,
which Fisher argues can happen as a result of an enzyme-catalyzed reaction that breaks a
pyrophosphate ion into two phosphate ions. The admittedly drastic idea is that multiple
entangled relevant molecules “triggering non-local quantum correlations of neuron firing
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rates, would provide the key mechanism for neural quantum processing”. Evidently, if
anything this dramatic were at stake, much of what is known about neuroscience in general
would have to be rethought. I mention it here simply as an indication that all bets probably
should be off when it comes to interpreting the relatively simple observables discussed
here, which need not go into such old chestnuts as awareness, consciousness, morality, and
the like. Ordinary syntax poses related and more tractable questions.

Be that as it may, an individual “use” of language by any speaker may be seen as
relevant to convey some truths (or lies!) about the world. However, the social effect seems
to be to create an ensemble of weighted concepts that get harbored in categories transmitted
from a generation to the next. In this sense, while (obviously) there is a portion of that
repository that I happen to store in my head, you in yours, etc., there is also a societal
entity that persists, probably the way economies or social systems may, drifting away as
the case may be. For those structures, it is immaterial what I or you may be saying or how
it affects our lives, as it is the fact that we are using it. This even allows for the possibility of
some of the complex algebraic possibilities explored here having nothing to do with what
gets literally “recorded” in actual brains, possibly existing in a reality that one may wish
to call Platonic—but with relatively little added value to such a claim. Unless, of course,
economies and social systems “evolving” in history are also Platonic.

My concrete claims boil down to two. One, that while syntactic deployment requires
an open-ended topology (with non-zero topological derivational entropy) to allow for
recursive thoughts, lexical storage demands, instead, a cyclical scaffolding (with zero
entropy) to let ideas repetitively cohere into entities stable enough to last one’s lifetime and,
ideally, get passed on, in some simple Markovian fashion. Here we have only studied what
amounts to the hypothesized priors of such a system: its underlying scaffolding—therein
the second claim. For the symmetries and asymmetries studied here to make any sense,
that scaffolding must involve complex (non-observable) dimensions. While these are not
obvious to relate to brain interactions (even with hand-waving), they are one of the most
interesting aspects of the proposal.

The final ace in the sleeve for this sort of proposal is how it relates to ideas in Smolensky
& Legendre [35], starting from (vastly) different presuppositions, since the latter work is
coming from a connectionist tradition, while the present one is explored within symbolic
conventions. Interestingly, in some regards the present approach, upon tensorizing the
GCP in ways sketched in Orús et al. [25], is entirely compatible with that model, and thus
can preserve its virtues, including a way to directly map the relevant representations
to actual phrase-markers (not just L-trees). More importantly, both systems present the
ability to (formally) state entanglements upon relevant superpositions—what syntacticians
customarily call “chains of occurrences”. While this idea is only offered as a proof of concept
in the connectionist instance, and without obvious connections to actual observables across
languages, I intend to show in a sequel to this piece how the present formulation has
the same mathematical result as a direct consequence, moreover tracking grammatical
facts in a more direct fashion (e.g., allowing us to state differences between voice and
information questions). It is interesting that one should converge in a similar math from
very different assumptions (in the present instance, asking how to generalize from the
most modest formal objects to matrices combining them, step by step). While data-driven
analyses involve the same math that can be deployed over the group we have begun to
formally analyze, we “got there” from first principles that we still teach in our introductory
linguistics classes, dating back to the dawn of linguistics. While this could certainly be
mere coincidence, it may also be an indication that some progress may be at hand as these
matters are further explored.
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Notes
1 Here I concentrate on head-complement relations only. One of the reviewers reasonably wonders “how this approach works

with complex syntactic operations such as movement”; while this is very much part of the program, that matter cannot be
seriously addressed within a chapter like this. As the reviewer also notes, “the functional structure above lexical items is related
to extended projections . . . (tentatively presented in Section 6)”. S/he wonders whether “restrictions on the kind and quantity of
functional items/structure or some parallelisms among the extended projection of lexical items”; the answer is: Yes, as such
formal symmetries are crucial to this approach. That said, I need to ask readers to be patient with the exposition, which cannot be
rushed—or it will not make algebraic sense. It is my hope that the separate pieces that articulate this ensemble will come out
together in the form of chapters in a single monograph.

2 The “*” represents the Kleene star operator or closure, named in honor of Stephen Cole Kleene. For a given set like T, T* is defined
as the smallest superset of T that contains the empty string and is closed under concatenation. See https://en.wikipedia.org/
wiki/Kleene_star (accessed on 28 August 2022).

3 One of the reviewers takes me to assume “the verb/noun distinction as . . . radical”, noting how others see the distinction less
dramatically. Careful readers will see that this entire exercise is meaningless if, in point of fact, the distinction is not dramatic
to the extreme of (relevant) orthogonalities. This can, of course, mean that the project is wrong; if so, so be it. But formally it
would make no sense to “weaken” the claim, so I will stick to the presumptions. Perhaps it should be clear that the notion of
“noun” and “verb” that I am after has nothing to do with lexical instantiations (which can be identical); what matters in the
present context is the (I think radical) fact that, for example, event semantics is articulated in a way different—as a “sentence
spine”—than arguments thereof; the latter being foundational nouns. Of course, one can verbalize nouns or nominalize verbs,
but what is being sought in the present context are the underlying dimensions.

4 If we consider the power series, the ensuing aggregation relates to the total number of nodes in the L-tree.
5 And note also that A0 is the identity matrix, whose ρ(A0) = 1, so ρ(A1)/ρ(A0) is of course also ρ(A1).
6 Lest this be confusing, “linear operator” has nothing to do with “linearization” in the sense used in syntax (to order terminals in

the speech signal). I say this because one of the reviewers takes me to be alluding to “the issue of linearization (and, implicitly,
labelling)”. My use of the notion is in the linear algebra sense (so as a linear map within a vector space), to denote a very tight
operation that keeps basic relations unchaged. I know that, as the reviewer points out, for some authors “linearization” (in the
syntactic sense) relates to “labeling”, which I have nothing to contribute to (indeed, as mentioned at the end of Section 2, the
M-matrices code no “linear ordering” in that syntactic sense among terminals, which is left as a separate problem at right angles
with phrasal topology). This is not to say that the present system does not care about “labels”: here such abstract (non-terminal)
representations are matrix determinants (nothing to do with “determiners” in the syntactic sense); these are algebraically related to
matrix traces as in Section 2 (no relation to syntactic “traces” either). The terminological nightmare is what it is, but the truth is
the terms in point have a much older tradition in algebraic systems, which syntacticians are not always careful in distinguishing;
alas, even the term linear transformation is used in math, and it turns out to be an interesting (and difficult) question whether this
relates to what syntacticians call a “transformation”, with a structural description and a structural change—I believe it does, but
this must be argued, which I will not go into here. Unfortunately, there is nothing much I can do about any of this, beyond noting
the issue and proceeding with the relevant caution.

7 Interested readers can check these expressions in the Matlab platform or the popular Wolframalpha.com (accessed on 28 August 2022).
8 For those unfamiliar with US independence, Revere prepared a code for the colonists of Charlestown about troop movements,

in terms of their route being signaled by the number of lanterns in a church steeple: “one if by land, two if by sea”. See
https://en.wikipedia.org/wiki/Paul_Revere%27s_Midnight_Ride (accessed on 28 August 2022).

9 A reviewer asks the question, about generalization (21), of whether all N/V/A/P elements follow it. I discuss this further at
the end of Section 5, but I must also raise a deeper concern. That generalization is what the Jarret Graph gives us, the graph
itself following from algebraic assumptions coupled with reasonable grounding conditions (of the semiotic sort because that is
what grounds the system). We may choose to ignore this and continue to search for other answers or may, instead, be moved
by whatever portion of the “empirical cake” we get to describe this way, with absolutely no semantic assumptions (beyond
the Ur Anchoring Axiom). This is an aesthetic decision that I have little to contribute to. In a similar vein, the reviewer asks
whether “a more detailed mention of several categories . . . would be helpful”. We certainly all agree that there are more “parts of
speech”, and even that, as Chomsky [2] suggested already in 1974, that we could add further dimensions to the system to capture
those—one can always add more dimensions. But the issue is how much mileage one can get out of the smallest amount of
formal machinery. At the end of the chapter, I suggest some natural extensions that do not entail expanding the dimensions of the
system or its underlying algebra. But it should be clear that no formal system ever describes a “totality of the natural phenomena”
it is attempting to describe. Even physics, the obvious model to follow, cannot describe the universe with the same math, which

https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Kleene_star
Wolframalpha.com
https://en.wikipedia.org/wiki/Paul_Revere%27s_Midnight_Ride
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happens to also be (an extension of) linear algebra. It would seem unreasonable (and not very illuminating) to demand more of
linguistics than we do of any of the other natural sciences.

10 I thank MG Hirsch for the question and discussion of its significance.
11 The linguist may note ditransitive verbs are bi-clausal in some languages, differences in verbal (periphrastic or synthetic)

instantiations, or many idiosyncrasies. Worrying about differences now, however, is the equivalent of preventing Galileo from
tabling the behavior of balloons while studying the falling of objects: the foundations of a scientific theory are built on patterns,
not exceptions—to better understand the exceptions and beyond.

12 Primitive types differ depending on the semantic theory assumed; a larger issue (particularly if the Interpretive Axiom is assumed)
is whether only certain portions of the syntax are, in fact, interpretable.

13 Some of the superpositions also yield the zero matrix; e.g., any matrix plus its negative.
14 A normalization can mean very different things in different formal contexts. Here we could take it as a way to achieve an

interpretation with matrix entries that are not larger in magnitude than 1, which can have a probabilistic interpretation. Note, for

concreteness that: (i)
[

2 1
1 0

]
–
[

1 0
0 0

]
=
[

1 1
1 0

]
. So the second element in the sum in (i) can be seen as a “normalizer”. This of

course is stipulative, so one must explore under what algebraic circumstances one can naturally go from one of the matrices in
the CCP group to an M-matrix associated to a phrasal topology, like the one in the right-hand side equation (i). I will not study
this here, but I can anticipate that this is behind the idea of “chain” formation in the present system, involving the supra-phrasal
linkage of specifiers, through Internal Merge.

15 None of that is to say that anything presumed here is computationally trivial or even obvious. This starts with (37b), which is
easy to state in “projection” terms, but much less so in Merge (or any BPS) terms. I am setting aside discussion of this important
nuances simply to make the larger points.

16 The Pauli group is algebraically equivalent to the 4D quaternions postulated by William Hamilton in 1843, which are behind the
virtual reality graphics in vogue these days. Going from the Pauli group to the GCP can be seen as a rotation on the Pauli group,
of the sort Hamilton discovered vis-à-vis the complex plane—so it is possible that the syntactic system (if it does live in the GCP)
is really an 8D representation.

17 This is meant very literally. As Naomi Feldman observes, the implied vectorial algebra can combine through a tensor product with
any vectorial system (e.g., of a visual sort or any other), without this changing the basic underlying “syntactic” structure presumed
here. I will not develop the point now, but it is mathematically rather direct, given that tensor products are structure-preserving.

18 This insight was first presented in Bresnan [28], p. 200, when noting how no language has a rule extraposing phrases involving
the concept redness. This is generally true for any such process and any such feature. I thank Howard Lasnik for the reference
and discussion relating to this topic.

19 This touches upon an issue Peter Kosta raises, regarding language acquisition. The short answer is that the present system is too
abstract to bear on that. But a long answer is more interesting: the system does predict that nouns are fundamental in anchoring
syntax, which can be tested empirically. Alison Brooks mentioned to me a fascinating counter-example: San children apparently
start linguistically acquiring verbs before nouns, which she associates to the (itself surprising) facts that nouns, unlike verbs,
exhibit (difficult) click phonemes. Brooks also insightfully notes, however, that the toddlers use pointing in place of nouns! If
this is ultimately correct, it is grist for a mill Jackendoff [29] emphasized: that the linguistic system crucially connects to vision.
My (modest) contribution to this would be that linear algebra can help with that connection, since one needs it for the visual
system–and the present project argues that it is needed in language too.

20 The issue relates to a comparison between Fourier and Taylor series, both function decompositions represented as linear
combinations of countable sets of functions, thereby specified by a coefficient sequence. The intuition is “categories” correspond
to periodic functions while interactions “live” in the topological space of fractal L-systems that relate to the infinite sum of powers
in a Taylor series. While abstractly similar, these differ in that the computation of a Taylor series is “local”, unlike the computation
of a Fourier series.

21 The balance across synaptic conditions in a normal brain presumes homeostatic mechanisms and, in particular, the goal of
maintaining excitation/inhibition balance and total activity at the network level, affecting synaptic weights. Although this is
speculation, the thought is that these global forms of balance presume orthogonal conditions that one would hope to model in
terms of complex vectors as invoked here.
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