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Abstract: The outputs of a Turing machine are not revealed for inputs on which the machine fails to
halt. Why is an observer not allowed to see the generated output symbols as the machine operates?
Building on the pioneering work of Mark Burgin, we introduce an extension of the Turing machine
model with a visible output tape. As a subtle refinement to Burgin’s theory, we stipulate that the
outputted symbols cannot be overwritten: at step i, the content of the output tape is a prefix of
the content at step j, where i < j. Our Refined Burgin Machines (RBMs) compute more functions
than Turing machines, but fewer than Burgin’s simple inductive Turing machines. We argue that
RBMs more closely align with both human and electronic computers than Turing machines do.
Consequently, RBMs challenge the dominance of Turing machines in computer science and beyond.
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1. Introduction

This paper examines the computational power of a variant of Turing machines called
Refined Burgin Machines (RBMs), named in honor of the recently deceased polymath and
computability theorist Mark Burgin. Using our RBM model of computation, we dispel the
following dominant tenet in computer science:

One reason for the acceptance of the Turing machine as a general model of a
computation is that the model [. . . ] is equivalent to many modified versions that
would seem off-hand to have increased computing power.1

It is well known that enhancements such as adding a second work tape to a standard
Turing machine (TM) or increasing its tape alphabet with an additional symbol do not affect
its computational power. However, making the machine’s generated output immediately
visible, as demonstrated with the RBM model, does have a significant impact. In this paper,
we prove that RBMs compute strictly more number-theoretic functions than TMs.

Remark 1. The literature distinguishes between Type-1 and Type-2 computability theory, with
TMs classified as Type-1 machines. We stress that TMs and RBMs are neither equivalent to Turing’s
1936 automatic machines [2], nor to the Type-2 machines discussed in Computable Analysis [3].

Another point of contention with mainstream computer science is the neo-Russellian
belief in a singular “best fit” model of computation. This perspective posits that if the
Turing machine is not the ideal model after all, then a specific alternative, such as the RBM
model, must be. On the one hand, we will indeed argue that TMs are inferior to RBMs.
On the other hand, a comparison between Burgin’s simple inductive Turing machines and
their refined counterparts, the RBMs, reveals a more nuanced analysis.

Although we will contend that RBMs are better suited for batch processing than
Burgin’s simple inductive TMs, we will also support Burgin’s assertion that his simple
inductive TMs are more authentic in the realm of distributed computing. Additionally, we
will briefly explore a third area, program performance checking, where we will place RBMs
and simple inductive TMs on an equal footing. A more comprehensive analysis of this
pluralistic landscape lies outside the scope of this article.
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In general, we maintain that different models offer varying degrees of utility, depen-
ding on the context. There is no absolute “right” or “wrong” model; rather, each model
has its own advantages depending on the situation. This perspective is influenced by Peter
Naur, who applied it in scientific fields adjacent to computability theory [4].

Our findings lead us to conclude that the Church–Turing thesis is not as central to
computing practices and potential theory building as textbooks claim. Several scholars
have made similar points in the past, including Brian Cantwell Smith [5], Peter Wegner
and Dina Q. Goldin [6], Selmer Bringsjord and Konstantine Arkoudas [7], Bruce J. MacLen-
nan [8], Gordana Dodig-Crnkovic [9], Edward A. Lee [10], and B. Jack Copeland and Oron
Shagrir [11].

The Church–Turing thesis, named after the American logician Alonzo Church and the
English mathematician Alan Turing, arises from a deliberate conflation of Church’s thesis
(A) and Turing’s thesis (B). Church’s former PhD student, Stephen Kleene, explained this
in his 1967 work, Mathematical Logic, as follows:

(A) Church proposed the thesis (published in 1936) that all functions which
intuitively we can regard as computable, or in his words “effectively calculable”,
are λ-definable, or equivalently general recursive.2

(B) A little later but independently, Turing’s paper 1936–37 appeared in which
another exactly defined class of intuitively computable functions, which we shall
call the “Turing computable functions”, was introduced, and the same claim was
made for this class; this claim we call Turing’s thesis.3

Turing’s and Church’s theses are equivalent. We shall usually refer to them both
as Church’s thesis, or in connection with that one of its three versions [. . .] deals
with “Turing machines” as the Church-Turing thesis.4

Burgin adheres to Kleene’s conflation, but argues, based on his inductive TMs (both
simple and unrestricted), that there are Turing-incomputable functions that humans can
compute with the aid of modern devices [13,14]. We agree, and further assert, influenced
by Peter Kugel’s work [15,16], that at least those functions computed by simple inductive
TMs can also be computed by a human using only pencil and paper. In this article, we
focus on Burgin’s arguments related to simple inductive TMs and electronic computers,
only occasionally revisiting our Kugelian extension regarding human computation.

The outline of this paper can be conveyed in four stages. First, we clarify the distinction
between TMs and RBMs (Section 2). Second, we formalize the RBM model and use it to
disprove the Church–Turing thesis (Section 3), deferring technicalities to Appendix A. Third,
we discuss our mathematical findings, and simultaneously refine Burgin’s compelling
arguments against the thesis (Section 4). Fourth, we present our closing remarks (Section 5).

2. Turing Machines (TMs) versus Refined Burgin Machines (RBMs)

Today, it is well understood, as Bringsjord and Arkoudas already conveyed in 2004,
that just as there are infinitely many mathematical devices equivalent to Turing machines
(e.g., first-order theorem provers, register machines, the lambda calculus, abaci), there are
also infinitely many devices that can solve the Halting Problem. Paraphrasing, Bringsjord
and Arkoudas continue as follows [7] (p. 175):

Mark Burgin correctly notes that the first detailed account of such machines—
referred to as “trial-and-error machines” by Peter Kugel—was provided simulta-
neously by Hilary Putnam and E. Mark Gold in the 1960s. We also agree with
Burgin’s assertion that his more powerful inductive Turing machines, introduced
in 1983, have the distinct advantage of delivering results in finite time.

The references to the primary sources, including a 1983 source in Russian [17], can
be found in Bringsjord and Arkoudas [7] and are discussed in greater detail in Burgin’s
Super-Recursive Algorithms [14]. On our reading, some parts of what Burgin accomplished in
connection with digital technologies, Kugel performed in relation to human cognition [15].
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Both ordinary and inductive Turing machines perform similar computational steps.
While an ordinary Turing machine produces a result only when it halts, an inductive Turing
machine, N, produces its result without halting. Even though machine N operates forever,
it is possible that, from some point onward, the word on its output tape remains unchanged.
That word is considered to be the result [13] (p. 86). Hence, Burgin’s usage of the term
“inductive,” as we paraphrase from his writings:

In induction, we also proceed step by step, checking if a statement P is true for an
unlimited sequence of cases. When it is found that P is true for each case whatever
number of cases is considered, we conclude that P is true for all cases [14] (p. 126).

By definition, inductive Turing machines give results if and only if their computa-
tional process stabilizes [18] (p. 73).

In this paper, we focus on just a portion of Burgin’s theory [14]. Specifically, we discuss
only his simple inductive Turing machines. These machines share the same structure as
a conventional Turing machine with three tapes: input, work, and output. Notably, even
these simple machines are strictly more powerful than Turing machines, classifying them
under the umbrella of “hypercomputation.” We use an example from Burgin with some
cosmetic adjustments, to convey the power of his simple machines [14] (p. 127).

Example 1. There is a simple inductive Turing machine N that solves the Halting Problem for
Turing machines. Machine N contains a universal Turing machine U as a subroutine. Given a word
w and a description of a Turing machine M, machine N uses machine U to simulate M on input
w. Prior to the simulation, N prints string o1 on its output tape. When and if machine U stops
because M on w has halted, machine N overwrites its output o1 with output o2 (where o1 ̸= o2).
The crux is that machine N stabilizes to output o2, or to output o1, when Turing machine M on
input w halts, or fails to halt, respectively. Hence, N computes a Turing-incomputable function.

Example 1 justifies why Burgin’s simple inductive Turing machines are called “even-
tually correct systems”, which the Wikipedia page on “hypercomputation” describes thus:

Some physically realizable systems will always eventually converge to the correct
answer, but have the defect that they will often output an incorrect answer and
stick with the incorrect answer for an uncomputably large period of time before
eventually going back and correcting the mistake.5

In contrast, the Refined Burgin Machines (RBMs) discussed in this paper never go
back and correct their generated output symbols. Informally, RBMs can be seen as simple
inductive TMs with the caveat that their output cannot be overwritten, only extended: at
step i, the content of the output tape is a prefix of the content at step j, where i < j.

Remark 2. Reconsider simple inductive machine N from Example 1. If string o1 is a prefix of
string o2, then there exists an RBM that computes the same function as machine N. Otherwise, N
computes a function that no RBM can compute.

To explicate our RBMs, we appropriate some nuances originating from Stewart
Shapiro’s “acceptable notation” [19]. Shapiro’s stroke notation involves using a string
of n strokes on, say, the tape of a Turing machine, to denote the natural number n. Similarly,
Kleene’s tally-based notation amounts to using a string of n + 1 tallies to denote n. Cham-
pioning Kleene’s 1967 conflation of Turing’s and Church’s theses implies, pace Shapiro,
acceptance of the following equivalence between semantics and syntax:

A number-theoretic function is recursive (semantics) if and only if it is Turing
machine computable relative to tally-based notation (syntax).

The reader is welcome to use standard binary notation if preferred. We will also use
bits in this paper. The crux is that we will never fully abstract away from the specific
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notation used by the machine in question, for that is precisely what we need to explicate
our RBMs.

An implication of our focus on notation can already be conveyed. In terms of tallies,
if, e.g., three tallies are printed on the output tape of an RBM, additional tallies may be
printed later, but erasing any of the printed tallies is prohibited. Similarly, in terms of
binary notation, if three bits are printed on the output tape, additional bits may be printed
later, but erasing any of the printed bits is prohibited. While these constraints reduce
the computational power of our RBMs compared to Burgin’s simple inductive TMs (see
Remark 2), they will enable us to strengthen Burgin’s case against the Church–Turing thesis.

Remark 3. Reconsider inductive machine N from Example 1. If string o1 is one tally long and
string o2 is two tallies long, then there exists an RBM that computes the same function as machine
N. However, if string o1 is two tallies long and string o2 is one tally long, then N computes a
function that no RBM can compute.

Remark 3 seems to rely on a common convention in computability theory, namely
that a bijection exists between natural numbers and tallies. To develop a more general
theory of RBM-computability that better aligns with engineering practice, we will relax
this convention. Instead, we will only assume that the encoding function mapping natural
numbers to notation (i.e., tallies, bits, . . .) is injective, not bijective per se. Even in this more
relaxed setting, our computability claims pertaining to RBMs hold.

2.1. Some Machine Flavors

In his article “On Computable Numbers . . . ” [2], Alan Turing introduced his automatic
“a-machines”, which contain neither an input nor a finite output as is the case with the
modern “Turing machines”. From 1936 until 1958, Alonzo Church, Stephen Kleene, Martin
Davis, and others recast the concept of Turing’s a-machines [20].

Turing distinguished between three sorts of a-machines in his 1936 paper: circle-
free a-machines (which do not halt) and circular a-machines that either halt or do not
halt. Circle-free a-machines were useful for Turing’s logico-mathematical objective (cf. the
Entscheidungsproblem and showing that it is “unsolvable”), in that they continue to produce
output bits ad infinitum, with each infinite sequence of bits representing a “computable”
real number. By contrast, circular a-machines only produce a finite sequence of output
bits (with or without halting), and were not as relevant in 1936 as they are today. Circular
a-machines that halt come close to the “Turing machines” introduced by Kleene and Davis
in the 1950s and in computer science textbooks [21]. Circular a-machines that do not halt
have been studied less often in the past 80 years; exceptions are Timothy G. McCarthy and
Stewart Shapiro [22], Jan Van Leeuwen and Jirí Wiedermann [23], and the present author.

Examining circular a-machines that do not halt amounts to studying nonterminating
computations that provide a finite output in the limit. In this setting, the focus of McCarthy
and Shapiro was on deterministic computations and the number-theoretic functions that
they represent (or implement). These authors used the phrases “extended Turing machine”
(for their generalized Turing machine) and “Turing projectable function” (for the number-
theoretic function in hand). These authors did not question the status of the Church–Turing
thesis, but perhaps the same cannot be said of Van Leeuwen and Wiedermann [23], who
also extensively analyzed the distinction between determinism and nondeterminism (both
with and without resource bounds) [24]. On the one hand, we follow McCarthy and Shapiro
in focusing solely on determinism. On the other hand, we share, due to the results provided
in this paper, Van Leeuwen and Wiedermann’s skepticism and that of others (see Section 1)
towards Turing-machine dominance in present-day computer science.

McCarthy, Shapiro, Van Leeuwen, and Wiedermann differ from Turing, Shapiro in
1982, and the present author, in that these four researchers eschew an explicit distinction
between numbers and number-theoretic functions on the one hand (semantics), and the
representations thereof on the other hand (syntax). Guido Gherardi has provided an
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in-depth account of Turing’s approach on this matter, i.e., with regard to circle-free a-
machines [25]. A similar discussion pertaining to circular a-machines is presented here,
albeit by means of a new model of computation: the Refined Burgin Machine model.

2.2. From Burgin’s Outlook to RBMs

Mark Burgin was a versatile mathematician. While Felix M. Lev commends Burgin’s
insistence on finiteness concerning verificationism and the foundations of mathematics [26]
(p. 10), various guises of infinity play a role in Burgin’s Super-Recursive Algorithms [14].
For instance, Burgin’s inductive viewpoint on computability aligns with Ilya Prigogine’s
“becoming systems” and what Burgin calls “emerging infinity”, as we paraphrase thus:

Inductive Turing machines represent a shift from terminating computation to
intrinsically emerging computation, transitioning from the “being” mode of
recursive algorithms to the “becoming” mode of superrecursive algorithms. [. . . ]
Synergetics has renewed scientific interest in becoming systems (see, for example,
Prigogine [27]). Super-recursive algorithms provide a mathematical model for
the concept of emerging infinity [14] (pp. 160–161).

Additionally, Burgin presents three classes of computability, listed as follows:

1. Recursive computations are accomplished processes, as they terminate giving
the result.

2. Inductive computations are emerging processes, as they produce the result
without stopping, i.e., the final result emerges through a sequence of inter-
mediate results.

3. Infinite-time computations are potential processes, as it is possible to have the
result they produce only after an infinite number of steps [14] (p. 152).

Ordinary, inductive, and accelerating Turing machines fit into the first, second, and third
class, respectively. We do not delve into Class 3 in this paper.

Burgin’s simple inductive Turing machines, which belong to Class 2, are situated near
the boundary with Class 1. Specifically, if we leave out the axiom stipulating that “we know
when” the final result of a computation is obtained after a finite number of steps, then we
leave Class 1 of ordinary Turing machines and enter Class 2 of inductive machines [14]
(p. 120). Informally, we submit that RBMs lie on the border between Classes 1 and 2.

Burgin differentiates between a worm’s-eye and a bird’s-eye view on computation:
the traditional algorithmic processing associated with TMs (Class 1) versus the elevated
concept of information processing (Classes 1–3). This shift from pure syntax to information
(broadly construed) is crisply formulated by Burgin’s collaborator Dodig-Crnkovic, thus:

Syntactic mechanical symbol manipulation is replaced by information (both
syntactic and semantic) processing. Compared to new computing machines,
Turing machines form the proper subset of the set of information processing
devices, in much the same way as Newton’s theory of gravitation is a special
issue of Einstein’s theory, or the Euclidean geometry is a limited case of non-
Euclidean geometries [9] (p. 308).

In a similar vein to Burgin and Dodig-Crnkovic’s efforts, we question the (alleged)
clear-cut divide between syntax and semantics in mainstream computer science. Even if
we fully adhere to modern set theory and actual infinity in particular, as computability
and complexity theorists do, there is more than one viable way to connect raw symbolic
machines (syntax) with number-theoretic functions (semantics). The two arrows in Figure 1
indicate these connections.
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Figure 1. Raw syntax versus functional semantics.

Raw symbolic machines are TMs and RBMs. They have an input tape, a work tape, and
an output tape, as shown in Figure 2. The latter two tapes are initially blank. Specifically:

– The input tape is read-only, and input bits are (a priori) written from bottom to top.
– The output tape is write-only, and output bits are (during computation) printed from

bottom to top, i.e., the tape gradually rolls out of the machine.
– Neither bits on the input, nor output tape, can be retroactively modified.
– The work tape, on which bits can be printed and modified, is a one-way infinite tape

with a leftmost cell and infinite progression to the right.

Moreover, each tape has an independent head (or scanner).

Figure 2. A 3-tape Raw machine.

A TM program, in the form of a list of tuples, is also an RBM program (and vice
versa). That is, both TMs and RBMs share the same syntactic setup in terms of instantaneous
descriptions and the move relation between two instantaneous descriptions. In other words,
TMs and RBMs have the same operational semantics. Formal definitions appear in Section 3.

We call TM M and RBM N “twins” if and only if they are specified by means of the
same list of tuples. Operationally, there is no difference between twin machines M and
N, because the syntax of twins M and N is identical and the move relation of TMs and
RBMs is the same. However, M and N could (mathematically) implement number-theoretic
functions f and g, respectively, with f ̸= g.

Coming now to the question: Can a TM not reveal some of its output as it continues
to compute? To “reveal something” refers to “attaining a meaning” in the outside world,
which is occupied by a human observer; that is, to acquire semantic content. Abiding by
the formal setup of Hopcroft and Ullman [1], a TM computation only provides a value to
the outside world after termination, not before. The answer, therefore, is negative. If, in
accordance with a number-theoretic function, the reader wants to program TMs to produce
meaningful partial outputs during computation, she will arrive at RBMs or inductive TMs.

The critic will correctly remark that Hopcroft and Ullman do not refer to an observer in
their formal definition of a Turing machine [1] (p. 148). However, the observer is implicitly
present when the authors assign a meaning to Turing machines, e.g., number-theoretic
functions [1] (p. 151). Indeed, it is in the transition from syntax to semantics that the notion
of an observer is required.
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Compared to the TM model, the RBM model explicitly incorporates the human ob-
server. On the one hand, RBMs align well with Dodig-Crnkovic’s following reflections:

Theories of concurrency are partially integrating the observer into the model by
permitting limited shifting of the inside-outside boundary. By this integration,
theories of concurrency might bring major enhancements to the computational
expressive toolbox [9] (p. 314).

On the other hand, our RBM theory still pertains to computability rather than a compre-
hensive concurrency theory.

We are now ready to formalize the RBM model and disprove the thesis in Section 3.
Readers may skip this on a first reading and instead focus on our discussion in Section 4.

3. Formalization

The sole difference between the TM model and the RBM model lies in their functional
semantics, specifically as follows:

1. In the traditional TM setup, the human observer is prohibited from looking at the
output tape if the machine has not (yet) halted.

2. In the RBM arrangement, the observer can look at the output tape as the output
symbols appear on the tape.

A machine model of computation—such as the TM model and the RBM model—refers
to Raw machines (Section 3.1) and to functional semantics (Section 3.2). To anticipate our
formal exposition, we stipulate the following:

1. A TM model of computation consists of a Raw machine (Definition 1) with the correspon-
ding move relation (Appendix A), and the functional semantics in Definition 4.

2. An RBM model of computation consists of a Raw machine (Definition 1) with the same
move relation (Appendix A), and the functional semantics provided in Definition 7.

Our main theorem, a disproof of the thesis, concludes the formal exposition
(Section 3.3).

3.1. Raw Machines

To simplify the formalities, a Raw machine shall from now on consist of two (not three)
tapes, as shown in Figure 3. That is, the input tape and the work tape have been merged
into an input/work tape. To recap, Raw machine R has two (one-way infinite) tapes:

1. An input/work tape, also called the first tape. Its head can move left (←) or right (→).
2. An output tape, also called the second tape. Its head can only move upward (↑) or

remain idle (I), i.e., not move.

Figure 3. A 2-tape Raw machine.

When Raw machine R halts (on a given input w ∈ Σ∗), it signifies this event by
printing out the end marker $. When R has not (yet) halted, the output tape contains
no end marker $, and the already printed output symbols α1, α2, . . .,αp (for some p ∈ N)
constitute a prefix α1α2 . . .αp of R’s final output α1α2 . . .αp. . . which, in the limit, could be
either a (finite) string or an (infinite) sequence of output symbols. Following Hopcroft and
Ullman [1] (p. 148) to some extent, we now define a Raw machine.

Definition 1. A Raw machine R is denoted
R = (Q, Σ, Γ, δ, q0, b, $) where
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Q is the finite set of states.
Γ is the finite set of allowable work tape symbols.
b, with b ∈ Γ, is the blank.
Σ, with b /∈ Σ ⊂ Γ, is the set of input symbols.
$, with $ /∈ Γ, is the end marker.
δ is the next move function, a partial mapping
from Q× Γ to Q× Γ× {←,→}× Γ ∪ {$} × {↑, I};
i.e., δ may be undefined for some arguments.
q0 ∈ Q is the start state.

Remark 4. For binary notation, we take Σ = {0, 1} and Γ = {0, 1, b}. The corresponding move
relation, ⊢R, between two instantaneous descriptions of Raw machine R, is trivially defined in
Appendix A. Without loss of generality, we assume that any Raw machine R halts iff the marker $
appears on R’s output tape.

3.2. Functional Semantics

The term “functional semantics” is often abbreviated to “semantics.” We write N⊥ for
N∪ {⊥}, with N standing for the set of natural numbers and ⊥ for the “undefined” value.
When unspecified, quantification is taken to be over N.

We are interested in encodings enc from N⊥ to strings over the finite alphabet Σ, i.e.,
enc :: N⊥ → Σ∗. Any standard, injective encoding on N is acceptable, and we shall assume
in this paper that the empty string ϵ is the encoding of ⊥. Formally, we have the following.

Definition 2. An encoding function enc :: N⊥ → Σ∗ is said to be admissible iff enc is injective
on N and enc(⊥) = ϵ and enc(y) ̸= ϵ, for all y ∈ N.

Definition 3. We say that both strings α1 and α1α2 are prefixes (⪯) of α1α2, but of these two
strings, only α1 is a proper prefix (≺) of α1α2, with the proviso that α2 ̸= ϵ.

The notation ⟨, ⟩ denotes a fixed, effective, bijective mapping of N×N into N. With abuse
of notation, we also write ⟨x, y⟩, where x and y are strings instead of natural numbers, with
enc(n) = x and enc(m) = y, for some n, m ∈ N. That is, ⟨enc(n), enc(m)⟩ denotes ⟨n, m⟩.
Likewise, we write ⟨R, w⟩ to denote either the natural number n or the corresponding string
(which encodes n), where R is a string describing a Raw machine and w serves as input string
for that machine.

3.2.1. Semantics of TMs

Definition 4. TM M (mathematically) implements function f :: N→ N⊥ when the following
two conditions hold, for ∀x, y ∈ N:

(1) f (x) = y iff M on enc(x) halts with output enc(y)$.
(2) f (x) = ⊥ otherwise.

We say that TM M computes function f :: N→ N⊥ in the limit when M implements f .

Note that ⊥ is syntactically represented in more than one way, even though enc
is a function, i.e., even though, for any string σ for which enc(⊥) = σ, it follows that
σ = ϵ. For example, a nonterminating computation of a TM also syntactically represents
⊥. For another example, a computation that terminates with an output σ$, such that
∀y ∈ N. enc(y) ̸= σ, also syntactically represents ⊥.

Definition 5. A TM model of computation consists of a Raw machine with the corresponding
move relation (Appendix A), and the functional semantics provided in Definition 4.
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3.2.2. Semantics of RBMs

We shall use arrays containing infinitely many natural numbers, each of which is
strictly larger than 0. For example, a[1] denotes the first number in some array a. Formally,
an array a is a function a :: N+ → N+, with N+ = N \ {0}. To denote an infinitely
long sequence S of functions g :: N → N, we write: S :: ga[1], ga[2], ga[3], . . ., with array a
containing increasingly larger natural numbers; specifically: 0 < a[1] < a[2] < a[3] < . . . .

Definition 6. A converging sequence S :: ga[1], ga[2], ga[3], . . . , f of functions ga[1], ga[2], ga[3],
. . . from N to N and with limit function f :: N → N⊥, relative to enc, is a sequence with the
following properties, for ∀x ∈ N:
(1) ∀i > 0. [ enc(ga[i](x)) ⪯ enc(ga[i+1](x)) ];
(2) ∀y ∈ N. [ f (x) = y implies (2a) and (2b) ];
(2a) ∀i > 0. [ enc(ga[i](x)) ⪯ enc(y) ];
(2b) If enc(ga[i](x)) ≺ enc(y), for some i ≥ 1, then there exists a larger j > i, such that:
enc(ga[i](x)) ≺ enc(ga[j](x)).

Definition 7. We say that RBM N (mathematically) implements a converging sequence S ::
ga[1], ga[2], ga[3], . . . , f , with functions ga[i] from N to N and limit function f from N to N⊥, when
the following three conditions hold, for all x ∈ N:
(1) ∀y. [ f (x) = y iff ∃t0. ∀t ≥ t0. ga[t](x) = y ];
(2) f (x) = ⊥ iff ∀y. f (x) ̸= y;
(3) ∀i, y. [ ga[i](x) = y iff N on enc(x) has enc(y) or enc(y) $ as output after a[i] moves ].

Condition (1) is called convergence, and (2) is nonconvergence.6 Concerning (1): at first
sight it seems that f (x) = y is feasible, even when N’s output string is unstable, as we
are seemingly only guaranteed that ga[t](x) = y for all, but finitely many, t. However,
combining this property with RBMs’ inability to erase output symbols, we may conclude:
for all, but finitely many, time instances j, we have gj(x) = y. Concerning (2): note again
that f (x) could be undefined because RBM N on enc(x) does halt, but with output σ$ such
that ∀y ∈ N. enc(y) ̸= σ.

Definition 8. An RBM model of computation consists of a Raw machine with the corresponding
move relation (Appendix A), and the functional semantics provided in Definition 7.

Definition 9. We say that RBM N computes function f :: N → N⊥ in the limit when N
implements a converging sequence S :: ga[1], ga[2], ga[3], . . . , f of functions ga[1], ga[2], ga[3], . . .
with limit function f .

For the sake of completeness, we also define a universal RBM as follows.

Definition 10. A universal RBM U, when provided an input, interprets this input as the de-
scription of another RBM Ni (with index i), concatenated with the description of an input to
Ni, say enc(x), with x ∈ N. RBM U simulates Ni’s computation on input enc(x), such that
fU(⟨i, x⟩) = fNi (x), with fU and fNi implemented by U and Ni, respectively.

3.3. Disproof of the Thesis

The RBM model is functionally more powerful than the standard TM model. On the
one hand, everything TMs can accomplish in the realm of number-theoretic functions,
RBMs can perform as well. An RBM-computable function amounts, after all, to the raw
syntax of a TM along with someone observing the output symbols as they are produced
by the machine. On the other hand, Theorem 1 informs us that there exists an RBM V
capable of computing a function that no TM can compute. The proof relies on Σ = {0, 1}
and Γ = {0, 1, b}, but in no essential way. Also taken for granted is an enumeration of TM
descriptions M1, M2, . . . and an enumeration of input words w1, w2, . . .. For readability,
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the proof assumes that the strings 0 and 01 represent two different natural numbers via enc.
The reader can further formalize this by substituting s1 and s2 for 0 and 01, respectively,
with s1 ≺ s2 as an extra stipulation.

Theorem 1. For any admissible encoding function enc :: N⊥ → Σ∗, there is a function fV ::
N→ N⊥ that (i) some RBM V computes in the limit, and (ii) no TM computes in the limit.

Proof. Take an arbitrary admissible encoding function enc :: N⊥ → Σ∗. Starting with
part (i) of the theorem, we construct RBM V as follows. RBM V, on input w, first checks
whether w is ⟨Md, we⟩ for some d, e ≥ 1, with TM Md and input word we. If this check does
not pass, then RBM V prints infinitely many 0’s, i.e., RBM V demonstrates nonconverging
behavior. Otherwise, RBM V on input ⟨Md, we⟩ prints 0 on its output tape. Then, RBM V
simulates TM Md on we. Two cases can be distinguished:

Case 1: Md on we halts and outputs w′e. Then, V prints nothing or 1, such that its total
output, 0 or 01, differs from w′e. Machine V then prints $ and halts.
Case 2: Md on we does not halt, and thus outputs nothing. In this case, V merely simulates
Md on we forever. Note, however, that V’s output tape does contain a string, 0, which
differs from the empty string ϵ representing ⊥.

Having constructed RBM V, we now use Definitions 7 and 9 to specify function
fV , which V computes in the limit. RBM V implements a converging sequence S ::
ga[1], ga[2], ga[3], . . . , fV with the following properties, for all x ∈ N:

(1) ∀y. [ fV(x) = y iff ∃t0. ∀t ≥ t0. ga[t](x) = y ].
(2) fV(x) = ⊥ iff ∀y. fV(x) ̸= y.
(3) ∀i, y. [ ga[i](x) = y iff V on enc(x) has enc(y) or enc(y) $ as output after a[i] moves ].

Clearly, for any well-formed input ⟨Md, we⟩, RBM V prints a finite number n of symbols on
its output tape, with n > 0, and with the guarantee that the output string represents some
natural number. Therefore, condition (2) does not apply in the intended case, i.e., when
x is such that enc(x) = ⟨Md, we⟩ for some d, e ≥ 1. Expressing (1) in terms of (3) results
in the following property: for all intended x ∈ N, and all y ∈ N, we have that fV(x) = y
iff ∃t0. ∀t ≥ t0. V on enc(x) has enc(y) or enc(y) $ as output after a[t] moves. In plainer
English: fV maps any natural number x representing a TM Md and input we onto a number
y, where enc(y) ∈ {0, 01}, and enc(y)$ differs from the output produced by Md on we.

Coming to part (ii) of the theorem, we show that function fV cannot be computed
in the limit by any TM. Suppose that some TM Ṽ computes fV :: N → N⊥ in the limit.
By Definition 4, we have, for ∀x:

(a) ∀y. [ fV(x) = y iff TM Ṽ on enc(x) halts with output enc(y)$ ];
(b) fV(x) = ⊥ otherwise.

We focus on (a), i.e., we need only consider natural numbers x for which enc(x) = ⟨Md, we⟩
in order to obtain our contradiction. From (a) we obtain the following: fV(x) = y iff TM
Ṽ on ⟨Md, we⟩, with enc(x) = ⟨Md, we⟩, halts with output enc(y)$, with enc(y) ∈ {0, 01}.
That output differs from the output produced by Md on we. However, no TM can, in
general, decide for input ⟨Md, we⟩ whether Md on we halts or not. Yet, TM Ṽ needs this
decidability to output a string that Md on we does not produce itself.

4. Discussion

Theorem 1 informs us that TMs compute less number-theoretic functions than RBMs.
A halting TM reveals its complete result, enc( f (x)), to the outside world all in one sweep.
In contrast, an RBM implementing the same function will, on input enc(x), provide the
first symbols of enc( f (x)) for the outside world to see as soon as they have been computed.
In all other respects, RBMs are no different from TMs.

The philosopher of computing Robin K. Hill asserts that a TM an sich is inert. “While
we may preach that an algorithm is a Turing machine”, she states, “we do not practice
it” [28] (p. 53). For, fundamentally, the TM presupposes a human as a part of a system.
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That human, Dodig-Crnkovic continues, “is the one who poses the questions, provides
material resources and interprets the answers” [9] (p. 306).

In alignment with the propositions of Hill and Dodig-Crnkovic, we contend that RBMs
exhibit greater fidelity to the concept of an algorithm compared to TMs. In practice, human
observers scrutinize the intermediate, definitive output symbols generated by the machine
and take action based on them while the machine is still in operation. Notice that the term
“machine” can refer to a disciplined human–computer or a computing device.

However, for the sake of argument, let us suppose that an algorithm is a TM after all.
Consequently, the human observer restricts an RBM to provide no more information than a
TM can offer. Like an automaton, the observer follows these steps:

1. Feed the finite input to the RBM machine.
2. Press the “go” button.
3. Close your eyes until the machine says “I have halted.”
4. Then, and only then, open your eyes and read the finite output.

In Step 3, the observer consistently ignores the following feedback from the machine:

“I already have part of the output for you to read.”

Granted, the output is potentially garbage, where “garbage” refers to either an output
string that encodes no natural number, or an infinitely long output. However, for some
RBMs, such as machine V in Theorem 1, the observer ignores far more useful feedback:

“I already have part of the finite output for you to read, and it ain’t garbage.”

Recall that RBM V prints at most n output symbols, with n known to the observer, i.e.,
n = 2 in the proof of Theorem 1 and V is designed never to print garbage.

Permanently ignoring a prefix of the finite output, which is guaranteed not to be
garbage, is comparable with a cyclist preparing for a trip and disregarding early, yet
informative, weather forecasts. Temporarily ignoring a prefix is akin to a theoretical
computer scientist insisting that the calculation of a shortest path in a given graph must be
completed before any prefix of the output can be properly utilized. In both cases, we argue
that such a stance is futile (Section 4.1). We continue our engagement with Burgin’s critics in
connection with the notion of actual infinity (Section 4.2). By expressing slight disagreement
with Burgin’s own retrospective outlook on early computing practices, we strengthen his
case against the Church–Turing thesis dialectically (Section 4.3). Finally, we present an
industrial example of hypercomputability, based on Burgin’s work, to demonstrate the
advantages of RBMs and simple inductive TMs over standard TMs (Section 4.4).

4.1. Ignoring a Prefix of the Finite Output

Imagine a cyclist at home receiving up to 12 weather forecasts for the next three hours
before departing by bike. She hesitates to rely on the first forecast, waiting for the final
one, i.e., the alleged “definitive” weather forecast. However, since there is no guarantee
that the twelfth (or eleventh, tenth, etc.) forecast will come within the next three hours, as
the software only informs the cyclist when its latest prediction significantly differs from
the most recent one, this particular cyclist is left in a bind. Of course, most cyclists in
reality do rely on early weather forecasts. As a result, they can, e.g., mentally prepare for
their upcoming race, “even if potentially better output may be produced in the future.”
Paraphrasing, Burgin continues thus: “A machine that occasionally changes its output does
not deter human users. They can be satisfied with output that is good enough” [13] (p. 86).
Standard TMs fail to capture this aspect of algorithmic engagement.

Remark 5. The weather simulator relies on real and evolving weather conditions which, we opine,
are not determined by any TM. However, even if they were, we would still be arguing that an RBM
or a simple inductive TM models the present case study better than an inert TM. Granted, the
function computed by our machine would then be TM computable. However, this is beside the point,
since the mathematical findings in Section 3 remain intact: TMs overall compute fewer functions
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than RBMs. We are asking our antagonists not to conflate our mathematical findings with an
ontological claim about actual weather developments.

Returning to the cyclist and weather forecasts: if she hopes to stay dry on a cloudy day,
she should not rely heavily on late weather forecasts to begin with. (Notice the misnomer.)
If the final forecast arrives just as she is about to leave, she can simply glance outside
to see if it is raining. In many cases, this real-time observation is more accurate than the
simulator’s “predictions.” In cloudy conditions, it is not uncommon for a weather simulator
to indicate dryness when it is actually raining at that moment, and vice versa. In a very
real sense, the weather simulator is not expected to provide a final, correct result to be of
practical use.

There are other applications, such as counting election votes or computing the shortest
path in a graph, where a final, accurate outcome is, of course, essential. Consider, then, a
TM M that computes the shortest path in a finite graph. Contrast this with an RBM N that,
with a visible output tape, computes the same path. Clearly, users will prefer N over M
because the shortest path can be lengthy, and obtaining initial segments during the ongoing
computation is highly beneficial. The ability of Burgin’s simple inductive TMs to overwrite
the output is unnecessary here. Hence, we can now highlight the relevance of RBMs over
both standard TMs and simple inductive TMs in this particular, yet common, context.

4.2. Infinity

Some critics object that simple inductive TMs, along with RBMs, often fail to notify
the user when the definitive result has been obtained. Burgin suitably rebuts as follows:

Similar situations arise with ordinary TMs, where it is often uncertain whether the
machine will ultimately produce a finite output or not [14] (p. 158, paraphrased).

Indeed, it is frequently overlooked by our critics that a superhuman is also required to
confirm that an arbitrary TM computation is infinite, or that it is finite.

The necessity of observing the output tape “in the limit” arises from the infinite work
tape. All machines under consideration—TMs, RBMs, and simple inductive TMs—possess
such a tape. Only a superhuman can observe a computation of such a machine and declare
that it provides a finite output in the limit, or not. We therefore submit that, ceteris paribus,
RBMs and inductive TMs have no worse fidelity than standard TMs.

Furthermore, in practice, nobody waits an unbounded amount of time for a computa-
tion to perform something useful: actual realizations of all three types of machines rely
on space-time constraints. In such a constrained world, human observers also look at the
intermediate, definite output symbols and already perform something with them while the
machine operates. We therefore re-assert that in some, if not many, contexts, RBMs have a
better fidelity than both standard TMs and simple inductive TMs.

But, our critic might still remark, no finite experiment can demonstrate that a physical
system (e.g., a human brain or an electronic computer) is equivalent to an RBM rather
than a TM. In this regard, the critic is paraphrasing Marvin Minsky as follows: “there is
no evidence for this, for how could you decide whether the physical system computes an
uncomputable predicate?” [29] (p. 175). We respond using Kugel’s reply to Minsky, thus:

You can’t. But that does not mean that one might not choose uncomputable
models anyway, much as one might choose the infinite (Turing Machine) models,
to which most of Minsky’s (1967) book [30] is devoted, over the more finite
(Finite Automaton) models, even though one cannot prove, on the basis of finite
evidence, that any given physical system is not one of the latter [29]. (p. 175)

Indeed, a common critique of hypercomputation is that no physical machine can
execute an algorithm computing a non-recursive function. Fine, but then it is also the
case that no physical machine can execute an algorithm computing a recursive function.
Even the identity function (λx.x) cannot be executed by, say, the critic’s laptop. The crux is
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that neither recursive nor non-recursive functions f are faithfully captured by present-day
technology. A more in-depth discussion can be found in Daylight [31].

4.3. Retrospection

First-generation computer users in the 1940s closely monitored various parameter
values while the machine was running, even listening to the sounds of the computation
to determine if the machine had entered a loop. We contemplate, without citing historical
sources here, and merely in terms of a relative comparison, that RBMs capture early com-
puting practices more accurately than inert TMs. From this vantage point, we disagree with
Burgin’s assertion that “recursive algorithms provided a correct theoretical representation
for early computers” [13] (p. 86, our emphasis).

Perhaps Burgin’s “early computers” refer only to the machines of the 1960s and later.
Even then, however, his retrospection remains inaccurate. Burgin writes as follows:

Initially, it was necessary to print out data to obtain results. After printing, the
computer either stopped functioning or began solving another problem. Today,
people work with displays, and computers produce results on the screen. These
results persist only if the computer continues running. This aligns perfectly with
inductive TMs, which generate results without halting [13] (p. 86, paraphrased).

We are in full agreement with this excerpt as such. But we take gentle issue with Bur-
gin’s overall claim that printing machines, i.e., batch-processing machines of the 1960s, are
faithfully captured with TMs. Computers in the 1960s, we stress, could not print the entire
output instantly; they could only do so incrementally. Moreover, a single batch program
could involve an interleaving of computing and printing routines. These observations
remain valid for any batch processing to date. When a prefix of the final output is printed,
it is known at an earlier stage of computation, and immediately achieves significance in the
outside world. RBMs capture this form of computing more faithfully than both TMs and
inductive TMs. Burgin is correct, however, regarding people working with displays; in this
network-laden realm of distributed computing, his simple inductive TMs, as well as his
more powerful inductive TMs, are more authentic than both TMs and RBMs.

We are perfectly at ease with such a nuanced synthesis, as we do not wish to assume
the existence of a singular “best fit” model of computation. In our view, different models
offer varying degrees of utility depending on the context. To address this topic further
without delving too deeply, we shall now discuss a third area—program performance
checking—which differs from both batch processing and distributed computing.

4.4. Program Performance Checker

We believe that informed theorists will favor RBMs or simple inductive TMs over
the standard TM model when tasked with mathematically formulating what a program
performance checker entails. While Burgin uses a simple inductive TM to formally capture
this technology, we choose to use an RBM instead. Our summary, adapted from Burgin [14]
(p. 128), demonstrates how performance checkers are designed in practice.

Checker PPC verifies whether software S utilizes program P, producing an output
string of either 0 for ’no, it does not’ or 01 for ‘yes, it does.’ Whether the checker fails to halt
in certain scenarios is irrelevant to software engineers, as they can abort their computer
routines at will. For example, checker PPC might operate as follows on inputs S and P:

• Initialization stage: PPC prints 0 and then starts simulating software S.
• Stage 1: After a step in S’s execution, PPC checks whether program P performs any

instruction at this step. If it does, PPC prints 1 and halts.
• Stage 2: If program P does not perform any instruction at this step, then PPC returns

to Stage 1 for S’s next execution step. If S halts, then PPC halts as well.

The crux is that, just like an operating system, software S may intentionally not halt.
Suppose furthermore that program P is never utilized by S. Then, PPC will stabilize its
output to the string 0 and never halt. Engineers can extract this non-trivial information
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from a finite run of their PPC checker, with an abort initiated by them. This is possible due
to their understanding of the internal structure of their own engineered artifacts, S and P.
Whether this non-trivial information is aptly described as “ontologically TM-incomputable”
depends on the reader’s philosophical perspective (cf. our discussion on weather forecasts).

5. Conclusions

This paper dispels the Church–Turing thesis—the purported robustness of the stan-
dard TM model—by employing the RBM model of computation. We demonstrate that the
thesis does not hold within its originally intended context of batch processing, or more
broadly, stand-alone computing performed by physical systems such as disciplined humans
or electronic computers. This conclusion is supported by two key points.

First, RBMs can compute a wider range of functions than TMs, but fewer than simple
inductive TMs, as shown in Theorem 1 and in the introduction of this paper (see Remark 2).
Simple inductive TMs can project results onto their output tape and modify them a number
of times. In contrast, RBMs can only modify their output by appending symbols, and TMs
are inherently limited by not having a visible output tape.

Second, during the computation of a well-designed RBM, an observer can extract
meaningful information from the output tape, even while anticipating that additional
symbols may still appear. For instance, in calculating the shortest path in a graph, the RBM
model better captures the concept of an algorithm than both the TM model and Burgin’s
simple inductive TMs for this specific, though common, example. Whether the shortest
path is computed by a disciplined human or an electronic computer is irrelevant to our
discussion. However, we have focused on the latter to streamline our analysis of Burgin’s
work and to refine his case against the Church–Turing thesis.

For a historical perspective on the advent of the thesis, see Daylight [21,32]. Primary
sources include the textbooks by Kleene [12,33] and Davis [34]. For instance, Kleene
submitted that the thesis “would be disproved, if someone should describe a particular
function, authenticated unmistakably as ‘effective calculable’ by our intuitive concept, but
demonstrably not general recursive” [12] (p. 241). We posit that fV :: N→ N⊥ in Theorem 1
is precisely such a function. Kleene furthermore argued that the societal “significance” of a
Turing-incomputable function ψ( ) “comes from the Church–Turing thesis,” by which:

computability in Turing’s sense agrees with the intuitive notion of computabili-
ty. Accepting the thesis, as most workers in foundations do, the director of a
computing laboratory must fail if he undertakes to design a procedure to be
followed, or to build a machine, to compute this function ψ(a).7

Our critique of this passage, irrespective of whether the thesis actually holds, appears
in a forthcoming article. The crux is that Kleene viewed the TM model as the singular “best
fit” model of computation, implying that engineers should simply adopt it.

Kleene’s view aligns with the neo-Russellian belief that all forms of physical computa-
tion fundamentally correspond to some TM computation. We have directly contested this
view with our RBMs, arguing that the TM model is inferior to the RBM model. However,
our perspective becomes more nuanced when considering other models. For instance,
Burgin’s simple inductive TMs are more useful in distributed computing than RBMs, but
less suitable for batch processing. Furthermore, when developing a theory of program
performance checkers, we propose placing RBMs and simple inductive TMs on equal
footing. Incorporating these observations into the classification framework of Burgin and
Dodig-Crnkovic [35] remains a future work.

Sociological factors might still be at play if readers remain convinced that the Church–
Turing thesis prescribes what an algorithm entails in the real world, rather than merely
describing what a select group of theorists wanted an algorithm to mean. This is evident
from the emotional commentary we have received from esteemed colleagues, who, we
believe, tend to conflate ontology and epistemology. More importantly, it is clear from the
lack of recognition for Burgin’s writings within mainstream theoretical computer science in
recent decades. Therefore, we hope this paper will inspire the next generation of scholars
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to delve into Burgin’s “unrestricted inductive Turing machines with structured memory,”
which are computationally equivalent to TMs with oracles, and his Super-Recursive Al-
gorithms in general [14]. Similarly, we aspire for historians of modern logic to integrate
Burgin’s critique of the Church–Turing thesis into a broader historical context, alongside
the perspectives of László Kalmár and István Németi and Hajnal Andréka. For a compre-
hensive starting point and references to primary sources, see Máté Szabó [36].
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Appendix A

Coming to a formal definition of a Raw machine, we refine statements made previously
about printing output symbols in the following way:

1. Raw machine R either prints the blank b, with b ∈ Γ, on the output tape and the tape’s
head remains idle (I).

2. Or, Raw machine R prints any nonblank symbol α ∈ {$} ∪ Γ \ {b} on the output tape
and the tape’s head moves one cell upward (↑).
Technically, then, R produces a symbol on its output tape during every computational

step. However, R progresses one cell upward on its output tape if and only if it has just
printed a nonblank symbol (on the output tape). For completeness’ sake, we also explicitly
remark that when R prints the end marker $, the head of the output tape moves one
cell upward.

Remark A1. Note that ϵ denotes the string of length zero. Any Raw machine R initially contains
a blank output tape, i.e., a tape filled with infinitely many b symbols, thus containing not a single
symbol from (Γ ∪ {$}) \ {b}. The output tape is then said to “contain ϵ as output”.

We denote an instantaneous description (ID) of Raw machine R by α1qα2 ∥ α3 with
three provisos:

1. The current state q of R has to be in Q.
2. Concerning the first tape:

(a) α1α2 is the string in Γ∗, i.e., the contents of the first tape up to the rightmost
nonblank symbol or the symbol to the left of the head, whichever is rightmost.

(b) The head of the first tape is assumed to be scanning the leftmost symbol of α2,
or if α2 = ϵ, then the head is scanning a blank.

3. Concerning the second tape:

(a) α3 is the string in (Γ ∪ {$})∗, i.e., the contents of the second tape, starting at
the bottom and progressing upward.

(b) The head of the second tape is assumed to be scanning a blank b, with:
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i. Either b appearing as the last (top-most) symbol in α3;
ii. Or, if the previous case does not apply, b appearing as the bottom-most

blank on the tape and located above α3.

Remark A2. We use an underscore to denote a “do not care” value. For instance, we write
α1qα2 ∥ _ to denote an ID in which we intentionally do not specify the second tape. Likewise, we
write _ ∥ α3 to denote an ID in which we do not bother to describe the machine’s control (q), nor the
contents (α1α2) on the first tape, nor the position of the head (α1q) of the first tape.

Closely following Hopcroft and Ullman [1] (p. 149), we define a move of R (also called
a computational step) as follows. Let X1X2 · · ·Xi−1qXi · · ·Xn ∥ Y1Y2 · · ·Ym, with Ym ̸= $, be
an ID. We distinguish between orthogonal concerns 1 and 2.

1. For the control and the first tape, taken together, we have to consider two cases:

(a) Suppose δ(q, Xi) = (p, Z,←, _, _), where if i− 1 = n, then Xi is taken to be the
blank b. We distinguish between two subcases:

i. i = 1
There is no next ID, as the tape head is not allowed to fall off the left
end of the tape.

ii. i > 1
Then, we write:
X1X2 · · ·Xi−1qXi · · ·Xn ∥ Y1Y2 · · ·Ym
⊢R
X1X2 · · ·Xi−2 pXi−1ZXi+1 · · ·Xn ∥ _.

(b) Suppose δ(q, Xi) = (p, Z,→, _, _). Then, we write:
X1X2 · · ·Xi−1qXiXi+1 · · ·Xn ∥ Y1Y2 · · ·Ym
⊢R
X1X2 · · ·Xi−1ZpXi+1 · · ·Xn ∥ _

2. For the second tape, we have three cases to consider:

(a) Suppose δ(q, Xi) = (_, _, _, b, I).
Then, we write:
X1X2 · · ·Xi−1qXiXi+1 · · ·Xn ∥ Y1Y2 · · ·Ym
⊢R
_ ∥ Y1Y2 · · ·Ym.

(b) Suppose δ(q, Xi) = (_, _, _, $, ↑).
Then, we write:
X1X2 · · ·Xi−1qXiXi+1 · · ·Xn ∥ Y1Y2 · · ·Ym
⊢R
_ ∥ Y1Y2 · · ·Ym$.

(c) Suppose δ(q, Xi) = (_, _, _, Z, ↑) with Z ∈ Γ \ {b, $}.
Then, we write:
X1X2 · · ·Xi−1qXiXi+1 · · ·Xn ∥ Y1Y2 · · ·Ym
⊢R
_ ∥ Y1Y2 · · ·YmZ.

Remark A3. Coming back to 1(a)(i) in the above definition, one can, contra Hopcroft and Ullman
and the present author, be even more formal: introduce an end marker and define head movement on
the end marker, such that no output is produced, the symbol is not rewritten, and the head moves to
the right.

Remark A4. “τ1 ⊢R _ ∥ α3” is shorthand for “there exists α1, q, α2 such that τ1 ⊢R α1qα2 ∥
α3”. Likewise, “τ1 ⊢R α1qα2 ∥ _” is shorthand for “there exists α3 such that “τ1 ⊢R α1qα2 ∥ α3”.
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If two IDs are related by ⊢R, we say that the second results from the first by one move.
If one ID results from another by some finite number of moves, including zero moves, they
are related by the symbol ⊢∗R. We write ⊢m

R , for some specific m ∈ N, to denote precisely m
moves, with ⊢R as shorthand for ⊢1

R.
Inspired by Martin Davis [34] (Ch.1), we provide the following definition.

Definition A1. An ID τ1 is called terminal with regard to Raw machine R if τ1 is of the following
form: _ ∥ Y1Y2 · · ·Ym$, for some m ∈ N. By a finite computation of Raw machine R is meant a
finite sequence τ1, τ2, . . ., τp of IDs such that τi ⊢R τi+1 for 1 ≤ i < p. By a terminating or halting
computation of Raw machine R is meant a finite computation τ1, τ2, . . ., τp of R in which the last ID
τp is terminal (with regard to R). By a nonterminating or infinite computation of R is meant an
infinite sequence τ1, τ2, . . . of IDs such that τi ⊢R τi+1 for all i ≥ 1. In this case, we also say that R
does not halt. By a computation of R is meant either a finite or an infinite computation of R.

Notes
1 Quoted from Hopcroft and Ullman [1] (p. 159).
2 Quoted from Kleene [12] (p. 232).
3 Quoted from Kleene [12] (p. 232, original emphasis).
4 Quoted from Kleene [12] (p. 232, original italics, our boldface).
5 Accessed on 15 June 2024.
6 Stating Condition (2) in the definition is redundant, but informative nonetheless.
7 Quoted from Kleene [12] (p. 245).
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